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Abstract

Meta-learning is a subset of machine learning that involves training a model on a variety of

different tasks and testing that model on new tasks with little data per task. Many current meta-

learning algorithms employ a naive random sampling approach when selecting the topics to train

upon. Domain specific sophisticated methods of sampling tasks exist for domains such as few-shot

classification and meta-reinforcement learning which improve the performance of meta-learning

models in these domains. Upon review of these methods, it was discovered that the domain of few-

shot regression could have a similar task sampling method adapted from these existing methods.

After discussing the existing methods for task sampling, a new technique specific to the domain

of few-shot regression is introduced. This method is shown to provide a small increase to the

performance of meta-learning models on a regression task.
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Chapter 1

Introduction
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This chapter will introduce the idea of meta-learning and how it relates to traditional deep learn-

ing methods. The task selection methods of many current meta-learning models will be discussed.

Finally, sophisticated methods of task selection for the domains of classification and reinforcement

learning will be introduced.

1.1 Meta-Learning

Deep learning has become a ubiquitous topic in recent years. Methods employing deep learning

have been developed to solve a wide variety of problems including language processing [3], image

recognition [4], and recommender systems [5]. However, these methods all share a significant

flaw. Deep learning methods require a very large amount of data to produce meaningful results

[6]. An often stated goal of artificial intelligence research is to model as closely as possible the

way in which humans learn information. In contrast to traditional deep learning methods, humans

can learn new information with a relatively small number of examples. The desire to model this

behavior is what gave rise to the idea of few-shot learning, generating a model to perform a task

using only a few examples. One of the best performing techniques in solving few-shot learning

problems today is the idea of meta-learning, or learning to learn.

In a meta-learning problem, a model is trained on a variety of different tasks Ti during the meta-

training phase. Instead of trying to learn specific solutions to these tasks, a meta-learning model is

tasked with learning information about the structure and common features of these tasks in order to

learn these tasks with fewer examples. In other words, the model learns the most effective learning

techniques across the meta-training tasks. At meta-test time, the model is presented with a new

unseen task and only a few examples relating to that task. Using these few examples combined

with the prior knowledge of learning techniques, the model must then learn to perform this task.

One example of such a meta-learning algorithm is Model-Agnostic Meta-Learning, or MAML

[7]. In this algorithm, a batch of tasks is first sampled from a uniform distribution over all possible

tasks. Then, starting from global parameters θ, one step of gradient descent is performed on each of
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these tasks resulting in new parameters θ′i for each task Ti. Finally, one step of gradient descent is

performed using the sum of each task’s loss function when supplied with these new parameters θ′i.

This step of gradient descent is used to update the global parameters θ. The goal of this algorithm

is to discover an initial parameterization θ that allows for quick convergence after a small number

of gradient descent steps over a wide variety of tasks.

1.2 Task Selection

At their core, meta-learning methods rely heavily on the sample tasks chosen for meta-training.

Much like deep learning models rely heavily on a large amount of data, meta-learning models re-

quire a large amount of different tasks upon which to train. While the meta-test tasks are unknown,

it is important that the training tasks be representative of the tasks that will be seen at meta-test

time.

Vanilla meta-learning methods often employ a strategy of uniform random sampling to generate

the tasks used for meta-training [7] [8]. These sampling methods can still lead to impressive results

in few-shot learning problems, but a random sampling technique ignores the structure of tasks and

the relationship between tasks. For example, a random sampling technique across the distribution

of possible meta-training tasks might generate a set of tasks that are all very similar. When training

on these tasks, the meta-learning model will generate a strong learning technique that will allow

it to adapt very quickly to this set of tasks. However, if the tasks encountered at meta-test time

are significantly different from the training tasks, the model may not be able to generalize well. In

addition, a random sampling technique may generate meta-training sets that contain a number of

very easy tasks. Although the model would perform very well on these tasks, they provide very

little information and thus will not significantly improve the model’s ability to generalize to more

difficult tasks. In ignoring the structure and relationships between tasks, naive random sampling

techniques hamper the ability of meta-learning models to generalize well to unseen test cases.
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1.3 Current Methods of Task Selection

