
 THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE

Using Physics-Informed Generative Adversarial Networks to Enhance Multiphase Fluid
Simulation

MATTHEW LI
SPRING 2021

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Computer Science
with honors in Computer Science

Reviewed and approved* by the following:

Christopher McComb
Assistant Professor of Engineering Design

Thesis Supervisor

Jesse Barlow
Professor of Computer Science

Honors Adviser

* Electronic approvals are on file.

i

ABSTRACT

Machine learning methods have been shown to demonstrate the ability to reconstruct

single-phase turbulent fluid flow from low-resolution inputs, with potential applications in many

industries, but especially in engineering design. However, no work thus far has explored the

application of machine learning image super-resolution methods to multiphase fluid flow. In this

work, we apply the Super-Resolution Generative Adversarial Network (SRGAN) model to a

multiphase turbulent fluid flow problem, specifically to reconstruct fluid phase fraction at a higher

resolution. Two models were created in this work, one with a simple physics-constrained loss

function and one without, and the results are discussed and analyzed. We found that both models

were able to significantly outperform non-machine learning upsampling methods and can preserve

an impressive amount of detail and nuance, showing the versatility of the SRGAN model for

upsampling fluid simulations. But, the difference in accuracy between the two models is quite

minimal, whereas physics-informed models have shown better results than non-physics-informed

models in past work with single-phase fluid flow. This result leads to some important points of

discussion and room for future research on the topic.

ii

TABLE OF CONTENTS

Introduction .. 1

Background .. 3

The importance of CFD ... 3
Image Super-Resolution ... 4
Generative Adversarial Networks .. 5
Image Super-Resolution Applied to CFD .. 6

Methods.. 8

Problem Description... 8
Using the OpenFOAM Software Library ... 9
Time Continuity Divergence Problems .. 14
Training Data Generation ... 16
Converting OpenFOAM data to a usable format ... 19
Network Architecture ... 23
Network Implementation ... 25
Loss Function Design ... 25

Results and Discussion .. 27

Conclusions and Future Work ... 37

Appendix A Code used to assemble OpenFOAM data into matrix format 39

Appendix B Code used to distribute computation of OpenFOAM simulations to multiple
CPUs ... 43

Appendix C Code used to define the GAN model .. 45

Appendix D Code used to train GAN model .. 49

Appendix E Foam Case Class code; helper class for training GAN model 55

Appendix F Code used to evaluate GAN model ... 56

Appendix G Code used to implement loss function ... 61

Appendix H Optimized matrix functions and benchmark Code 62

Bibliography .. 65

iii

Acknowledgements

I would like to thank Professor Christopher McComb for his guidance and patience for the

past few years, as well as my friends and family who have stuck with me for my entire

undergraduate career.

McComb, Chris
Don’t forget to put something here! This is your chance to thank people who have supported you through your undergraduate degree.

iv

LIST OF FIGURES

FIGURE 1: ILLUSTRATION OF PROBLEM STATEMENT: UPSAMPLING FROM A 16×16
RECTILINEAR MESH TO A 64×64 RECTILINEAR MESH 8

FIGURE 2: EXCERPT OF DAMBREAK BLOCKMESHDICT FILE 10

FIGURE 3: REGIONS OF THE GRID MESH IN THE DAMBREAK SIMULATION 11

FIGURE 4: EXCERPT OF DAMBREAK CONTROLDICT FILE .. 12

FIGURE 5: EXCERPT OF DAMBREAK SETFIELDSDICT FILE 13

Figure 6: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 256x256 RESOLUTION 14

Figure 7: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 512x512 RESOLUTION 15

FIGURE 8: LOW-RESOLUTION AND HIGH RESOLUTION DAMBREAK CASE AT SAME
TIME STEP. THE DAM IS DENOTED BY THE WHITE SQUARE. (YELLOW IS
WATER, PURPLE IS AIR) ... 17

