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ABSTRACT 
 

Machine learning methods have been shown to demonstrate the ability to reconstruct 

single-phase turbulent fluid flow from low-resolution inputs, with potential applications in many 

industries, but especially in engineering design. However, no work thus far has explored the 

application of machine learning image super-resolution methods to multiphase fluid flow. In this 

work, we apply the Super-Resolution Generative Adversarial Network (SRGAN) model to a 

multiphase turbulent fluid flow problem, specifically to reconstruct fluid phase fraction at a higher 

resolution. Two models were created in this work, one with a simple physics-constrained loss 

function and one without, and the results are discussed and analyzed. We found that both models 

were able to significantly outperform non-machine learning upsampling methods and can preserve 

an impressive amount of detail and nuance, showing the versatility of the SRGAN model for 

upsampling fluid simulations. But, the difference in accuracy between the two models is quite 

minimal, whereas physics-informed models have shown better results than non-physics-informed 

models in past work with single-phase fluid flow. This result leads to some important points of 

discussion and room for future research on the topic. 
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Introduction 

Computational Fluid Dynamics, or CFD has been a crucial pillar of the engineering design 

process for decades. By dramatically reducing the number of physical tests and prototypes needed 

to fine-tune the design of a part or a system, CFD simulations can greatly reduce the cost for many 

engineering design tasks. They also provide engineers with much more flexibility, as fixing a failed 

simulation is much easier than fixing a failed physical prototype. CFD tools have become 

invaluable to many engineers, but current methods are not without their limitations. 

 

The field of CFD is very broad, as fluid flow behaviors can manifest in a multitude of ways. 

In general, CFD simulations model fluid flow by splitting the simulation space into a mesh of 

discrete points over time and space and creating systems of differential equations which are solved 

or approximated using numerical computing methods. [1] To control the granularity of the CFD 

simulation, the density of the discrete cells can be changed. Having more points means more detail 

is captured at the cost of longer computation times, which increase with the number of points, 

forcing users to make a tradeoff between detail and computation time. 

 

Deep learning methods have been applied to the field of CFD, and have been used to 

tradeoff with success. Deep neural networks can be used to up-sample CFD simulations with good 

results [2-8] showing that deep-learning accelerated CFD could be a promising field of research. 

We add to this burgeoning field of research by introducing a model with a new capability. 
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The majority of Super Resolution in CFD (SRCFD) papers published to date have been for 

single phase fluid simulations. The addition of an additional fluid phase into a CFD simulation can 

dramatically increase the complexity of the problem with a new set of equations, as well as adding 

phase fraction as a fluid property [2]. 

 

In this paper, we demonstrate the feasibility of the super-resolution of multiphase CFD 

simulations with a deep neural network. More specifically, we demonstrate the feasibility of using 

a deep neural network to approximate the Volume Of Fluids (VOF) numerical method of 

modelling multiphase flow. We present both a physics-informed and a non-physics-informed deep 

neural networks, and compare these against naïve upsampling approaches. The remainder of the 

paper is organized as follows: the background, which contains the motivation and some 

prerequisite information, followed by the methods and results. 
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Background 

The Importance of CFD 

 Computational Fluid Dynamics, or CFD, is a field of study that combines numerical 

analysis and fluid mechanics, using numerical methods to solve problems that involve fluids. This 

is still a burgeoning new field, and thousands of scientists and engineers continue to actively study 

and create new research in CFD. Even though the fundamental fluid equations, such as the Navier-

Stokes equation, had been derived during the 19th century, it wasn’t until computers became 

reasonably fast in the 1950’s that the age of modern CFD could truly begin [3]. 

 

 The importance of CFD stems its ability to simulate physical experiments. For example, 

iterative airfoil design could be done very cheaply using CFD instead of a physical wind tunnel 

[4]. CFD is widely used in a variety of different industries, such as mechanical design [5,6], food 

science [7–9] and materials science [10,11]. Obviously, physical experiments can never be 

completely replaced by CFD simulations, but they are still immensely useful. CFD simulations 

can be performed on rougher prototypes, and these results of these simulations can be used to fine-

tune the design until a physical prototype can be built for a real-world test [1]. 

 

 By dramatically reducing the number of physical tests and prototypes needed to fine-tune 

the design of a part or a system, CFD simulations can greatly reduce the cost for many engineering 

design tasks. Over the decades, CFD has become an invaluable tool to engineers and designers, 

and any advancements made in the field will surely benefit the entire field of engineering. 
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Image Super-Resolution 

Image super-resolution has been a well-researched problem in the realm of Computer 

Vision for many decades now and is still actively being researched to this day. The problem is this: 

can additional fidelity and detail be inferred from a low-resolution image? Many models and 

methods have been developed so far with varying degrees of success, and progress is still being 

made. 

 

A plethora of novel methods and architectures have been experimented with, such as deep 

Laplacian pyramid networks [13], dense skip connections [14], deep residual channel attention 

networks [15], etc., all with their own advantages and disadvantages. One of the most famous 

models developed, and the standard benchmark for models in this field of research, is the Super 

Resolution Convolutional Neural Network (SRCNN). This model by Dong [16] uses a 

convolutional neural network to create a mapping between low-resolution and high-resolution 

images. This model shows promising results for up-sampling images, but it fails to capture higher-

level features and instead minimizes a lower-level pixel-wise loss. Further refinements to this 

model have been made with improvements to efficiency in the form of FSRCNN (Fast SRCNN) 

[17], as well as an increase in depth with VDSR (Very Deep Super Resolution) [18]. Both these 

works showed some improvements over SRCNN. 

 

A much more powerful model, using a generative adversarial network architecture, is the 

Super Resolution GAN (SRGAN), created by Ledig [19]. The SRGAN architecture will serve as 

the cornerstone for our work. Compared to SRCNN, SRGAN is much more powerful in capability 

and can infer very high-level features, leading to much more natural and realistic-looking images. 
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This also comes at the cost of having many times more weights, which makes training and 

inference much less efficient. 

Generative Adversarial Networks 

 The Generative Adversarial Network (GAN) is a novel architecture that involves training 

two separate deep neural networks against each other. One network, the generator, is responsible 

for generating the actual output. The other network, the discriminator, is responsible for 

distinguishing between the generator’s output and the ground truth data. During the training 

process, the generator will get better at producing outputs that resemble the ground truth, and the 

discriminator will become better at discerning them. [20] Ideally, the generator should become 

strong enough to fool the discriminator. The resulting generator network can then be used for 

inference, while the discriminator is discarded in the final model. 

 

 The versatility of the GAN architecture has led to its application to a multitude of different 

problems. GANs have been demonstrated to produce remarkably good results in novel tasks, such 

as generating human faces [21] and transforming photographs into paintings [22]. They have also 

proven to be useful for many specific and practical engineering applications, such as designing 

airfoils [23], predicting stress distribution in structures [24], and estimating leakage parameters for 

liquid pipelines [25]. However, GANs can be large in size and difficult to train, and are vulnerable 

to mode collapse and vanishing gradients [26]. Their large number of parameters also leads to 

slower inference, making them less suitable for time sensitive tasks [27]. 
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Image Super-Resolution Applied to CFD 

 Image super-resolution techniques can be applied somewhat directly to CFD simulations. 

The resolution of a CFD simulation lies in the density of points, which is functionally analogous 

to pixels in an image. Researchers have recently began applying machine-learning based image 

SR techniques to a variety of different types of CFD simulations, with varying degrees of success. 

The work of Fukami [28] was one of the earlier works in this field, and showed that turbulent flows 

were able to be reconstructed with some success using a relatively simple convolutional neural 

network as well as a hybrid downsampled skip-connection multi-scale model (DSC/MS). This 

work was one of the first to show that certain types of fluid flows can be reconstructed with 

machine learning methods. Another work by Liu [29]. produced further results with CNNs as well 

as a multiple temporal paths convolutional network (MTPC). They were able to show that deep 

learning methods outperformed traditional upsampling methods like bicubic interpolation, but 

were still limited in their capabilities to produce results that follow the physical constraints of 

fluids. [29] The generative adversarial network architecture (GAN) was also applied to the CFD 

super-resolution problem with great results, in the work by Xie [30] with a novel application in 

3D smoke diffusion. 

 

 An even more recent innovation is the use of physics-informed networks, i.e.- explicitly 

using physical properties in the loss functions to provide more context to the models. We have 

already seen that physics-constrained neural networks produce good results for other applications, 

such as the modelling of materials [31]. Can this same philosophy be applied to CFD super-

resolution? Two very recent models that are designed to solve this problem for single-phase 
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turbulent flow CFD simulations are MeshfreeFlowNet by Jiang et. al. and TEGAN by 

Subramaniam et. al. 

 

 TEGAN is similar to our model, as it is also based on SRGAN, but was designed to solve 

a single-phase fluid flow super-resolution problem. It was trained to up-sample instances of the 

incompressible forced isotropic homogeneous turbulence problem in 3D and is constrained by the 

time dependent Navier-Stokes equations and the Poisson equation. [32] This model can up-sample 

both pressure and velocity for four total fields in 3D (pressure, and x, y, z velocity), and provides 

impressive results across all four fields. This paper also provides another interesting result, which 

involves experimentation with the value of the weight given to the physics-based loss functions. 