Despite the reliance of many meta-learning models on random sampling techniques, there exist

some more sophisticated methods of task sampling for meta-learning problems. One example of

such a method is the Adaptive Sampling method [2]. This method of task sampling works in

the classification domain. Tasks in this domain correspond to a set of classes, and the Adaptive

Sampling method takes into account the relative difficulty of discriminating between the classes in

a given task to select a task for meta-training. Another example is Information-Theoretical Task

Selection [1]. This method of task selection works in the reinforcement learning domain and takes

into account the similarity between tasks in the training set and the relevance of these tasks to a

validation set to determine which tasks to use for meta-training.

Both of these task selection methods can improve performance in their respective domains,

but these methods both rely on the specific structure of these domains. Therefore, these selection

techniques cannot be easily adapted to other domains like the domain of few-shot regression. The

problem of few-shot regression does not yet have a specific sampling technique for improving the

performance of meta-learning models. After a discussion of the two aforementioned techniques

and the principles guiding them, a sampling technique for this domain based upon the lessons

learned from existing techniques will be introduced.
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Chapter 2

Previous Work
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This chapter will detail two existing task sampling methods for meta-learning, Adaptive Sam-

pling and Information-Theoretic Task Selection. These methods are designed for the classification

and reinforcement learning domains, respectively. The intuition behind both techniques as well as

their specific implementations and the results they achieve over vanilla meta-learning models will

be discussed.

2.1 Adaptive Sampling

This section will introduce the Adaptive Task Sampling method [2] for meta-learning models.

The problem setting for few-shot classifcation problems, the setting in which Adaptive Sampling

operates, will be introduced. The methodology behind the Adaptive Sampling technique will be

discussed. Finally, the results of implementing this technique on classification problems will be

shown and discussed.

2.1.1 Problem Setting

The Adaptive Task Sampling method is designed to improve the performance of meta-learning

models on few-shot classification problems [2]. These problems are characterized by two datasets,

a meta-training dataset Dtrain and a meta-test set Dtest. Each of these datasets has a respective set

of classes Ctrain = {1, 2, . . . , n} and Ctest = {n+1, n+2, . . . , n+m}. Typically, the meta-training

dataset has a large number of both classes and examples. The class sets for the two datasets are

disjoint. Each task Ti used by the meta-learner in this problem is a K-way-N -shot classification

task formed by sampling K different classes L from Ctrain and N examples from each of these

classes. The goal of a meta-learning agent on this problem is to use these tasks to learn a model on

Dtrain that can generalize using a small number of training steps to Dtest.

Many existing meta-learning models rely on an episodic training strategy to solve this problem

[9]. In this strategy, each sampling of classes L corresponds to one episode. Once the classes have

been sampled, a support set S and a training batch B are sampled from Dtrain, both consisting
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of labeled examples from the classes in L. The model then predicts the labels of the examples

in B given the examples in S. The objective function the training is attempting to minimize is as

follows:

l(θ) = E[−
∑

(xn,yn)∈B

log pθ(yn|xn,S)],

where θ are the parameters for the model and pθ(yn|xn,S) is the probability of the model predicting

the correct label yn given the example xn and the support set S.

2.1.2 Sampling Method

The intuition behind the Adaptive Task sampling method is that certain class-pairs are more dif-

ficult to differentiate between than others. This method forces a model to learn from more difficult

tasks, which provide more information to the model than simple tasks [2]. This is accomplished by

keeping track of which class-pairs are the most difficult to discriminate between during the training

phase. The Adaptive Sampling method characterizes this class-pair difficulty for a pair of classes

(i, j) as the average probability that an example belonging to one of these classes is mistakenly

classified as being in the other. Formally, this probability is

p̄((i, j)|S,B) =

∑
(xn,yn=j)∈B p(c = i|xn,S)

N
+

∑
(xn,yn=i)∈B p(c = j|xn,S)

N
.