FIGURE 9: FOUR DIFFERENT DAMBREAK CASES AT TIME = 0 SECONDS (YELLOW IS
WATER, PURPLE IS AIR) ... 18

FIGURE 10: PRE-GROUND-IMPACT DATA VS. POST-GROUND-IMPACT DATA
(YELLOW IS WATER, PURPLE IS AIR) ... 18

FIGURE 11: EXCERPT FROM SAMPLE ALPHA.WATER FILE 19

FIGURE 12: ILLUSTRATION OF ARRANGEMENT OF OPENFOAM DATA POINTS . 20

FIGURE 13: SAMPLE OF ASSEMBLED 3D OPENFOAM DATA 22

FIGURE 14: NETWORK LAYER DIAGRAM. REPEATED BLOCKS ARE CONDENSED TO
SAVE SPACE. ... 24

FIGURE 15: TRAINING LOSSES FOR MSE-ONLY MODEL, INCLUDING
DISCRIMINATOR LOSS (LEFT) AND GENERATOR LOSS (RIGHT) 27

FIGURE 16: TRAINING LOSSES FOR MSE+PHYSICS MODEL, INCLUDING
DISCRIMINATOR LOSS (LEFT) AND GENERATOR LOSS (RIGHT) 28

FIGURE 17: EXAMPLES OF MODEL INFERENCE COMPARED TO LINEAR
UPSAMPLING, BICUBIC UPSAMPLING, AND GROUND TRUTH HIGH-
RESOLUTION SIMULATION. .. 30

FIGURE 18: FIG17 DD ENHANCED .. 31

FIGURE 19: FIG 17 DE ENHANCED ... 31

v

FIGURE 20: FIGURE & DF ENHANCED .. 32

FIGURE 21: COMPARISON OF MAGNITUDE AND DISTRIBUTION OF LOSS VALUES
ON A PURE MSE LOSS FUNCTION ON A LOG SCALE FOR THE DIFFERENT
UPSAMPLING METHODS. THESE VALUES WERE TAKEN FROM A RANDOM
SAMPLE OF 10000 DATA POINTS FROM THE DATA SET. 33

FIGURE 22: COMPARISON OF MAGNITUDE AND DISTRIBUTION OF LOSS VALUES
ON THE CUSTOM MSE + PHYSICS LOSS FUNCTION ON A LOG SCALE FOR THE
DIFFERENT UPSAMPLING METHODS. THESE VALUES WERE TAKEN FROM A
RANDOM SAMPLE OF 10000 DATA POINTS FROM THE DATA SET. 34

1

Introduction

Computational Fluid Dynamics, or CFD has been a crucial pillar of the engineering design

process for decades. By dramatically reducing the number of physical tests and prototypes needed

to fine-tune the design of a part or a system, CFD simulations can greatly reduce the cost for many

engineering design tasks. They also provide engineers with much more flexibility, as fixing a failed

simulation is much easier than fixing a failed physical prototype. CFD tools have become

invaluable to many engineers, but current methods are not without their limitations.

The field of CFD is very broad, as fluid flow behaviors can manifest in a multitude of ways.

In general, CFD simulations model fluid flow by splitting the simulation space into a mesh of

discrete points over time and space and creating systems of differential equations which are solved

or approximated using numerical computing methods. [1] To control the granularity of the CFD

simulation, the density of the discrete cells can be changed. Having more points means more detail

is captured at the cost of longer computation times, which increase with the number of points,

forcing users to make a tradeoff between detail and computation time.

Deep learning methods have been applied to the field of CFD, and have been used to

tradeoff with success. Deep neural networks can be used to up-sample CFD simulations with good

results [2-8] showing that deep-learning accelerated CFD could be a promising field of research.

We add to this burgeoning field of research by introducing a model with a new capability.

2
The majority of Super Resolution in CFD (SRCFD) papers published to date have been for

single phase fluid simulations. The addition of an additional fluid phase into a CFD simulation can

dramatically increase the complexity of the problem with a new set of equations, as well as adding

phase fraction as a fluid property [2].

In this paper, we demonstrate the feasibility of the super-resolution of multiphase CFD

simulations with a deep neural network. More specifically, we demonstrate the feasibility of using

a deep neural network to approximate the Volume Of Fluids (VOF) numerical method of

modelling multiphase flow. We present both a physics-informed and a non-physics-informed deep

neural networks, and compare these against naïve upsampling approaches. The remainder of the

paper is organized as follows: the background, which contains the motivation and some

prerequisite information, followed by the methods and results.