The paper shows that adding a non-zero weight to the physics loss greatly improved the results but 

too high of a weight may be detrimental. This result is extremely important, not only legitimizing 

the use of physics-based loss functions for this field, but also gives some data points for other 

researchers to use while tuning the hyperparameters of their own models. 
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Methods 

Problem Description 

The goal is of the current work is to use image SR techniques to increase the resolution of 

the fluid phase fraction generated by a solver that uses the Volume Of Fluids (VOF) method of 

modelling two-phase incompressible turbulent fluid flow. We make use of the InterFoam solver 

from OpenFOAM [35], an open-source and highly performant CFD software library commonly 

used in both industry and research [36]. Upsampling the output approximates the results of 

increasing the density of the discretized mesh, and ideally will produce additional detail without 

incurring the cost of computation that comes with direct numerical solutions. To make our CFD 

simulations suitable for image SR models, we chose to discretize them with a uniform rectilinear 

mesh, which ensures the computational analogy to pixels typically used in SR. In this work only 

the fluid phase fraction is considered. The model trained in this work specifically upsamples from 

a mesh resolution of 16×16 to 64×64 (see Figure 1). 

 

FIGURE 1: ILLUSTRATION OF PROBLEM STATEMENT: UPSAMPLING FROM A 16×16 

RECTILINEAR MESH TO A 64×64 RECTILINEAR MESH 
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Using the OpenFOAM Software Library 

The Open-Source Field Operation and Manipulation library, or OpenFOAM library is an 

open-source software library that provides an object-oriented and highly efficient family of solvers 

for fluid dynamics problems and an easy-to-use command-line interface. [34] This provides and 

easily scriptable and automatable CFD environment for efficient data generation. For this work, 

the “interFoam” solver was used. This solver utilizes an algorithm based on the volume of fluid 

method (VOF) to calculate the ratio of two fluid phases at points in the mesh. This ratio is called 

the phase fraction, or α, and predicting α at upscaled resolutions is the aim of this work. The phase 

fraction essentially keeps track of the position of water and air in the simulation. 

 

Each solver is an executable program that can be called using the command-line, and 

configuration of OpenFOAM simulations is done by modifying several different config files. The 

directory structure of an OpenFOAM simulation will begin with the “constant”, “postprocessing”, 

and “system” folders, as well as a folder for each iterative timestep of the simulation. The training 

data for the model will be extracted from these timestep directories. All the configuration files to 

set the initial conditions are in the “constant” and “system” folders, with the most important being 

“blockMeshDict”, “controlDict” and “setFieldsDict” from the system folder. The constant folder 

contains settings that did not need to be modified for this work, such as the acceleration of gravity 

and some other properties. 

 

The “blockMeshDict” file contains the dimensions and density of the mesh grid of the 

simulation. The general file format contains a section containing 3-tuples representing the vertices, 

and other sections containing the arrangement of blocks, edges, and boundaries. Other more 
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complex geometries can be specified in this file, such as 3-dimensional surfaces, but these are not 

needed in this work. An excerpt of a sample “blockMeshDict” file is shown below. 

 

FIGURE 2: EXCERPT OF DAMBREAK BLOCKMESHDICT FILE 
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Each entry of the blocks section contains three fields. The first is a list of the eight vertices 

from the vertices section that make up the vertices of the block, the second is the density of mesh 

cells per axis (x, y, and z), and the third field specifies the cell expansion ratios for each axis, which 

was left unmodified. The “simpleGrading” type means that cells will be uniformly distributed 

across each axis, which is ideal. 

 

In the case of the DamBreak simulation, “blockMeshDict” contains the information for a 

2-dimensional grid with an immovable dam in the center. To account for this, the mesh is split into 

five separate blocks and each one is configured independently, as shown in the figure below. Each 

of the five blocks shown in the below figure has an entry in the blocks section of the 

blockMeshDict file. 

 

FIGURE 3: REGIONS OF THE GRID MESH IN THE DAMBREAK SIMULATION 

McComb, Chris
Make sure that captions end up on the same page as the figures.



12 
FIGURE 3: REGIONS OF THE GRID MESH IN THE DAMBREAK SIMULATION 

 Next, the “controlDict” file contains all the configuration settings for the time and 

I/O control of a given simulation. An excerpt is included below. Essentially, this file is used to 

control the time length of the simulation, the write interval, and the numerical precision of these 

operations. There are finer settings and functions available, but they are not quite as important 

for this work. In this case shown in the figure, the simulation is ran for 3 seconds, with 

observations recorded every 0.05 seconds, resulting in a total of 60 timesteps worth of data. 

 

FIGURE 4: EXCERPT OF DAMBREAK CONTROLDICT FILE 

McComb, Chris
Make sure that captions end up on the same page as the figures.
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 Finally, we have the “setFieldsDict” file, which sets the initial conditions of the fluids in 

the simulation. Different solvers may have different versions of this file, and the excerpt shown 

below is specific to the interFoam solver. Here, the water phase is defined as a box with two 

corners. Other geometries can be specified, but for this work only rectangular blocks are used. The 

rectangular block is defined by two points in 3D space, and its “volScalarFieldValue” is defined 

as 1, meaning the block of fluid is purely water. The default “volScalarFieldValue” is 0, meaning 

everything besides the water block is purely air. 

 

FIGURE 5: EXCERPT OF DAMBREAK SETFIELDSDICT FILE  
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Time Continuity Divergence Problems 

Originally, training data generation was achieved by running each DamBreak case in both 

the low and high resolutions, with the same starting conditions.  It was thought that doing this 

would create identical fluid data for each resolution. However, when using this data for training, 

the performance was abysmal, and the resulting models were practically worthless. Upon further 

investigation, we found that for data points of the same case and at identical timesteps differed 

quite significantly. Included below is an example of this phenomenon, with two identical data 

points (run with different resolutions) rendered in ParaView. 

 

Figure 6: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 256x256 RESOLUTION 

FIGURE 6: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 256x256 RESOLUTION 
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Figure 7: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 512x512 RESOLUTION 

FIGURE 7: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 512x512 RESOLUTION 

 

 As seen in the figures, there appears to be a time continuity error. More specifically, the 

two simulations experience a sort of time divergence and are unsynchronized at the same time 

steps. This seemed to be an issue inherent to CFD itself, and the current hypothesis is that changing 

the mesh cell density (resolution) of the simulation correlates with an increase in the residual error 

accumulated during each iteration of the interFoam solver. This issue was bypassed by running 

only the high-resolution simulations and then creating the low-resolution data points by down-

sampling. This is described in more detail in the following section.  

McComb, Chris
I would love to see a gridded set of images that show the evolution of a simulation over time – like frames in a movie, maybe 5x5.
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Training Data Generation 

Training data was generated using OpenFOAM using the “DamBreak” case, a 2-

dimensional interphase laminar flow simulation which depicts a mass of water falling from the air 

and onto the ground, then colliding with a solid immovable dam in the center of the floor. This 

creates a large amount of fluid movement for the model to learn and predict. 

 

A total of 800 cases were simulated with a uniform mesh density of 64×64 for 3 seconds 

with 60 discrete timesteps each (0.05s increments), with the fluid data at each timestep serving as 

a data point. Every timestep constitutes a unique training sample, resulting in 48,000 total data 

training samples. The initial position, size and shape of the water mass is randomized between 

cases, as shown in Figure 3. This was done by randomly changing the two defining points in the 

“setFieldsDict” file for each respective case directory. The rationale for this was to create a more 

varied set of training samples, as changing these conditions changes the amount of kinetic energy 

in the system, which could drastically change the fluid behavior between cases. 

 

Each of the 800 cases were run using the interFoam solver as described in the previous 

section and were run using a multiprocessing queue in python for maximum throughput. 

OpenFOAM has options for multi-threaded solvers, such as domain decomposition, but they were 

not used for this work. Assigning each of the 800 cases to a single CPU core is sufficient to 

maximally utilize the hardware, and for throughput to be 100%. The code used to distribute these 

tasks to CPU cores is included in appendix B. 
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FIGURE 8: LOW-RESOLUTION AND HIGH RESOLUTION DAMBREAK CASE AT SAME 

TIME STEP. THE DAM IS DENOTED BY THE WHITE SQUARE. (YELLOW IS WATER, 

PURPLE IS AIR) 

 

Each of these samples was then downsampled using linear interpolation, creating high- and 

low-resolution samples pairs (see Figure 8). This dataset was then split into two categories: pre-

ground-impact and post-ground-impact (see Figure 10). In this work we focus on the post-ground 

impact dataset since most of the fluid deformation occurs after the fluid collides with the ground. 