The adaptive sampling algorithm uses these probabilities to update a set of class-pair poten-

tial functions C(i, j) during meta-training. These functions increase in proportion to a greater

p̄((i, j)|S,B), and thus capture the notion of difficulty in discriminating between specific class-

pairs. The class sampling L is selected based upon those class-pairs with the greatest C(i, j),

crafting a set of classes that represent the most difficult pairwise classification problems in the

meta-training data. In this way, the model avoids training on simple tasks which would not provide

as much information.
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2.1.3 Results and Analysis

Table 2.1 shows the results of the class-pair based Adaptive Sampling method against other

meta-learning algorithms on the miniImageNet [9] dataset. This dataset consists of 100 classes

with 600 84 × 84 images per class. The dataset is divided into 64 meta-training classes, 16

meta-validation classes, and 20 meta-test classes. Table 2.1 shows the mean accuracy and 95%

confidence intervals on the meta-test set.

Methods 5-way-1-shot 5-way-5-shot

Matching Network [9] 43.44± 0.77 55.31± 0.73

MAML [7] 48.70± 1.84 63.11± 0.92

PN [10] 59.25± 0.64 75.60± 0.48

PN with gcp-sampling [2] 61.09± 0.66 76.80± 0.49

MetaOptNet-RR [10] 61.41± 0.61 77.88± 0.46

MetaOptNet-RR with gcp-sampling [2] 63.02± 0.63 78.91± 0.46

MetaOptNet-SVM [10] 62.64± 0.61 78.63± 0.46

MetaOptNet-SVM with gcp-sampling [2] 64.01± 0.61 79.78± 0.47

Table 2.1: Results of the adaptive sampling method (gcp-sampling) compared to
other few-shot classification tasks, adapted from [2].

These results show that the Adaptive Sampling method yields a significant improvement in

meta-test accuracy over vanilla meta-learning models. These results support the idea that focusing

specifically on difficult tasks, or tasks on which the model has a higher probability to fail, results

in more meaningful learning.

The main drawbacks in considering this method of task sampling for regression are the reliance

on the classification setting and the number of possible class-pairs. For this method, a matrix of size

|Ctrain| × |Ctrain| must be maintained and updated after each task selection episode to capture all

of the class-pair potential functions. For a meta-learning classification problem with a reasonable

number of classes like miniImageNet, which contains 64 different training classes, this does not

pose an issue. However, as the number of possible classes increases, the amount of work required

to maintain this matrix increases by O(n2). With this in mind, consider a direct transfer of this
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method to a regression problem. Since this setting has no distinct classes, the relative difficulty of

something else must be measured. Regression problems involve assigning predicted outcomes to

individual input points, so maintaining a set of potential functions for different input points or sets

of input points would be analogous to the classification case. In the regression setting, input points

are sampled continuously from a certain range. Clearly, maintaining potential functions for each

possible input on this continuous range would be intractable. Therefore, a different heuristic for

task selection must be considered.

2.2 Information-Theoretic Task Selection

This section will explore the Information-Theoretic Task Selection method [1] for meta-reinforcement

learning models. The problem setting and notation for reinforcement learning problems will be in-

troduced. The specifics of the task sampling method will be explained. Finally, the results of using

this sampling method in meta-reinforcement learning tasks will be shown and discussed.

2.2.1 Problem Setting

The Information-Theoretic Task Selection (ITTS) method [1] is designed to improve perfor-

mance on the domain of Reinforcement Learning. A task in reinforcement learning is represented

as a Markov Decision Process m = 〈S,A,R, P, γ, µ〉. In a Markov Decision Process, S represents

the set of possible states, A represents the set of actions, R ⊂ R is the set of rewards, P (s′, r|s, a)

represents the joint probability distribution of the next state and the reward given the current state

and the action taken, 0 ≤ γ ≤ 1 represents a discount factor, and µ(s) is the distribution of

initial states. An agent in a Reinforcement Learning scenario is represented by a policy π(a|s),

which represents the probability of taking a certain action given the current state of the agent.