3
Background

The Importance of CFD

 Computational Fluid Dynamics, or CFD, is a field of study that combines numerical

analysis and fluid mechanics, using numerical methods to solve problems that involve fluids. This

is still a burgeoning new field, and thousands of scientists and engineers continue to actively study

and create new research in CFD. Even though the fundamental fluid equations, such as the Navier-

Stokes equation, had been derived during the 19th century, it wasn’t until computers became

reasonably fast in the 1950’s that the age of modern CFD could truly begin [3].

 The importance of CFD stems its ability to simulate physical experiments. For example,

iterative airfoil design could be done very cheaply using CFD instead of a physical wind tunnel

[4]. CFD is widely used in a variety of different industries, such as mechanical design [5,6], food

science [7–9] and materials science [10,11]. Obviously, physical experiments can never be

completely replaced by CFD simulations, but they are still immensely useful. CFD simulations

can be performed on rougher prototypes, and these results of these simulations can be used to fine-

tune the design until a physical prototype can be built for a real-world test [1].

 By dramatically reducing the number of physical tests and prototypes needed to fine-tune

the design of a part or a system, CFD simulations can greatly reduce the cost for many engineering

design tasks. Over the decades, CFD has become an invaluable tool to engineers and designers,

and any advancements made in the field will surely benefit the entire field of engineering.

4
Image Super-Resolution

Image super-resolution has been a well-researched problem in the realm of Computer

Vision for many decades now and is still actively being researched to this day. The problem is this:

can additional fidelity and detail be inferred from a low-resolution image? Many models and

methods have been developed so far with varying degrees of success, and progress is still being

made.

A plethora of novel methods and architectures have been experimented with, such as deep

Laplacian pyramid networks [13], dense skip connections [14], deep residual channel attention

networks [15], etc., all with their own advantages and disadvantages. One of the most famous

models developed, and the standard benchmark for models in this field of research, is the Super

Resolution Convolutional Neural Network (SRCNN). This model by Dong [16] uses a

convolutional neural network to create a mapping between low-resolution and high-resolution

images. This model shows promising results for up-sampling images, but it fails to capture higher-

level features and instead minimizes a lower-level pixel-wise loss. Further refinements to this

model have been made with improvements to efficiency in the form of FSRCNN (Fast SRCNN)

[17], as well as an increase in depth with VDSR (Very Deep Super Resolution) [18]. Both these

works showed some improvements over SRCNN.

A much more powerful model, using a generative adversarial network architecture, is the

Super Resolution GAN (SRGAN), created by Ledig [19]. The SRGAN architecture will serve as

the cornerstone for our work. Compared to SRCNN, SRGAN is much more powerful in capability

and can infer very high-level features, leading to much more natural and realistic-looking images.

5
This also comes at the cost of having many times more weights, which makes training and

inference much less efficient.

Generative Adversarial Networks

 The Generative Adversarial Network (GAN) is a novel architecture that involves training

two separate deep neural networks against each other. One network, the generator, is responsible

for generating the actual output. The other network, the discriminator, is responsible for

distinguishing between the generator’s output and the ground truth data. During the training

process, the generator will get better at producing outputs that resemble the ground truth, and the

discriminator will become better at discerning them. [20] Ideally, the generator should become

strong enough to fool the discriminator. The resulting generator network can then be used for

inference, while the discriminator is discarded in the final model.

 The versatility of the GAN architecture has led to its application to a multitude of different

problems. GANs have been demonstrated to produce remarkably good results in novel tasks, such

as generating human faces [21] and transforming photographs into paintings [22]. They have also

proven to be useful for many specific and practical engineering applications, such as designing

airfoils [23], predicting stress distribution in structures [24], and estimating leakage parameters for

liquid pipelines [25]. However, GANs can be large in size and difficult to train, and are vulnerable

to mode collapse and vanishing gradients [26]. Their large number of parameters also leads to

slower inference, making them less suitable for time sensitive tasks [27].

6
Image Super-Resolution Applied to CFD

 Image super-resolution techniques can be applied somewhat directly to CFD simulations.