The pre-ground-impact dataset can likely be predicted with much simpler methods (i.e., projectile 

motion) and is not used in this paper. The model presented is trained completely on the post-ground 

data. This post-ground dataset has 19,664 total data points, and 5000 were randomly samples for 

training and testing. 
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FIGURE 9: FOUR DIFFERENT DAMBREAK CASES AT TIME = 0 SECONDS (YELLOW 

IS WATER, PURPLE IS AIR) 

 

FIGURE 10: PRE-GROUND-IMPACT DATA VS. POST-GROUND-IMPACT DATA 

(YELLOW IS WATER, PURPLE IS AIR) 
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Converting OpenFOAM data to a usable format 

The OpenFOAM file format cannot be immediately substituted into image super resolution 

tasks. Images are stored as matrices of numbers, while the OpenFOAM data format stores data in 

simple lists. The OpenFOAM data needs to be converted into a matrix format to be useful. An 

excerpt of a sample “alpha.water” file is shown below. The “alpha.water” file contains the phase 

fraction values, with an entry for every mesh cell. 

 

 

FIGURE 11: EXCERPT FROM SAMPLE ALPHA.WATER FILE 

  

McComb, Chris
Make sure every paragraph is justified (flush on the left and the right0.



20 
The points in the “alpha.water” file needs to be arranged in a matrix format, as these points 

alone do not have any positional information, and are of little use. They must be reconstructed 

using information from their blockMeshDict file, and follow a very specific format, which is better 

explained using the following figure. 

 

FIGURE 12: ILLUSTRATION OF ARRANGEMENT OF OPENFOAM DATA POINTS 

 

 The list of numbers on the left represents the OpenFOAM data format, and the grid on the 

right represents the reconstructed matrix. The data points need to be assembled from left to right, 

bottom to top, block by block, in the order defined in the “blockMeshDict” file. A small software 

library was created to help assemble OpenFOAM data into numpy files with a matrix format. A 

sample excerpt of this code is shown below, and the rest is included in the appendix. 
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#builds all the blocks in a given case into a single array, works for both 2d 
#and 3d cases; does array arithmetic based on xyzmax and res (point density) 
def buildarr(res, datafile, meshfile, channel=0): 
    final = np.zeros(res) 
    data = open(datafile, "r") 
    mesh = open(meshfile, "r") 
    points = getVertices(mesh) 
    XYZmax = np.array(xyzmax(points)) 
    mul = list(map(int, np.divide(res, XYZmax))) 
    blocks = getBlocks(mesh, points) 
    for i in range(23): 
        discard = data.readline() 
    for i in range(len(blocks)): 
        st = blocks[i][0][0] 
        st = (st[1]*mul[1], st[0]*mul[0], st[2]*mul[2]) 
        st = list(map(int, st)) 
        blocks[i] = buildBlock(blocks[i], data, channel) 
        shp = blocks[i].shape 
        final[res[0]-(st[0]+shp[0]):res[0]-st[0], st[1]:st[1]+shp[1], \ 
                                          st[2]:st[2]+shp[2]] = blocks[i] 
    return final 
 
 
#builds all the blocks in a given case into a single array, works for both 2d 
#and 3d cases; does array arithmetic based on xyzmax and res (point density) 
def buildarr(res, datafile, meshfile, channel=0): 
    final = np.zeros(res) 
    data = open(datafile, "r") 
    mesh = open(meshfile, "r") 
    points = getVertices(mesh) 
    XYZmax = np.array(xyzmax(points)) 
    mul = list(map(int, np.divide(res, XYZmax))) 
    blocks = getBlocks(mesh, points) 
    for i in range(23): 
        discard = data.readline() 
    for i in range(len(blocks)): 
        st = blocks[i][0][0] 
        st = (st[1]*mul[1], st[0]*mul[0], st[2]*mul[2]) 
        st = list(map(int, st)) 
        blocks[i] = buildBlock(blocks[i], data, channel) 
        shp = blocks[i].shape 
        final[res[0]-(st[0]+shp[0]):res[0]-st[0], st[1]:st[1]+shp[1], \ 
                                          st[2]:st[2]+shp[2]] = blocks[i] 
    return final 

McComb, Chris
Should this be labeled as a figure?
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 The first function, called “buildarr”, is the function used to assemble a matrix from a 

“blockMeshDict” file and a data file. Essentially, this function opens the mesh file and data file, 

and then assembles the matrix using the data file. First, an empty matrix of the desired resolution 

is created, and then the individual block components are assembled using the “buildBlock” 

function, and then placed into the empty matrix. This matrix is then returned by the function. 

 

 The “buildBlock” function takes a block, a data file, and another argument called “channel” 

to assemble a single block from the data file, exactly as shown in in figure 12. Essentially, given 

the block information, the function traverses through all three possible dimensions of the block 

axes, and then inserts the points into this block matrix iteratively. The channel argument is used 

specifically for assembling the velocity matrix, which has three separate values for each entry (x 

velocity, y velocity, z velocity). The channel argument can take on the value of 0,1, or 2, and each 

value corresponds to either the x, y, or z velocity, and all three must be constructed as separate 

matrices. This capability was not used for this project but may be useful for future endeavors. 

Another capability of this code that was unused was the scalability to three-dimensional data. This 

work only focused on the two-dimensional DamBreak simulation, but future work on 3D 

OpenFOAM simulations will be able to reuse this code. 

 

FIGURE 13: SAMPLE OF ASSEMBLED 3D OPENFOAM DATA 

McComb, Chris
Make sure every figure reference aligns with the figure title. Shoulnd’t this be Figure 13?
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Network Architecture 

 The network used here is based heavily on the SRGAN architecture, created by Ledig [19], 

and the full network layout is shown in Figure 14. This is a generative adversarial network 

designed to solve the general image super-resolution problem.  

 

 The generator begins with a convolutional layer with a 9x9 kernel size with 64 filters and 

a PReLU activation, followed by16 residual blocks with skip connections, which consist of two 

convolutional layers with 64 filters and a 3×3 kernel size each with a batch normalization layer, as 

well as two up-sampling blocks which contain a convolutional layer with 256 filters and a 3×3 

kernel size, and an 2D up-sampling layer. Then, the last year is a convolutional layer with one 

filter and a kernel size of 9×9, with a sigmoid activation layer. The sigmoid activation function is 

chosen for the last layer instead of the hyperbolic tangent because the fluid phase fraction values 

must be between zero and one since it is the ratio of the presence of two fluids at a point in space. 

So, a sigmoid activation makes more sense here. 

 

 The discriminator consists of eight convolutional layers with a kernel size of 3×3, split into 

pairs of 64 filters, 128 filters, 256 filters, and 512 filters. Each convolutional layer uses the leaky 

ReLU activation function. The last few layers consist of two dense layers and a sigmoid activation 

function. 
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FIGURE 14: NETWORK LAYER DIAGRAM. REPEATED BLOCKS ARE CONDENSED TO 

SAVE SPACE. 
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Network Implementation 

The neural network was written in python using the TensorFlow software library. The 

base code was borrowed from Deepak Birla’s Keras implementation of SRGAN [36] and 

modified to have a sigmoid activation function as well as a custom loss function suited to the 

task. This code was also adapted slightly to run on Tensorflow.Keras rather than the original 

Keras library. The full code is included in appendices C, D, and E. 

Loss Function Design 

While the discriminator network was compiled and trained with the original binary cross-

entropy loss function, the generator was trained differently from the original SRGAN 

implementation. The generator was originally constrained with both a pixel-wise loss function in 

MSE as well as a higher-level content-wise loss function, using a pre-trained VGG network. The 

work of Ledig et. al. cleverly used VGG loss (perceptual loss) because SRGAN and VGG were 

designed to operate on the ImageNet dataset. VGG loss cannot be applied to the dataset 

presented here because it this data is divergent from the training data for VGG (e.g., photographs 

of animals and plants). However, this dataset follows a set of governing equations, and so 

additional physics-based constraints to the can be used to train the model. 

 

ℒ𝑔𝑔𝑔𝑔𝑔𝑔�𝑌𝑌,𝑌𝑌�� = 𝜆𝜆1 ⋅
1
𝑚𝑚𝑚𝑚

���𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖�
2

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

  + 𝜆𝜆2 ⋅
1
𝑚𝑚𝑚𝑚�

��𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

−��𝑦𝑦�𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

�

2

(1) 

 

McComb, Chris
Why all the blank space?



26 
Physics-based loss functions for SRCFD networks have demonstrated success, as shown 

by Subramaniam [34] and Jiang [33]. For models that predict fluid velocity and pressure, loss 

functions are based on the Navier-Stokes equations, and a model that minimizes its loss should 

stay as consistent with these governing equations as possible, but implementing them can be 

difficult. However, the phase fraction follows the interphase equations, which are simpler in 

form. Essentially, our loss function aims to minimize the difference of the volume of liquid 

phase between the input and the output, in addition to minimizing pixel-wise loss. The interFoam 

solver models incompressible fluids, so this volume should remain consistent. The full loss 

function is shown below in Equation 1. The left summand is the MSE with a weighting of  λ1 

and the right summand is the normalized squared difference of total water volume with a 

weighting of λ2. The m and n terms represent the height and width of the rectilinear mesh. 