The goal of this agent is to learn an optimal policy π∗ which maximizes the expected total reward

Gt = E[
∑

i≥t γ
i−tri+1] starting from a state st at time t, where ri+1 is the reward resulting from

the action taken at time i.
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In the context of meta-learning, each task Ti corresponds to a single Markov Decision Process

sampled from a distribution p(Mtrain) whereMtrain is the meta-training set. Throughout meta-

training, the meta-learning agent learns a policy π that is transferred to a new task sampled from

Mtest at meta-test time. Since the model must transfer its policy to each new task, it is required

that a policy for one Markov Decision Process m be defined for every possible state and action of

the other processes inMtrain andMtest.

2.2.2 Sampling Method

The intuition behind ITTS is that, for a task to be useful to the meta-learning model, it must

be both different enough from other training tasks and yet relevant enough to transfer well to other

tasks. To accomplish this, ITTS samples from the meta-training set Mtrain two disjoint sets, a

training set T and a validation set consisting of K tasks F . True to its name, ITTS defines the

concept of difference and relevance from an information-theoretic perspective [1]. This method

defines the concept of difference between two tasks m1 and m2 as the average Kullback-Liebler

divergence between the optimal polices for these tasks over the states of the validation tasks. This

divergence is a measure of difference between two probability distributions. It acts as a measure

of the amount of information in one set that can be used to differentiate it from the other [11]. The

equation as used by ITTS is as follows:

δm1,m2 :=
1

K

∑
mj∈F

1

|Sj|
∑
s∈Sj

∑
a∈A

π∗m1
(a|s) log

π∗m1
(a|s)

π∗m2
(a|s)

.

ITTS defines the relevance of a task m1 to another task m2 in terms of the optimal policy

π∗m1
. In order to calculate the relevance, first l reinforcement learning steps are performed on m2

starting from π∗m1
. Relevance is then calculated using the expected difference in entropy between

the optimal policy for m1 and the newly calculated policy πlm1,m2
over the states of the validation
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tasks. Formally, the relevance measure is as follows:

ρl(m1,m2) := E[H(πlm1,m2
(a|s))−H(π∗m1

(a|s))].

As opposed to Adaptive Sampling, which runs as part of the meta-training phase, ITTS creates

a sample of training tasks before meta-training begins. As stated above, ITTS begins by taking

two separate sets of tasks, T and F , and an empty set of tasks C, which is the set of selected meta-

training tasks. Then, each task in t ∈ T is compared to each task in C using the above difference

measure. If this new task is sufficiently different each task in C, then it is compared to each task in

F using the relevance measure. If the task t is deemed to be relevant to at least one task in F , i.e.

the expected entropy between π∗t and πlt,f is below some threshold for some f ∈ F , then the task t

is added to C and the next task is considered.

2.2.3 Results and Analysis

Figures 2.1 and 2.2 show the performance of ITTS on two separate locomotion domains from

[7]. The “Ant” domain consists of a 3D quadruped and the “Cheetah” domain consists of a 2D

cheetah. The reward functions for both domains consist of the negative absolute value between

the velocity of the agent and a randomly selected goal point [7]. Thus, the rewards increase as the

velocity of the agent increase towards the goal point.

Figure 2.1: Results of the ITTS method on the Ant domain from [1]
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Figure 2.2: Results of the ITTS method on the Cheetah domain from [1]

As with Adaptive Sampling, these results once again show that the adoption of a sophisticated

sampling strategy can lead to significant improvements in meta-test accuracy over vanilla meta-

learning models. Going further, the intuition from this technique of ensuring that the sampled

tasks are different enough from each other and relevant enough to the overall problem seems to be

much more readily adaptable to a regression setting.