The resolution of a CFD simulation lies in the density of points, which is functionally analogous

to pixels in an image. Researchers have recently began applying machine-learning based image

SR techniques to a variety of different types of CFD simulations, with varying degrees of success.

The work of Fukami [28] was one of the earlier works in this field, and showed that turbulent flows

were able to be reconstructed with some success using a relatively simple convolutional neural

network as well as a hybrid downsampled skip-connection multi-scale model (DSC/MS). This

work was one of the first to show that certain types of fluid flows can be reconstructed with

machine learning methods. Another work by Liu [29]. produced further results with CNNs as well

as a multiple temporal paths convolutional network (MTPC). They were able to show that deep

learning methods outperformed traditional upsampling methods like bicubic interpolation, but

were still limited in their capabilities to produce results that follow the physical constraints of

fluids. [29] The generative adversarial network architecture (GAN) was also applied to the CFD

super-resolution problem with great results, in the work by Xie [30] with a novel application in

3D smoke diffusion.

 An even more recent innovation is the use of physics-informed networks, i.e.- explicitly

using physical properties in the loss functions to provide more context to the models. We have

already seen that physics-constrained neural networks produce good results for other applications,

such as the modelling of materials [31]. Can this same philosophy be applied to CFD super-

resolution? Two very recent models that are designed to solve this problem for single-phase

7
turbulent flow CFD simulations are MeshfreeFlowNet by Jiang et. al. and TEGAN by

Subramaniam et. al.

 TEGAN is similar to our model, as it is also based on SRGAN, but was designed to solve

a single-phase fluid flow super-resolution problem. It was trained to up-sample instances of the

incompressible forced isotropic homogeneous turbulence problem in 3D and is constrained by the

time dependent Navier-Stokes equations and the Poisson equation. [32] This model can up-sample

both pressure and velocity for four total fields in 3D (pressure, and x, y, z velocity), and provides

impressive results across all four fields. This paper also provides another interesting result, which

involves experimentation with the value of the weight given to the physics-based loss functions.

The paper shows that adding a non-zero weight to the physics loss greatly improved the results but

too high of a weight may be detrimental. This result is extremely important, not only legitimizing

the use of physics-based loss functions for this field, but also gives some data points for other

researchers to use while tuning the hyperparameters of their own models.

8
Methods

Problem Description

The goal is of the current work is to use image SR techniques to increase the resolution of

the fluid phase fraction generated by a solver that uses the Volume Of Fluids (VOF) method of

modelling two-phase incompressible turbulent fluid flow. We make use of the InterFoam solver

from OpenFOAM [35], an open-source and highly performant CFD software library commonly

used in both industry and research [36]. Upsampling the output approximates the results of

increasing the density of the discretized mesh, and ideally will produce additional detail without

incurring the cost of computation that comes with direct numerical solutions. To make our CFD

simulations suitable for image SR models, we chose to discretize them with a uniform rectilinear

mesh, which ensures the computational analogy to pixels typically used in SR. In this work only

the fluid phase fraction is considered. The model trained in this work specifically upsamples from

a mesh resolution of 16×16 to 64×64 (see Figure 1).

FIGURE 1: ILLUSTRATION OF PROBLEM STATEMENT: UPSAMPLING FROM A 16×16

RECTILINEAR MESH TO A 64×64 RECTILINEAR MESH

9
Using the OpenFOAM Software Library

The Open-Source Field Operation and Manipulation library, or OpenFOAM library is an

open-source software library that provides an object-oriented and highly efficient family of solvers

for fluid dynamics problems and an easy-to-use command-line interface. [34] This provides and

easily scriptable and automatable CFD environment for efficient data generation. For this work,

the “interFoam” solver was used. This solver utilizes an algorithm based on the volume of fluid

method (VOF) to calculate the ratio of two fluid phases at points in the mesh. This ratio is called

the phase fraction, or α, and predicting α at upscaled resolutions is the aim of this work. The phase

fraction essentially keeps track of the position of water and air in the simulation.