 

 

 

McComb, Chris
Why all the blank space?
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Results and Discussion 

Training was performed on a computer with an NVIDIA RTX 3070 GPU on TensorFlow 

2.5.0. The network was trained using 5000 data points from the dataset, which was split into 80% 

for training and 20% for testing. The network was trained with a batch size of 16 for 1000 epochs, 

and the Adam optimizer was used with a learning rate of 1 x 10^-4 . Two SR models were trained 

– one in which the loss function consisted only of the MSE term, and the other consisting of a 

combination of the MSE term and the physics-informed term. 

 

Figures 15 shows the training loss for the generator and discriminator of the MSE-only 

model, and Figure 16 shows the training loss for the generator and discriminator of the MSE + 

physics model.  

 

FIGURE 15: TRAINING LOSSES FOR MSE-ONLY MODEL, INCLUDING 

DISCRIMINATOR LOSS (LEFT) AND GENERATOR LOSS (RIGHT) 
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FIGURE 16: TRAINING LOSSES FOR MSE+PHYSICS MODEL, INCLUDING 

DISCRIMINATOR LOSS (LEFT) AND GENERATOR LOSS (RIGHT) 

 

Figures 15 and 16 demonstrate that the discriminator did not actually converge to an ideal 

value in this case. Ideally, the discriminator loss should converge to 0.5, which signifies the 

inability of the discriminator to differentiate between the data created by the generator and data in 

the ground truth dataset better than chance. However, in this case the discriminator loss was less 

than 0.5 in both models, indicating some discriminatory accuracy. This should be addressed in 

future work through careful hyperparameter tuning.  

 

Despite this suboptimal training, the generator was able to converge successfully. The 

failure of the discriminator to fully converge may be explained by the nature of the problem. The 

dataset presented here contains quite a diverse set of fluid interactions, but the space of this dataset 

is still quite limited compared to the ImageNet database, which is what the SRGAN was designed 

to operate on. The discriminator architecture from SRGAN may have been too powerful for the 

task, and perhaps a simpler discriminator network may have been more ideal.  
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Figure 17 provides several comparisons between different upsampling approaches, namely 

linear upsampling, bicubic upsampling, and the two models presented in this work. These samples 

were not present in the original training data. The furthest left column in the figure shows the low-

resolution input, and the furthest right column shows the ground truth high-resolution simulation. 

The GAN models were able to capture a high degree of detail, with many high-level features 

preserved and visible. It seems that the generator was able to learn many of the turbulent and 

chaotic fluid behaviors present in the dataset. There seems to be very little difference visually 

between the MSE-only model and the MSE+physics model. 

  

An examination of Figure 17 also indicates that the GAN model outputs have much more 

clarity and detail than the traditional up-sampling techniques. Turbulent trails of fluid were 

captured in the upsampled results of these models which are not present in the linear or bicubic 

results. Some details that are almost imperceptible in the low-reslution input were inferred by the 

GAN models. For instance, thin, wispy trails of water splashing in the air that are almost 

completely absent from the input and are only a few pixels in size in the high resolution simulation 

are captured (see Figures 17AE and 17CE). In addition, small pockets of air resulting from the 

collision of the water with the bottom boundary were somewhat preserved by the mode (see like 

in Figures 17BE and 17DE). In some cases, like Figures 17BE and 17DE, these features are more 

pronounced in the MSE+physics model than in the MSE-only model. A more extensive qualitative 

analysis should be conducted to assess the extent to which this statement holds. These details do 

differ slightly from the ground truth, but the ability of the model to learn these details is still 

noteworthy.  
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FIGURE 17: EXAMPLES OF MODEL INFERENCE COMPARED TO LINEAR 

UPSAMPLING, BICUBIC UPSAMPLING, AND GROUND TRUTH HIGH-RESOLUTION 

SIMULATION. 

 

The fine levels of detail can really be appreciated when looking closer at the snapshots in 

figure 17. 
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FIGURE 18: FIG17 DD ENHANCED 

 
FIGURE 19: FIG 17 DE ENHANCED 
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FIGURE 20: FIGURE & DF ENHANCED 

 

 Here, the small details can be seen more clearly. The large trail of water created from of 

the water collision with the right wall has been reproduced by the model quite well, as well as the 

small air pockets underneath the mass of water. Another point to notice is that the MSE-only and 

MSE + physics models do have slightly different outputs that can be seen more clearly in figures 

18 and 19, even if these differences are very small. In figure 19, it seems that the MSE + physics 

model seems to be closer to the ground truth, especially when looking at the trail on the right as 

well as the positions of the air pockets, but in other cases the MSE-only model is better. No 

definitive conclusion about model quality can be made from looking at these figures visually.  
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FIGURE 21: COMPARISON OF MAGNITUDE AND DISTRIBUTION OF LOSS VALUES 

ON A PURE MSE LOSS FUNCTION ON A LOG SCALE FOR THE DIFFERENT 

UPSAMPLING METHODS. THESE VALUES WERE TAKEN FROM A RANDOM SAMPLE 

OF 10000 DATA POINTS FROM THE DATA SET. 
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FIGURE 22: COMPARISON OF MAGNITUDE AND DISTRIBUTION OF LOSS VALUES 

ON THE CUSTOM MSE + PHYSICS LOSS FUNCTION ON A LOG SCALE FOR THE 

DIFFERENT UPSAMPLING METHODS. THESE VALUES WERE TAKEN FROM A 

RANDOM SAMPLE OF 10000 DATA POINTS FROM THE DATA SET. 
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Figure 21 shows the MSE loss values measured across all models with a log axis, and figure 

22 shows the same values evaluated using the MSE + physics loss function. This shows that the 

GAN models achieve loss that is substantially lower than nearest-neighbor, bicubic, and linear 

upsampling approaches. These figures reveal quantitative evidence to back up several of the 

observations from Figure 17. For instance, there is little difference between the loss values of the 

MSE-only and MSE + physics models. The primary different is that the MSE + physics model 

seems to have smaller error bounds than the MSE-only model. However, the MSE-only model 

does achieve some lower loss values. Both of these models do significantly outperform bicubic 

and linear upsampling. The variance is significant (crossing orders of magnitude for all upsampling 

approaches), which may be explained by the variability of the dataset, as demonstrated in Figure 

9. 

 

As measured by loss values only, the MSE-only model does appear to out-perform the 

physics-informed model. It could be that MSE alone provides enough information to guide the 

training process on this dataset, and the scope of the output space is not further reduced by adding 

the physical constraint. In other words, minimizing the MSE value may already result in fluid 

volume consistency. More comprehensive models that reconstruct other fluid properties like 

pressure and velocity have a much larger output space, and therefore may benefit more from 

physical constraints.  A more complex physics-based constraint could yield better results for the 

current multi-phase problem. 

 

The capabilities of the model presented here should help make the argument for further 

research into the field of SRCFD, because the computational resources saved could potentially be 
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immense. Up-sampling low-resolution CFD simulations to an acceptable quality using a neural 

network instead of directly running high-resolution CFD simulations with traditional numerical 

methods can save a lot of computation time, potentially leading to the streamlining of many 

workflows. The results presented here are not perfect, but the success found here definitely 

warrants further research and experimentation nonetheless.
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Conclusions and Future Work 

This work presented a physics-informed neural network model for the super-resolution of 

multi-phase CFD simulations. The current scope of the field of SRCFD research has focused 

predominantly on single phase fluid flow simulations. In this work, we demonstrated that those 

methods work on multiphase fluid flow as well.  The model presented here can reconstruct 

turbulent multiphase flow at a higher resolution with high accuracy, far exceeding bicubic and 

linear upsampling. We observed that the discriminator may have failed to converge during training, 

but this may be a consequence of directly applying the SRGAN discriminator architecture to a 

more limited dataset. This is an issue that should be investigated in future work, and perhaps a 

weaker discriminator could be experimented with to improve loss values. 

 

Future work should further investigate the application of refined and modified SRCFD 

models to multiphase turbulent flow. CFD simulations include a time component, and subsequent 

timesteps are dependent on one another. Recurrent models could possibly provide improved results 

by taking advantage of the information contains in subsequent simulation frames. This work also 

focused solely on the fluid phase fraction, but a comprehensive model that reconstructs additional 

fluid properties like pressure and velocity for multiphase flow would potentially benefit more 

significantly from physics-based constraints. Finally, this work was conducted using two-

dimensional CFD simulations only. Three-dimensional simulations incur even greater 

computational penalties when resolution is increased, so super-resolution should be investigated 

for those cases as well.   

McComb, Chris
Expand this section with more ideas for future work.
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Future work could also focus on investigating the scalability and adaptability of SRCFD. 