The drawback is once again that this method cannot be directly transferred to a regression

setting. While the intuition behind this technique may generalize more readily, the specific im-

plementation of measures for difference and relevance in this method cannot be transferred to the

regression domain. Therefore, although the idea behind this approach seems promising, a new

measure for the concept of difference must be employed before this method can be adapted for

regression.
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Chapter 3

Task Selection for Regression
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This chapter introduces the problem of task selection for the meta-learning of regression tasks.

The setting of a regression problem is formally laid out. Then, the respective approaches to task

sampling of Adaptive Sampling and ITTS are considered to form a basis for a method of task

selection for regression problems. Finally, an algorithm is introduced which extends the ideas

present in Adaptive Sampling and ITTS to sample tasks for a meta-learning regression setting.

3.1 Problem Setting

In the meta-learning setting for regression, the problem is characterized by two datasets, a

meta-training set Dtrain and a meta-validation set Dtest. Each of these datasets contain functions

fi. These functions are required to be continuous. A single task Ti in this domain corresponds

to K-shot regression problem on a single function fi. From this function, K input-output pairs

(xj, yj) are sampled such that fi(xj) = yj . The goal of a model is to take as input the K inputs

sampled from Ti (x1, . . . , xK) and predict the corresponding outputs (y1, . . . , yK). A common loss

function used for optimization is the mean-squared error:

l(θ) =
∑

xj ,yj∈Ti

||fθ(xj)− yj||22,

where θ are the parameters of the model and fθ is the function used by the model to predict the

output. The goal of a meta-learning model is to learn a model on Dtrain that can generalize well to

functions in Dtest given only a small number of input-output pairs K.

3.2 Sampling Method

After reviewing both the methods of Adaptive Sampling and ITTS in their respective domains,

a framework on which to build a sampling technique for regression becomes apparent. Both of

these techniques focus on the idea that repeatedly training on similar or easy tasks will lead to

slower learning. Thus, a task sampling method for regression must focus on sampling functions



15

from the test data that provide more information to the model.

It is difficult to enforce a measure of difficulty on the sampling of tasks for regression. This

stems from the fact that input-output pairs are only sampled after a function has already been

selected. The difficulty of a few-shot regression task can depend heavily on the way these points

are sampled, as a sample of points that span the domain upon which the function is being predicted

can lead to a much easier problem than a small cluster of points in one area on the same function.

Coupled with the fact that a direct transfer of the difficulty measurement for Adaptive Sampling

to the regression setting would be intractable, it is more useful to focus on a notion of difference

between functions.

Enforcing difference between the functions being sampled ensures that the meta-learning model

does not simply learn to perform well on a particular subset of the functions inDtrain, but upon the

entire range of functions this set represents.

To use the difference between functions as a parameter for sampling tasks, a concrete measure

of the difference between functions must be employed. Since the functions in a regression problem

are required to be continuous, they can be understood through the lens of the L2 space. The L2

space is a vector space on functions which provides the L2 norm:

d(f, g) = (

∫ b

a

(f(x)− g(x))2dx)1/2, (3.1)

where f and g are two separate functions and [a, b] is the interval on which points are being sam-

pled.

This norm defines a measure of distance between two functions. Using this norm, functions

can be sampled based upon their difference between previously sampled functions to ensure that

the model does not repeatedly train on very similar functions which may inhibit the model’s ability

to generalize to new functions.
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3.3 Algorithm

Using the measure of distance between two functions presented in the previous section and the

ITTS implementation of enforcing difference between selected tasks as a guideline, the following

algorithm for sampling tasks for meta-learning on regression is presented:

Algorithm 1 Task Selection for Regression
Require: Meta-training data Dtrain, tolerance ε

1: T ← {}
2: for Training function f in Dtrain do
3: unique← true
4: for Function t in T do
5: Calculate d(f, t) according to (4.2)
6: if d(f, t) < ε then
7: unique← false
8: end if
9: end for