Each solver is an executable program that can be called using the command-line, and

configuration of OpenFOAM simulations is done by modifying several different config files. The

directory structure of an OpenFOAM simulation will begin with the “constant”, “postprocessing”,

and “system” folders, as well as a folder for each iterative timestep of the simulation. The training

data for the model will be extracted from these timestep directories. All the configuration files to

set the initial conditions are in the “constant” and “system” folders, with the most important being

“blockMeshDict”, “controlDict” and “setFieldsDict” from the system folder. The constant folder

contains settings that did not need to be modified for this work, such as the acceleration of gravity

and some other properties.

The “blockMeshDict” file contains the dimensions and density of the mesh grid of the

simulation. The general file format contains a section containing 3-tuples representing the vertices,

and other sections containing the arrangement of blocks, edges, and boundaries. Other more

10
complex geometries can be specified in this file, such as 3-dimensional surfaces, but these are not

needed in this work. An excerpt of a sample “blockMeshDict” file is shown below.

FIGURE 2: EXCERPT OF DAMBREAK BLOCKMESHDICT FILE

11
Each entry of the blocks section contains three fields. The first is a list of the eight vertices

from the vertices section that make up the vertices of the block, the second is the density of mesh

cells per axis (x, y, and z), and the third field specifies the cell expansion ratios for each axis, which

was left unmodified. The “simpleGrading” type means that cells will be uniformly distributed

across each axis, which is ideal.

In the case of the DamBreak simulation, “blockMeshDict” contains the information for a

2-dimensional grid with an immovable dam in the center. To account for this, the mesh is split into

five separate blocks and each one is configured independently, as shown in the figure below. Each

of the five blocks shown in the below figure has an entry in the blocks section of the

blockMeshDict file.

FIGURE 3: REGIONS OF THE GRID MESH IN THE DAMBREAK SIMULATION

McComb, Chris
Make sure that captions end up on the same page as the figures.

12
FIGURE 3: REGIONS OF THE GRID MESH IN THE DAMBREAK SIMULATION

 Next, the “controlDict” file contains all the configuration settings for the time and

I/O control of a given simulation. An excerpt is included below. Essentially, this file is used to

control the time length of the simulation, the write interval, and the numerical precision of these

operations. There are finer settings and functions available, but they are not quite as important

for this work. In this case shown in the figure, the simulation is ran for 3 seconds, with

observations recorded every 0.05 seconds, resulting in a total of 60 timesteps worth of data.

FIGURE 4: EXCERPT OF DAMBREAK CONTROLDICT FILE

McComb, Chris
Make sure that captions end up on the same page as the figures.

13
 Finally, we have the “setFieldsDict” file, which sets the initial conditions of the fluids in

the simulation. Different solvers may have different versions of this file, and the excerpt shown

below is specific to the interFoam solver. Here, the water phase is defined as a box with two

corners. Other geometries can be specified, but for this work only rectangular blocks are used. The

rectangular block is defined by two points in 3D space, and its “volScalarFieldValue” is defined

as 1, meaning the block of fluid is purely water. The default “volScalarFieldValue” is 0, meaning

everything besides the water block is purely air.

FIGURE 5: EXCERPT OF DAMBREAK SETFIELDSDICT FILE

14
Time Continuity Divergence Problems

Originally, training data generation was achieved by running each DamBreak case in both

the low and high resolutions, with the same starting conditions. It was thought that doing this

would create identical fluid data for each resolution. However, when using this data for training,

the performance was abysmal, and the resulting models were practically worthless. Upon further

investigation, we found that for data points of the same case and at identical timesteps differed

quite significantly. Included below is an example of this phenomenon, with two identical data

points (run with different resolutions) rendered in ParaView.

Figure 6: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 256x256 RESOLUTION

FIGURE 6: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 256x256 RESOLUTION

15

Figure 7: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 512x512 RESOLUTION

FIGURE 7: DAMBREAK SNAPSHOT AT 1.45 SECONDS AT 512x512 RESOLUTION

 As seen in the figures, there appears to be a time continuity error. More specifically, the

two simulations experience a sort of time divergence and are unsynchronized at the same time

steps. This seemed to be an issue inherent to CFD itself, and the current hypothesis is that changing

the mesh cell density (resolution) of the simulation correlates with an increase in the residual error

accumulated during each iteration of the interFoam solver. This issue was bypassed by running

only the high-resolution simulations and then creating the low-resolution data points by down-

sampling. This is described in more detail in the following section.