The scope of this project only included rectangular geometries, and it will be worth investigating 

if the capabilities of the model presented here can transfer to more complex geometries. For 

instance, more complex obstacles can be added to the simulations instead of a single dam, or more 

bodies of water can be added at the start. Future work could also try to replicated the success found 

in this work with other simulations using other numerical solvers besides interFoam. 
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Appendix A 
 
Code used to assemble OpenFOAM data into matrix format 

Full source code for this project can be found at: 

https://github.com/matthewli125/SRCFD/releases/tag/v1.0 

import numpy as np 
import re 
 

#gets the vertices from the blockMeshDict file and makes a list of tuples, the 
#list index of each vertex will correspond to its vertex number 
def getVertices(File): 
    points = [] 
    line = "" 
    while line != "vertices\n": 
        line = File.readline() 
    line = File.readline() 
    while line != ");\n": 
        line = File.readline() 
        if len(line)>4: points.append(eval(line[4:].replace(" ", ","))) 
    return points 
 

#gets the blocks from the blockMeshDict file, creates a list of blocks, which 
#are sets of numbers corresponding to vertices 
def getBlocks(File, points): 
    # blocks = np.array([]) 
    blocks = [] 
    line = "" 
    while line != "blocks\n": 
        line = File.readline() 
    line= File.readline() 
    while line != ");\n": 
        line = File.readline() 
        filtered = re.split('\(|\)', line[4:]) 
        if len(filtered)<4: break 
        Vertices = eval("[" + filtered[1].replace(" ", ",") + "]") 
        Vertices = list(map(lambda x: points[x], Vertices)) 
        Density = eval("[" + filtered[3].replace(" ", ",") + "]") 
        # blocks = np.append(blocks, (Vertices, Density)) 
        blocks.append((Vertices, Density)) 

https://github.com/matthewli125/SRCFD/releases/tag/v1.0.
McComb, Chris
Do two more things:�1. In the github repo that houses this code, make a release of the current state of the code.
2. Add a link to that release here. 
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    return blocks 
 

 
#gets the largest xyz values from all vertices 
def xyzmax(pointList): 
    x = max(pointList, key = lambda x: x[0])[0] 
    y = max(pointList, key = lambda x: x[1])[1] 
    z = max(pointList, key = lambda x: x[2])[2] 
    return [x,y,z] 
 

#builds a block from data points in a file 
def buildBlock(block, File, channel): 
    finalblock = np.empty(block[1]) 
    finalblock = finalblock.reshape(block[1][1], block[1][0], block[1][2]) 
    for k in range(block[1][2]): 
        for i in reversed(range(block[1][1])): 
            for j in range(block[1][0]): 
                data = File.readline() 
                if data[0] == "(": 
                    points = [float(i) for i in data[1:-2].split(" ")] 
                    point = points[channel] 
                else: 
                    point = float(data) 
                # finalblock[i][j][k] = point if point > 0.00001 else 0 
                finalblock[i][j][k] = point 
    return finalblock 
 

#builds all the blocks in a given case into a single array, works for both 2d 
#and 3d cases; does array arithmetic based on xyzmax and res (point density) 
def buildarr(res, datafile, meshfile, channel=0): 
    final = np.zeros(res) 
    data = open(datafile, "r") 
    mesh = open(meshfile, "r") 
    points = getVertices(mesh) 
    XYZmax = np.array(xyzmax(points)) 
    mul = list(map(int, np.divide(res, XYZmax))) 
    blocks = getBlocks(mesh, points) 
    for i in range(23): 
        discard = data.readline() 
    for i in range(len(blocks)): 
        st = blocks[i][0][0] 
        st = (st[1]*mul[1], st[0]*mul[0], st[2]*mul[2]) 
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        st = list(map(int, st)) 
        blocks[i] = buildBlock(blocks[i], data, channel) 
        shp = blocks[i].shape 
        final[res[0]-(st[0]+shp[0]):res[0]-st[0], st[1]:st[1]+shp[1], \ 
                                          st[2]:st[2]+shp[2]] = blocks[i] 
    return final 
 

#performs buildarr on all cases in a directory, but sorts each level based on 
#filename so they are saved and named in the correct time and case order. Uses 
#global path vars. Set high to true if doing highres to follow file naming 
#convention. 
def buildall(res, high, savepth): 
    FILES = ["alpha.water"] 
    filFunc = lambda x: "highres" in x if high else "highres" not in x 
    for i in sorted(filter(filFunc, PTHd), key= lambda x: int(x.split("_")[0])): 
    # for i in [h + "_highres" for h in brokencases]: 
        print("doing case {} {}\n".format(i, "highres" if high else "lowres")) 
        for j in tqdm(list(filter(lambda x:x[0].isdigit(),listdir(PTH+"/"+i)))): 
            for k in filter(lambda x: x in FILES, listdir(PTH+"/"+i+"/"+j)): 
                try: 
                    arr = buildarr(res, PTH+"/"+i+"/"+j+"/"+k, PTH+"/"+i+blockMes
hDictPath) 
                    np.save(savepth+"{}-{}x{}x{}-{}-{}.npy".format \ 
                                                        (i, *res, k, j), arr) 
                except: 
                    print("fail") 
 
 
 
@cached() 
def getBroken(cases): 
    brokenCasesLR = {str(i[0]) for i in [(y,len([x for x in listdir(LRDATAPTH) 
    if x.startswith("{}-
".format(y))])) for y in tqdm(range(num))] if i[1] < cases} 
 
    brokenCasesHR = {str(i[0]) for i in [(y,len([x for x in listdir(HRDATAPTH) 
    if x.startswith("{}_highres-
".format(y))])) for y in tqdm(range(num))] if i[1] < cases} 
 
    print(list(brokenCasesLR.union(brokenCasesHR))) 
    return list(brokenCasesLR.union(brokenCasesHR)) 
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def buildpartial(res, high, savepth, cases): 
    filFunc = lambda x: "highres" in x if high else "highres" not in x 
    for i in cases: 
        print("doing case {} {}\n".format(i, "highres" if high else "lowres")) 
        for j in tqdm(list(filter(lambda x:x[0].isdigit(),listdir(PTH+"/"+i)))): 
            for k in filter(lambda x: x in FILES, listdir(PTH+"/"+i+"/"+j)): 
                try: 
                    arr = buildarr(res, PTH+"/"+i+"/"+j+"/"+k, PTH+"/"+i+blockMes
hDictPath) 
                    np.save(savepth+"{}_highres-{}x{}x{}-{}-{}.npy".format \ 
                                                        (i, *res, k, j), arr) 
                except: 
                    print("fail") 
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Appendix B 
 
Code used to distribute computation of OpenFOAM simulations to multiple CPUs  

import subprocess 
from os import listdir 
from tqdm import tqdm 
import numpy as np 
import multiprocessing as mp 
from checkComplete import getBroken 
from paths import PTH 
 

num = 800 #number of cases to run 
 
# calls the openFoam executable Allrun sequentially for a given list of 
# directories 
def Run(cases): 
    failedCases = [] 
    for i in tqdm(cases): 
        # result1 = subprocess.call([PTH + "/" + i + "/Allclean", "&>", "/dev/nul
l"]) 
        result2 = subprocess.call([PTH + "/" + i + "/Allrun", "&>", "/dev/null"]) 
        if result2 != 0: 
            failedCases.append(i) 
 
# finds all the folders that have incomplete or empty timesteps and puts them 
# all in a list for easier handling 
def GetIncomplete(correct_count): 
    sum = 0 
    incomplete = [] 
    print("searching for incomplete cases") 
    for i in tqdm(list(listdir(PTH))): 
        for j in listdir(PTH+"/"+i): 
            sum+=1 
        if sum < correct_count: 
            incomplete.append(i) 
        sum = 0 
    return incomplete 
 
def Distribute(cases): 
    nextLargest = len(cases) 
    while nextLargest % numCores > 0: 
        nextLargest-=1 
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    distributedCases = list(np.split(np.array(cases)[:nextLargest], numCores)) 
    distributedCases = [list(i) for i in distributedCases] 
 
    for i in range(len(cases[nextLargest:])): 
        distributedCases[i % numCores].append(cases[nextLargest:][i]) 
 
    return distributedCases 
 
if __name__ == "__main__": 
    numCores = mp.cpu_count()-2 
    print(str(numCores) + "cores available for use\n") 
    incomplete = GetIncomplete(65) #correct number of items per folder 
    print(incomplete) 
    print(str(len(incomplete)) + " cases to be handled\n") 
    pool = mp.Pool(numCores) 
    pool.map(Run, Distribute(incomplete)) 
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Appendix C 
 
Code used to define the GAN model  

#title           :Network.py 
#description     :Architecture file(Generator and Discriminator) 
#author          :Deepak Birla (modified by Matthew Li) 
#date            :2018/10/30 
#usage           :from Network import Generator, Discriminator 
#python_version  :3.5.4 
 
# Modules 
from tensorflow.keras.layers import Dense 
from tensorflow.keras.layers import Activation 
from tensorflow.keras.layers import BatchNormalization 
from tensorflow.keras.layers import UpSampling2D 
from tensorflow.keras.layers import Flatten 
from tensorflow.keras.layers import Input 
from tensorflow.keras.layers import Conv2D, Conv2DTranspose 
from tensorflow.keras.models import Model 
from tensorflow.keras.layers import LeakyReLU, PReLU 
from tensorflow.keras.layers import Add 
 
# Residual block 
def res_block_gen(model, kernal_size, filters, strides): 
 
    gen = model 
 
    model = Conv2D(filters = filters, kernel_size = kernal_size, strides = stride
s, padding = "same")(model) 
    model = BatchNormalization(momentum = 0.5)(model) 
    # Using Parametric ReLU 
    model = PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_constr
aint=None, shared_axes=[1,2])(model) 
    model = Conv2D(filters = filters, kernel_size = kernal_size, strides = stride
s, padding = "same")(model) 
    model = BatchNormalization(momentum = 0.5)(model) 
 
    model = Add()([gen, model]) 
 
    return model 
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def up_sampling_block(model, kernal_size, filters, strides): 
 