10: if unique then
11: Add f to T
12: end if
13: end for
14: return T

Algorithm 1 is to be run before the meta-training phase. It takes as input the entire set of meta-

training data and a tolerance ε which corresponds to the minimum distance between functions to

be trained upon. This tolerance can either remain fixed throughout the task selection process or

begin large and decrease over time as more functions are checked. It outputs a set T of training

tasks that are sufficiently different according to the L2 norm presented in the previous section. The

set T is then used as the meta-training set for the meta-learning algorithm. It builds the set T

by comparing each training example from Dtest to the currently selected tasks in T . If a task is

sufficiently different from each task currently in T , it is added to T .
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Chapter 4

Experimental Results
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In this chapter, an experiment to show the efficacy of the Regression Task Sampling method

introduced in the previous chapter is expressed in detail. Then, the results of this experiment

are shown. The results suggest that Regression Task Sampling can lead to an improvement of

generalization performance over vanilla few-shot regression solutions.

4.1 Experiment Setup

For these experiments, Algorithm 1 was applied to MAML [7]. As a result, the same pa-

rameters used in the MAML experiments will be adopted here. Each function in Dtrain is a sine

wave with random amplitude and phase. The range of possible amplitudes is [0.1, 5.0], and the

range of possible phases is [0, π]. The K inputs x1, . . . , xK are sampled uniformly from the in-

terval [−5.0, 5.0]. The loss used is the mean-squared error as specified in section 4.1. The model

used is a neural network with 2 hidden layers of size 40 using the ReLU activation function. The

model trained using MAML takes K = 10 examples per meta-update and uses a fixed step size of

α = 0.01. The model is optimized using Adam [12].

In this experiment, the model using the regression task selection method is compared against

two different baselines. The first is MAML with uniform task selection, which uses the same

parameters as above. The second is a pretrained model, which simply trains to regress to a random

sinusoid and is then fine tuned on the K = 10 points at test-time. All tests were run using the code

implemented in MAML [7]. Code for this experiment is available at: https://github.com/

jqs6452/Regression-Task-Selection.

4.2 Results

Table 4.1 shows the results of this experiment. For each model, the average loss after each

gradient step at meta-test time is recorded.

https://github.com/jqs6452/Regression-Task-Selection
https://github.com/jqs6452/Regression-Task-Selection
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0 1 2 3 4 5 6 7 8 9 10

Pretrained 3.07 2.92 2.82 2.74 2.68 2.62 2.56 2.52 2.48 2.44 2.40

MAML 3.10 0.41 0.22 0.17 0.15 0.13 0.12 0.12 0.11 0.11 0.11

MAML with
Regression Task Sampling

3.12 0.34 0.18 0.14 0.12 0.11 0.10 0.10 0.09 0.09 0.09

Table 4.1: Results of the experiment comparing average loss after each gradient
step at meta-test time for a pretrained baseline, MAML with uniform sampling, and
MAML with Regression Task Sampling

These results show that MAML with Regression Task Sampling leads to slightly lower losses

after the first update step and on all subsequent update steps. This suggests that the Regression Task

Sampling method has led to better generalization performance by the model, albeit only slightly.

Once possible explanation for the small magnitude of the performance increase is that the specific

task used in this experiment is too easy to see a large improvement. After only one gradient step,

MAML already reaches a very low loss at meta-test time. As a result, any improvement offered by

task selection will seem small in comparison to the increase in performance MAML alone provides

over the classical pretrained model. Regardless, the results suggest that Regression Task Sampling

offers some improvement over vanilla MAML, and this improvement may become more obvious

with more difficult regression tasks.
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Chapter 5

Conclusion
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5.1 Benefits

The greatest benefit of the new Regression Task Selection method is its apparent improvement

in performance over vanilla meta-learning models for regression. As shown in the experimental

results, applying this method of task selection to the MAML model led to slight improvements in

generalization accuracy for K-shot regression problems.

Another benefit of this approach is in its ease of implementation. As shown in the appendix,

Regression Task Selection can be implemented in only a few lines of code. In addition, this method

makes no assumptions about the underlying learning model. As a result, this method can be im-

plemented on any model for meta-learning regression tasks.