McComb, Chris
I would love to see a gridded set of images that show the evolution of a simulation over time – like frames in a movie, maybe 5x5.

16
Training Data Generation

Training data was generated using OpenFOAM using the “DamBreak” case, a 2-

dimensional interphase laminar flow simulation which depicts a mass of water falling from the air

and onto the ground, then colliding with a solid immovable dam in the center of the floor. This

creates a large amount of fluid movement for the model to learn and predict.

A total of 800 cases were simulated with a uniform mesh density of 64×64 for 3 seconds

with 60 discrete timesteps each (0.05s increments), with the fluid data at each timestep serving as

a data point. Every timestep constitutes a unique training sample, resulting in 48,000 total data

training samples. The initial position, size and shape of the water mass is randomized between

cases, as shown in Figure 3. This was done by randomly changing the two defining points in the

“setFieldsDict” file for each respective case directory. The rationale for this was to create a more

varied set of training samples, as changing these conditions changes the amount of kinetic energy

in the system, which could drastically change the fluid behavior between cases.

Each of the 800 cases were run using the interFoam solver as described in the previous

section and were run using a multiprocessing queue in python for maximum throughput.

OpenFOAM has options for multi-threaded solvers, such as domain decomposition, but they were

not used for this work. Assigning each of the 800 cases to a single CPU core is sufficient to

maximally utilize the hardware, and for throughput to be 100%. The code used to distribute these

tasks to CPU cores is included in appendix B.

17

FIGURE 8: LOW-RESOLUTION AND HIGH RESOLUTION DAMBREAK CASE AT SAME

TIME STEP. THE DAM IS DENOTED BY THE WHITE SQUARE. (YELLOW IS WATER,

PURPLE IS AIR)

Each of these samples was then downsampled using linear interpolation, creating high- and

low-resolution samples pairs (see Figure 8). This dataset was then split into two categories: pre-

ground-impact and post-ground-impact (see Figure 10). In this work we focus on the post-ground

impact dataset since most of the fluid deformation occurs after the fluid collides with the ground.

The pre-ground-impact dataset can likely be predicted with much simpler methods (i.e., projectile

motion) and is not used in this paper. The model presented is trained completely on the post-ground

data. This post-ground dataset has 19,664 total data points, and 5000 were randomly samples for

training and testing.

18

FIGURE 9: FOUR DIFFERENT DAMBREAK CASES AT TIME = 0 SECONDS (YELLOW

IS WATER, PURPLE IS AIR)

FIGURE 10: PRE-GROUND-IMPACT DATA VS. POST-GROUND-IMPACT DATA

(YELLOW IS WATER, PURPLE IS AIR)

19
Converting OpenFOAM data to a usable format

The OpenFOAM file format cannot be immediately substituted into image super resolution

tasks. Images are stored as matrices of numbers, while the OpenFOAM data format stores data in

simple lists. The OpenFOAM data needs to be converted into a matrix format to be useful. An

excerpt of a sample “alpha.water” file is shown below. The “alpha.water” file contains the phase

fraction values, with an entry for every mesh cell.

FIGURE 11: EXCERPT FROM SAMPLE ALPHA.WATER FILE

McComb, Chris
Make sure every paragraph is justified (flush on the left and the right0.

20
The points in the “alpha.water” file needs to be arranged in a matrix format, as these points

alone do not have any positional information, and are of little use. They must be reconstructed

using information from their blockMeshDict file, and follow a very specific format, which is better

explained using the following figure.

FIGURE 12: ILLUSTRATION OF ARRANGEMENT OF OPENFOAM DATA POINTS

 The list of numbers on the left represents the OpenFOAM data format, and the grid on the

right represents the reconstructed matrix. The data points need to be assembled from left to right,

bottom to top, block by block, in the order defined in the “blockMeshDict” file. A small software

library was created to help assemble OpenFOAM data into numpy files with a matrix format. A

sample excerpt of this code is shown below, and the rest is included in the appendix.