    # In place of Conv2D and UpSampling2D we can also use Conv2DTranspose (Both a
re used for Deconvolution) 
    # Even we can have our own function for deconvolution (i.e one made in Utils.
py) 
    #model = Conv2DTranspose(filters = filters, kernel_size = kernal_size, stride
s = strides, padding = "same")(model) 
    model = Conv2D(filters = filters, kernel_size = kernal_size, strides = stride
s, padding = "same")(model) 
    model = UpSampling2D(size = 2)(model) 
    model = LeakyReLU(alpha = 0.2)(model) 
 
    return model 
 

def discriminator_block(model, filters, kernel_size, strides): 
 
    model = Conv2D(filters = filters, kernel_size = kernel_size, strides = stride
s, padding = "same")(model) 
    model = BatchNormalization(momentum = 0.5)(model) 
    model = LeakyReLU(alpha = 0.2)(model) 
 
    return model 
 
# Network Architecture is same as given in Paper https://arxiv.org/pdf/1609.04802
.pdf 
class Generator(object): 
 
    def __init__(self, noise_shape): 
 
        self.noise_shape = noise_shape 
 
    def generator(self): 
 
        gen_input = Input(shape = self.noise_shape) 
 
        model = Conv2D(filters = 64, kernel_size = 9, strides = 1, padding = "sam
e")(gen_input) 
        model = PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_co
nstraint=None, shared_axes=[1,2])(model) 
 
        gen_model = model 
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        # Using 16 Residual Blocks 
        for index in range(16): 
            model = res_block_gen(model, 3, 64, 1) 
 
        model = Conv2D(filters = 64, kernel_size = 3, strides = 1, padding = "sam
e")(model) 
        model = BatchNormalization(momentum = 0.5)(model) 
        model = Add()([gen_model, model]) 
 
        # Using 2 UpSampling Blocks 
        for index in range(2): 
            model = up_sampling_block(model, 3, 256, 1) 
 
        model = Conv2D(filters = 1, kernel_size = 9, strides = 1, padding = "same
")(model) 
        model = Activation('sigmoid')(model) 
 
        generator_model = Model(inputs = gen_input, outputs = model) 
 
        return generator_model 
 
# Network Architecture is same as given in Paper https://arxiv.org/pdf/1609.04802
.pdf 
class Discriminator(object): 
 
    def __init__(self, image_shape): 
 
        self.image_shape = image_shape 
 
    def discriminator(self): 
 
        dis_input = Input(shape = self.image_shape) 
 
        model = Conv2D(filters = 64, kernel_size = 3, strides = 1, padding = "sam
e")(dis_input) 
        model = LeakyReLU(alpha = 0.2)(model) 
 
        model = discriminator_block(model, 64, 3, 2) 
        model = discriminator_block(model, 128, 3, 1) 
        model = discriminator_block(model, 128, 3, 2) 
        model = discriminator_block(model, 256, 3, 1) 
        model = discriminator_block(model, 256, 3, 2) 
        model = discriminator_block(model, 512, 3, 1) 
        model = discriminator_block(model, 512, 3, 2) 
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        model = Flatten()(model) 
        model = Dense(1024)(model) 
        model = LeakyReLU(alpha = 0.2)(model) 
 
        model = Dense(1)(model) 
        model = Activation('sigmoid')(model) 
 
        discriminator_model = Model(inputs = dis_input, outputs = model) 
 
        return discriminator_model 
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Appendix D 
 
Code used to train GAN model 

from gan import Generator, Discriminator 
from foam_case_class import Foam_Case 
import random 
from tensorflow.keras.models import Model 
from tensorflow.keras.layers import Input 
from tensorflow.keras.optimizers import Adam, SGD, RMSprop 
from tqdm import tqdm 
from os import listdir 
import numpy as np 
 
from loss_functions import master_loss 
 
import tensorflow as tf 
 
gpus = tf.config.experimental.list_physical_devices('GPU') 
if gpus: 
  try: 
    # Currently, memory growth needs to be the same across GPUs 
    for gpu in gpus: 
      tf.config.experimental.set_memory_growth(gpu, True) 
    logical_gpus = tf.config.experimental.list_logical_devices('GPU') 
    print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") 
  except RuntimeError as e: 
    # Memory growth must be set before GPUs have been initialized 
    print(e) 
 
data_file = "gan_data.h5" 
np.random.seed(10) 
epochs = 1 
model_save_dir = "gan models" 
 
# Remember to change image shape if you are having different size of images 
image_shape = (16,16,1) 
image_shape_scaled = (64,64,1) 
 
lr_res = (16,16,1) 
hr_res = (64,64,1) 
 
adam = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08) 
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def get_data(ratio): 
    lr_data_path = "E:/gan_data/ground_only/phase_only/lowres/" 
    hr_data_path = "E:/gan_data/ground_only/phase_only/highres/" 
 
    print("loading data into memory") 
 
    lr_data = np.array([np.load(lr_data_path + i) for i in tqdm(listdir(lr_data_p
ath)[:5000])]) 
    hr_data = np.array([np.load(hr_data_path + i) for i in tqdm(listdir(hr_data_p
ath)[:5000])]) 
 
    print(hr_data[1].shape) 
 
    index = int(len(lr_data) * ratio) 
 
    return lr_data[:index], hr_data[:index], lr_data[index:], hr_data[index:] 
 

def get_gan_network(discriminator, generator, optimizer): 
    discriminator.trainable = False 
    gan_input = Input(shape = image_shape) 
    x = generator(gan_input) 
    gan_output = discriminator(x) 
    gan = Model(inputs=gan_input, outputs=[x,gan_output]) 
    gan.compile(loss=[master_loss, "binary_crossentropy"], 
                loss_weights=[1., 1e-10], 
                optimizer=optimizer) 
 
    return gan 
 
def train(epochs, batch_size, data_split_ratio): 
    x_train_lr, x_train_hr, x_test_lr, x_test_hr = get_data(data_split_ratio) 
    batch_count = int(x_train_hr.shape[0] / batch_size) 
 
    generator = Generator(image_shape).generator() 
    generator._name = "generator" 
    discriminator = Discriminator(image_shape_scaled).discriminator() 
    generator.compile(loss=master_loss, optimizer=adam) 
 
    discriminator.compile(loss="binary_crossentropy", optimizer=adam) 
 
    print(generator.summary()) 
    print(discriminator.summary()) 



51 
 
    gan = get_gan_network(discriminator, generator, adam) 
 

    for e in range(1,epochs+1): 
        print ('-'*15, 'Epoch %d' % e, '-'*15) 
        for batch in tqdm(range(batch_count)): 
 
            rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
) 
 
            image_batch_hr = x_train_hr[rand_nums] 
            image_batch_lr = x_train_lr[rand_nums] 
            generated_images_sr = generator.predict(image_batch_lr) 
 
            real_data_Y = np.ones(batch_size) - np.random.random_sample(batch_siz
e)*0.2 
            fake_data_Y = np.random.random_sample(batch_size)*0.2 
 
            discriminator.trainable = True 
 
            d_loss_real = discriminator.train_on_batch(image_batch_hr, real_data_
Y) 
            d_loss_fake = discriminator.train_on_batch(generated_images_sr, fake_
data_Y) 
            discriminator_loss = 0.5 * np.add(d_loss_fake, d_loss_real) 
 
            rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
) 
            image_batch_hr = x_train_hr[rand_nums] 
            image_batch_lr = x_train_lr[rand_nums] 
 
            gan_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2 
            discriminator.trainable = False 
            gan_loss = gan.train_on_batch(image_batch_lr, [image_batch_hr,gan_Y]) 
 
        print("discriminator_loss : %f" % discriminator_loss) 
        print("gan_loss :", gan_loss) 
        gan_loss = str(gan_loss) 
 
        loss_file = open(model_save_dir + 'losses.txt' , 'a') 
        loss_file.write('epoch%d : gan_loss = %s ; discriminator_loss = %f\n' %(e
, gan_loss, discriminator_loss) ) 
        loss_file.close() 
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    generator.save_weights("generator_weights_physics") 
    discriminator.save_weights("discriminator_weights_physics") 
 
def get_data_paths(path): 
 
    print("FETCHING DATA PATHS...") 
 
    def sortbynum(nums): 
        return sorted(nums, key = lambda x: float(x.split("_")[0])) 
 