5.2 Drawbacks

The largest drawback of this method is that the performance gains realized are minimal on

simple regression tasks. Simply put, existing meta-learning models already perform very well on

simple few-shot regression tasks. Thus, there is little room for improvement on these simple exam-

ples, regardless of the efficacy of the task sampling technique. However, the improvement offered

by Regression Task Selection is suggested to exist by the experiments, and this improvement in

performance may be even greater when applied to a more difficult regression problem.

Another drawback of this technique is the increase in computation complexity imposed by

the method. As shown in Algorithm 1, Regression Task Selection requires that an integral be

calculated each time a new function is compared with one already in the output set. Although this

algorithm has no effect on computation time during meta-testing, it does increase the amount of

time spent in meta-training.
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5.3 Future Work

The topic of task selection for meta-learning is an exciting one. One of the most definitive

aspects of human intelligence is the ability to learn from only a few examples, and efficient task

selection techniques can improve the performance of meta-learning models on such few-shot learn-

ing problems. Given the relatively small amount of task selection algorithms available today, the

topic is wide open for future work to create new sampling methods that can improve generalization

performance even further.

Perhaps one of the most interesting topics for future research is finding a task selection method

that does not make any assumptions on the underlying structure of tasks. All of the methods

discussed in this work require prior knowledge of the task domain and cannot be easily transferred

to other task domains. Thus, the discovery of further sampling techniques that can use similar

notions of difference, relevance, and difficulty as considered by the methods discussed in this work

could lead to even better few-shot learning performance across many domains.
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mani, and Kilian Weinberger, editors, Advances in Neural Information Processing Systems
26 (2013), volume 26, page 9. Neural Information Processing Systems Foundation (NIPS),
2013.

[6] Jayme Garcia Arnal Barbedo. Impact of dataset size and variety on the effectiveness of deep
learning and transfer learning for plant disease classification. Computers and Electronics in
Agriculture, 153:46–53, 2018.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1126–1135. PMLR, 06–11 Aug 2017.

[8] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, and Timothy M.
Hospedales. Learning to compare: Relation network for few-shot learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[9] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.



24

[10] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning
with differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[11] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79 – 86, 1951.

[12] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.



Jacob Smith 
 

Summary 
Motivated computer science student with experience in software development and algorithm 
design. Excited to collaboratively apply advanced techniques like artificial intelligence to 
modern software and cybersecurity problems. 

Education 
The Pennsylvania State University – Schreyer Honors College  
Major: Computer Science August 2017 – Present (2021) 
Relevant Coursework:  

• Artificial Intelligence  
• Operating Systems 
• Data Structures and Algorithms 
• Systems Programming 

Experience 
Freelance Software Developer May 2018 – August 2018 

• Developed an exercise data and injury prediction platform for La Salle University 
• Used Java Servlets, JSP, and JavaScript 
• Administered a SQL database for this platform 
• Used cloud development technology for an efficient development cycle 
• Trained staff on using this platform 

SAP STEM Innovators, Newtown Square, PA July 2017 – August 2017 

• Worked collaboratively in an agile development environment 
• Oversaw the SAP Professional Orientation program 
• Designed an educational Internet of Things project 
• Developed a music classification app using open-source APIs 

Skills 
• Java, Python, C and C++ 
• Familiarity with SQL and JavaScript 
• Familiarity with AI-based natural language processing and generation 
• Agile development and design thinking methodology 
• Algorithm design and implementation 


	master
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Meta-Learning
	Task Selection
	Current Methods of Task Selection

	Previous Work
	Adaptive Sampling
	Problem Setting
	Sampling Method
	Results and Analysis

	Information-Theoretic Task Selection
	Problem Setting
	Sampling Method
	Results and Analysis


	Task Selection for Regression
	Problem Setting
	Sampling Method
	Algorithm

	Experimental Results
	Experiment Setup
	Results

	Conclusion
	Benefits
	Drawbacks
	Future Work

	Bibliography

	Thesis Academic Vita