21
#builds all the blocks in a given case into a single array, works for both 2d
#and 3d cases; does array arithmetic based on xyzmax and res (point density)
def buildarr(res, datafile, meshfile, channel=0):
 final = np.zeros(res)
 data = open(datafile, "r")
 mesh = open(meshfile, "r")
 points = getVertices(mesh)
 XYZmax = np.array(xyzmax(points))
 mul = list(map(int, np.divide(res, XYZmax)))
 blocks = getBlocks(mesh, points)
 for i in range(23):
 discard = data.readline()
 for i in range(len(blocks)):
 st = blocks[i][0][0]
 st = (st[1]*mul[1], st[0]*mul[0], st[2]*mul[2])
 st = list(map(int, st))
 blocks[i] = buildBlock(blocks[i], data, channel)
 shp = blocks[i].shape
 final[res[0]-(st[0]+shp[0]):res[0]-st[0], st[1]:st[1]+shp[1], \
 st[2]:st[2]+shp[2]] = blocks[i]
 return final

#builds all the blocks in a given case into a single array, works for both 2d
#and 3d cases; does array arithmetic based on xyzmax and res (point density)
def buildarr(res, datafile, meshfile, channel=0):
 final = np.zeros(res)
 data = open(datafile, "r")
 mesh = open(meshfile, "r")
 points = getVertices(mesh)
 XYZmax = np.array(xyzmax(points))
 mul = list(map(int, np.divide(res, XYZmax)))
 blocks = getBlocks(mesh, points)
 for i in range(23):
 discard = data.readline()
 for i in range(len(blocks)):
 st = blocks[i][0][0]
 st = (st[1]*mul[1], st[0]*mul[0], st[2]*mul[2])
 st = list(map(int, st))
 blocks[i] = buildBlock(blocks[i], data, channel)
 shp = blocks[i].shape
 final[res[0]-(st[0]+shp[0]):res[0]-st[0], st[1]:st[1]+shp[1], \
 st[2]:st[2]+shp[2]] = blocks[i]
 return final

McComb, Chris
Should this be labeled as a figure?

22
 The first function, called “buildarr”, is the function used to assemble a matrix from a

“blockMeshDict” file and a data file. Essentially, this function opens the mesh file and data file,

and then assembles the matrix using the data file. First, an empty matrix of the desired resolution

is created, and then the individual block components are assembled using the “buildBlock”

function, and then placed into the empty matrix. This matrix is then returned by the function.

 The “buildBlock” function takes a block, a data file, and another argument called “channel”

to assemble a single block from the data file, exactly as shown in in figure 12. Essentially, given

the block information, the function traverses through all three possible dimensions of the block

axes, and then inserts the points into this block matrix iteratively. The channel argument is used

specifically for assembling the velocity matrix, which has three separate values for each entry (x

velocity, y velocity, z velocity). The channel argument can take on the value of 0,1, or 2, and each

value corresponds to either the x, y, or z velocity, and all three must be constructed as separate

matrices. This capability was not used for this project but may be useful for future endeavors.

Another capability of this code that was unused was the scalability to three-dimensional data. This

work only focused on the two-dimensional DamBreak simulation, but future work on 3D

OpenFOAM simulations will be able to reuse this code.

FIGURE 13: SAMPLE OF ASSEMBLED 3D OPENFOAM DATA

McComb, Chris
Make sure every figure reference aligns with the figure title. Shoulnd’t this be Figure 13?

23
Network Architecture

 The network used here is based heavily on the SRGAN architecture, created by Ledig [19],

and the full network layout is shown in Figure 14. This is a generative adversarial network

designed to solve the general image super-resolution problem.

 The generator begins with a convolutional layer with a 9x9 kernel size with 64 filters and

a PReLU activation, followed by16 residual blocks with skip connections, which consist of two

convolutional layers with 64 filters and a 3×3 kernel size each with a batch normalization layer, as

well as two up-sampling blocks which contain a convolutional layer with 256 filters and a 3×3

kernel size, and an 2D up-sampling layer. Then, the last year is a convolutional layer with one

filter and a kernel size of 9×9, with a sigmoid activation layer. The sigmoid activation function is

chosen for the last layer instead of the hyperbolic tangent because the fluid phase fraction values

must be between zero and one since it is the ratio of the presence of two fluids at a point in space.