    #this sorts all the directories in the path; each of these directories 
    #is an openfoam case that has subdirectories for timesteps 
    lowres = sortbynum([i for i in listdir(path) if "highres" not in i]) 
    highres = sortbynum([i for i in listdir(path) if "highres" in i]) 
    data = list(zip(lowres, highres)) 
 
    def expand(paths): 
        all_sub_paths = [] 
        isnum = lambda x: x[0].isdigit() and float(x) != 0 
        for i in tqdm(paths): 
            times = sortbynum(list(filter(isnum, listdir("".join([path,"/",i]))))
) 
            sub_paths = ["".join([path,"/",i,"/",timestep]) for timestep in times
] 
            all_sub_paths+=sub_paths 
 
        return all_sub_paths 
 
    lowres_expanded = expand(lowres) 
    highres_expanded = expand(highres) 
 
    print("DATA PATHS FETCHED") 
 
    return list(zip(lowres_expanded, highres_expanded)) 
 

#this helper function loads the data from a given list of file directories. This 
#allows the data to be loaded and unloaded on the fly, making the operation more 
#memory efficient. 
def load_data_batch_unbuilt(batch, res, type): 
    return np.array([Foam_Case(res, file_path, type).fetch().enum() for file_path
 in tqdm(batch)]) 
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# def load_data_batch(num, res, type): 
#     if type == "lowres": 
#         return np.load("E:/gan_data/lowres/%d.npy" % num[0]) 
#     else: 
#         return np.load("E:/gan_data/highres/%d.npy" % num[0]) 
 
def load_data_batch(nums, res, type): 
    if type == "lowres": 
        return np.array([np.load("E:/gan_data/lowres_downsample/%d.npy" % i) for 
i in nums]) 
    else: 
        return np.array([np.load("E:/gan_data/highres_single/%d.npy" % i) for i i
n nums]) 
#this helper function takes a loaded list of data files and deletes them, freeing 
#memory. 
def unload_data_batch(batch): 
    [foam_case.crunch() for foam_case in batch] 
 
def train_mem_efficient(epochs, batch_size, data_split_ratio): 
    path = "E:/dambreak_cases4" 
    lr_res = (16,16,1) 
    hr_res = (64,64,1) 
 
    x_train_hr = x_train_lr = np.array(range(48000)) 
 
    batch_count = int(x_train_hr.shape[0] / batch_size) 
 

    generator = Generator(image_shape).generator() 
    discriminator = Discriminator(image_shape_scaled).discriminator() 
    generator.compile(loss=master_loss, optimizer=adam) 
    discriminator.compile(loss="binary_crossentropy", optimizer=adam) 
 
    gan = get_gan_network(discriminator, generator, adam) 
 

    for e in range(1,epochs+1): 
        print ('-'*15, 'Epoch %d' % e, '-'*15) 
        for batch in tqdm(range(batch_count)): 
 
            # rand_nums = np.random.randint(0, x_train_hr.shape[0], size=1) #keep
 size as 1 for now; each file has 60 data points 
            rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
) 
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            image_batch_hr = load_data_batch(x_train_hr[rand_nums], hr_res, "high
res") 
            image_batch_lr = load_data_batch(x_train_lr[rand_nums], lr_res, "lowr
es") 
            generated_images_sr = generator.predict_on_batch(image_batch_lr) 
 
            real_data_Y = np.ones(batch_size) - np.random.random_sample(batch_siz
e)*0.2 
            fake_data_Y = np.random.random_sample(batch_size)*0.2 
 
            discriminator.trainable = True 
 
            d_loss_real = discriminator.train_on_batch(image_batch_hr, real_data_
Y) 
            d_loss_fake = discriminator.train_on_batch(generated_images_sr, fake_
data_Y) 
            discriminator_loss = 0.5 * np.add(d_loss_fake, d_loss_real) 
 
            rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
) 
            image_batch_hr = load_data_batch(x_train_hr[rand_nums], hr_res, "high
res") 
            image_batch_lr = load_data_batch(x_train_lr[rand_nums], lr_res, "lowr
es") 
 
            gan_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2 
            discriminator.trainable = False 
            gan_loss = gan.train_on_batch(image_batch_lr, [image_batch_hr,gan_Y],
 return_dict=True) 
 
        print("discriminator_loss : %f" % discriminator_loss) 
        print("gan_loss :", gan_loss) 
        gan_loss = str(gan_loss) 
 
        loss_file = open(model_save_dir + 'losses.txt' , 'a') 
        loss_file.write('epoch%d : gan_loss = %s ; discriminator_loss = %f\n' %(e
, gan_loss, discriminator_loss) ) 
        loss_file.close() 
 

    generator.save_weights("E:/gan_data/generator_weights_phase_only") 
    discriminator.save_weights("E:/gan_data/discriminator_weights_phase_only") 
  



55 
Appendix E 
 
Foam Case Class code; helper class for training GAN model 

import numpy as np 
import os 
from foamToPy import buildarr 
 
class Foam_Case: 
    def __init__(self, res, file_path, type): 
        self.type = type #highres or lowres 
        self.res = res 
        self.mesh_file = os.path.dirname(file_path) + "/system/blockMeshDict" 
        self.alpha_path = file_path + "/alpha.water" 
        self.U_path = file_path + "/U" 
        self.p_path = file_path + "/p" 
 
    def fetch(self): 
        self.alpha = np.squeeze(buildarr(self.res, self.alpha_path, self.mesh_fil
e)) 
        self.p     = np.squeeze(buildarr(self.res, self.p_path, self.mesh_file)) 
        self.Ux    = np.squeeze(buildarr(self.res, self.U_path, self.mesh_file, c
hannel = 0)) 
        self.Uy    = np.squeeze(buildarr(self.res, self.U_path, self.mesh_file, c
hannel = 1)) 
        self.Uz    = np.squeeze(buildarr(self.res, self.U_path, self.mesh_file, c
hannel = 2)) 
 
        return self 
 
    def crunch(self): 
        del self.alpha 
        del self.p 
        del self.Ux 
        del self.Uy 
        del self.Uz 
 
    def enum(self): 
        return np.stack([self.alpha, self.p, self.Ux, self.Uy, self.Uz], axis=-1) 
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Appendix F 
 
Code used to evaluate GAN model 

from gan import Generator, Discriminator 
from loss_functions import * 
from foam_case_class import Foam_Case 
from tensorflow.keras.models import Model 
from tensorflow.keras.layers import Input 
from tensorflow.keras.optimizers import Adam, SGD, RMSprop 
from tqdm import tqdm 
import numpy as np 
import cv2 
from loss_functions import master_loss, MSE 
 
import tensorflow as tf 
import matplotlib.pyplot as plt 
 
gpus = tf.config.experimental.list_physical_devices('GPU') 
if gpus: 
  try: 
    # Currently, memory growth needs to be the same across GPUs 
    for gpu in gpus: 
      tf.config.experimental.set_memory_growth(gpu, True) 
    logical_gpus = tf.config.experimental.list_logical_devices('GPU') 
    print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") 
  except RuntimeError as e: 
    # Memory growth must be set before GPUs have been initialized 
    print(e) 
 
image_shape = (16,16,1) 
image_shape_scaled = (64,64,1) 
 
lr_res = (16,16,1) 
hr_res = (64,64,1) 
 
adam = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08) 
 
def plot_comparison(gen1, gen2): 
    cases = np.random.choice(listdir("E:/gan_data/ground_only/phase_only/lowres/"
)[5000:], 1000, replace=False) 
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    cases = [ 
        "40552.npy", 
        "22078.npy", 
        "23555.npy", 
        "22139.npy", 
        "46791.npy" 
    ] 
     
    labs = ["A", "B", "C", "D", "E"] 
    i = 0 
     
    for case in cases: 
     
        input = np.array([np.load("E:/gan_data/ground_only/phase_only/lowres/%s" 
% case)]) 
        outputMSEphysics = gen1.predict(input) 
        outputMSEonly = gen2.predict(input) 
        real = np.load("E:/gan_data/ground_only/phase_only/highres/%s" % case) 
     
        cubic = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_
CUBIC) 
        linear = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER
_LINEAR) 
        nearest = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTE
R_NEAREST) 
     
        fig,ax = plt.subplots(nrows=1, ncols=6, figsize=(18,3)) 
     
        im1 = ax[0].imshow(np.squeeze(input), vmin=0, vmax=1) 
        im2 = ax[1].imshow(cubic, vmin=0, vmax=1) 
        im3 = ax[2].imshow(linear, vmin=0, vmax=1) 
        im4 = ax[3].imshow(np.squeeze(outputMSEonly), vmin=0, vmax=1) 
        im5 = ax[4].imshow(np.squeeze(outputMSEphysics), vmin=0, vmax=1) 
        im6 = ax[5].imshow(np.squeeze(real), vmin=0, vmax=1) 
     
        ax[0].set_title("input") 
        ax[1].set_title("linear") 
        ax[2].set_title("bicubic") 
        ax[3].set_title("GAN MSE only") 
        ax[4].set_title("GAN MSE + physics") 
        ax[5].set_title("ground truth") 
     
        ax[0].set_xlabel("(%sA)" % labs[i]) 
        ax[1].set_xlabel("(%sB)" % labs[i]) 
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        ax[2].set_xlabel("(%sC)" % labs[i]) 
        ax[3].set_xlabel("(%sD)" % labs[i]) 
        ax[4].set_xlabel("(%sE)" % labs[i]) 
        ax[5].set_xlabel("(%sF)" % labs[i]) 
     
        i+=1 
     
        fig.colorbar(im1, fraction=0.046, ax=ax[0], pad=0.04) 
        fig.colorbar(im2, fraction=0.046, ax=ax[1], pad=0.04) 
        fig.colorbar(im3, fraction=0.046, ax=ax[2], pad=0.04) 
        fig.colorbar(im4, fraction=0.046, ax=ax[3], pad=0.04) 
        fig.colorbar(im5, fraction=0.046, ax=ax[4], pad=0.04) 
        fig.colorbar(im6, fraction=0.046, ax=ax[5], pad=0.04) 
     
        fig.tight_layout() 
     
        plt.show() 
 

def make_violinplot(gen1, gen2): 
    cases = np.random.choice(listdir("E:/gan_data/ground_only/phase_only/lowres/"
)[5000:], 10000, replace=False) 
 
    losses = {"nearest": [], "bicubic": [], "linear":[], "model MSE only":[], "mo
del MSE + physics": []} 
    losses_physics = {"nearest": [], "bicubic": [], "linear":[], "model MSE only"
:[], "model MSE + physics": []} 
 
    for case in tqdm(cases): 
 
    input = np.array([np.load("E:/gan_data/ground_only/phase_only/lowres/%s" % ca
se)]) 
    outputMSEphysics = gen1.predict(input).astype("float64") 
    outputMSEonly = gen2.predict(input).astype("float64") 
    real = tf.convert_to_tensor(np.load("E:/gan_data/ground_only/phase_only/highr
es/%s" % case)) 
 
    cubic = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_CUBI
C) 
    linear = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_LIN
EAR) 
    nearest = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_NE
AREST) 
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    losses["nearest"].append(MSE(nearest, real).numpy()) 
    losses["bicubic"].append(MSE(cubic, real).numpy()) 
    losses["linear"].append(MSE(linear, real).numpy()) 
    losses["model MSE only"].append(MSE(outputMSEonly, real).numpy()) 
    losses["model MSE + physics"].append(MSE(outputMSEphysics, real).numpy()) 
 

    losses_physics["nearest"].append(master_loss(nearest, real).numpy()) 
    losses_physics["bicubic"].append(master_loss(cubic, real).numpy()) 
    losses_physics["linear"].append(master_loss(linear, real).numpy()) 
    losses_physics["model MSE only"].append(master_loss(outputMSEonly, real).nump
y()) 
    losses_physics["model MSE + physics"].append(master_loss(outputMSEphysics, re
al).numpy()) 
 

    fig, ax = plt.subplots(nrows = 2, ncols = 1, figsize =(6,12)) 
 
    v1 = ax[0].violinplot([losses[i] for i in losses]) 
    ax[0].set_yscale('log') 
    ax[0].set_title("Comparison of Loss Values on pure MSE") 
 
    v2 = ax[1].violinplot([losses_physics[i] for i in losses_physics]) 
    ax[1].set_yscale('log') 
    ax[1].set_title("Comparison of Loss values on MSE + Physics") 
 
    labels = ['Nearest Neighbor', 'Bicubic', 'Linear', 'GAN MSE only', 'GAN MSE +
 physics'] 
 
    def set_axis_style(ax, labels): 
        ax.get_xaxis().set_tick_params(direction='out') 
        ax.xaxis.set_ticks_position('bottom') 
        ax.set_xticks(np.arange(1, len(labels) + 1)) 
        ax.set_xticklabels(labels, rotation = 55) 
        ax.set_xlim(0.25, len(labels) + 0.75) 
 
    for i in [ax[0],ax[1]]: 
        set_axis_style(i, labels) 
 

    plt.tight_layout() 
    plt.show() 
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if __name__ == "__main__": 
 
    from os import listdir 
    from tqdm import tqdm 
 
    dir = "E:/gan_data/ground_only/phase_only/" 
    save_dir = "E:/gan_data/outputs/" 
 

    generatorMSE = Generator(image_shape).generator() 
    generatorMSE.compile(loss="MSE", optimizer=adam) 
    generatorMSE.load_weights("MSE_only_weights/generator_weights") 
 
    generatorMSEphysics = Generator(image_shape).generator() 
    generatorMSEphysics.compile(loss="MSE", optimizer=adam) 
    generatorMSEphysics.load_weights("MSE+physics_weights/generator_weights_physi
cs") 
 
    plot_comparison(generatorMSEphysics, generatorMSE) 
    make_violinplot(generatorMSEphysics, generatorMSE) 
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Appendix G 
 
Code used to implement loss function 

import numpy as np 
import tensorflow.keras.backend as K 
import tensorflow as tf 
 
# this loss function calculates the difference between the sums of the phase 
# fractions of two single dambreak frames. Because the interFoam solver solves 
# for incompressible fluids, meaning the amount of fluid should remain constant 
# with time. 
def phase_fraction_loss(y_true, y_pred): 
    alpha_true_sum = tf.math.reduce_sum(y_true) 
    alpha_pred_sum = tf.math.reduce_sum(y_pred) 
 
    size = 64 * 64 
 
    return (alpha_true_sum/size - alpha_pred_sum/size)**2 
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Appendix H 
 
Optimized matrix functions and benchmark Code 

import numpy as np 
from numba import jit, prange, njit 
from timer import timeit_wrapper 
from functools import lru_cache 
 
##SEQUENTIAL 
 
def matrixMax(arr): # finds max value of a 2d matrix 
    return np.max([np.max(i) for i in arr]) 
 
def matrixMin(arr): # finds min value of a 2d matrix 
    return np.min([np.min(i) for i in arr]) 
 
def matrixAvg(arr): # finds average value of a 2d matrix 
    return np.mean([np.mean(i) for i in arr]) 
 
def matrixNormalize(arr, min, max): # normalizes values of a 2d matrix to 0 and 1 
    return [(i - min)/(max - min) for i in arr] 
 

##PARALLEL 
 
def pmatrixMax(arr): 
    prowMaxs(arr) 
    return np.max(arr) 
 
@njit(parallel=True) 
def prowMaxs(arr): 
    for i in prange(len(arr)): 
        arr[i] = np.max(arr[i]) 
 
def pmatrixMin(arr): 
    prowMins(arr) 
    return np.min(arr) 
 
@njit(parallel=True) 
def prowMins(arr): 
    for i in prange(len(arr)): 
        arr[i] = np.min(arr[i]) 
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def pmatrixAvg(arr): 
    prowMeans(arr) 
    return np.mean(arr) 
 
@njit(parallel=True) 
def prowMeans(arr): 
    for i in prange(len(arr)): 
        arr[i] = np.mean(arr[i]) 
 
@njit(parallel=True) 
def pmatrixNormalize(arr, min, max): 
    for i in prange(len(arr)): 
        for j in prange(len(arr)): 
            arr[i,j] = (arr[i][j] - min)/(max - min) 
 
 
 
from time import perf_counter 
from timeit import timeit, Timer 
from decimal import Decimal 
from foamToPy import buildarr 
from matrix import * 
from tqdm import tqdm 
from functools import partial 
 
def timeFunc(func, *args, **kwargs): 
    # start = Decimal(perf_counter()) 
    t = Timer(partial(func, *args, **kwargs)) 
    retVal = t.timeit(number=100) 
    # end = Decimal(perf_counter()) 
    # return end-start 
    return retVal 
 

if __name__ == "__main__": 
    a = np.squeeze(buildarr((512,512,1), "D:/openfoamData/dambreak_cases5/1_highr
es/2./alpha.water","D:/openfoamData/dambreak_cases5/0_highres/system/blockMeshDic
t")) 
 
    seqTimes = {"min":0, "max":0, "avg":0, "normalize":0} 
    parTimes = {"min":0, "max":0, "avg":0, "normalize":0} 
 
    ##initialize jit functions 
    pmatrixMin(a) 
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    pmatrixMax(a) 
    pmatrixAvg(a) 
    pmatrixNormalize(a, pmatrixMin(a), pmatrixMax(a)) 
 
    seqTimes["min"] += timeFunc(matrixMin, a) 
    seqTimes["max"] += timeFunc(matrixMax, a) 
    seqTimes["avg"] += timeFunc(matrixAvg, a) 
    seqTimes["normalize"] += timeFunc(matrixNormalize, a, matrixMin(a), matrixMax
(a)) 
 
    parTimes["min"] += timeFunc(pmatrixMin, a) 
    parTimes["max"] += timeFunc(pmatrixMax, a) 
    parTimes["avg"] += timeFunc(pmatrixAvg, a) 
    parTimes["normalize"] += timeFunc(pmatrixNormalize, a, pmatrixMin(a), pmatrix
Max(a)) 
 
    print("parallel matrix min:", "{0:1.2f}X improvement".format(seqTimes["min"]/
parTimes["min"])) 
    print("parallel matrix max:", "{0:1.2f}X improvement".format(seqTimes["max"]/
parTimes["max"])) 
    print("parallel matrix average:", "{0:1.2f}X improvement".format(seqTimes["av
g"]/parTimes["avg"])) 
    print("parallel matrix normalize:", "{0:1.2f}X improvement".format(seqTimes["
normalize"]/parTimes["normalize"])) 
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