So, a sigmoid activation makes more sense here.

 The discriminator consists of eight convolutional layers with a kernel size of 3×3, split into

pairs of 64 filters, 128 filters, 256 filters, and 512 filters. Each convolutional layer uses the leaky

ReLU activation function. The last few layers consist of two dense layers and a sigmoid activation

function.

24

FIGURE 14: NETWORK LAYER DIAGRAM. REPEATED BLOCKS ARE CONDENSED TO

SAVE SPACE.

25
Network Implementation

The neural network was written in python using the TensorFlow software library. The

base code was borrowed from Deepak Birla’s Keras implementation of SRGAN [36] and

modified to have a sigmoid activation function as well as a custom loss function suited to the

task. This code was also adapted slightly to run on Tensorflow.Keras rather than the original

Keras library. The full code is included in appendices C, D, and E.

Loss Function Design

While the discriminator network was compiled and trained with the original binary cross-

entropy loss function, the generator was trained differently from the original SRGAN

implementation. The generator was originally constrained with both a pixel-wise loss function in

MSE as well as a higher-level content-wise loss function, using a pre-trained VGG network. The

work of Ledig et. al. cleverly used VGG loss (perceptual loss) because SRGAN and VGG were

designed to operate on the ImageNet dataset. VGG loss cannot be applied to the dataset

presented here because it this data is divergent from the training data for VGG (e.g., photographs

of animals and plants). However, this dataset follows a set of governing equations, and so

additional physics-based constraints to the can be used to train the model.

ℒ𝑔𝑔𝑔𝑔𝑔𝑔�𝑌𝑌,𝑌𝑌�� = 𝜆𝜆1 ⋅
1
𝑚𝑚𝑚𝑚

���𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖�
2

𝑔𝑔

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 + 𝜆𝜆2 ⋅
1
𝑚𝑚𝑚𝑚�

��𝑦𝑦𝑖𝑖𝑖𝑖

𝑔𝑔

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

−��𝑦𝑦�𝑖𝑖𝑖𝑖

𝑔𝑔

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

�

2

(1)

McComb, Chris
Why all the blank space?

26
Physics-based loss functions for SRCFD networks have demonstrated success, as shown

by Subramaniam [34] and Jiang [33]. For models that predict fluid velocity and pressure, loss

functions are based on the Navier-Stokes equations, and a model that minimizes its loss should

stay as consistent with these governing equations as possible, but implementing them can be

difficult. However, the phase fraction follows the interphase equations, which are simpler in

form. Essentially, our loss function aims to minimize the difference of the volume of liquid

phase between the input and the output, in addition to minimizing pixel-wise loss. The interFoam

solver models incompressible fluids, so this volume should remain consistent. The full loss

function is shown below in Equation 1. The left summand is the MSE with a weighting of λ1

and the right summand is the normalized squared difference of total water volume with a

weighting of λ2. The m and n terms represent the height and width of the rectilinear mesh.

McComb, Chris
Why all the blank space?

27

Results and Discussion

Training was performed on a computer with an NVIDIA RTX 3070 GPU on TensorFlow

2.5.0. The network was trained using 5000 data points from the dataset, which was split into 80%

for training and 20% for testing. The network was trained with a batch size of 16 for 1000 epochs,

and the Adam optimizer was used with a learning rate of 1 x 10^-4 . Two SR models were trained

– one in which the loss function consisted only of the MSE term, and the other consisting of a

combination of the MSE term and the physics-informed term.

Figures 15 shows the training loss for the generator and discriminator of the MSE-only

model, and Figure 16 shows the training loss for the generator and discriminator of the MSE +

physics model.

FIGURE 15: TRAINING LOSSES FOR MSE-ONLY MODEL, INCLUDING

DISCRIMINATOR LOSS (LEFT) AND GENERATOR LOSS (RIGHT)

28

FIGURE 16: TRAINING LOSSES FOR MSE+PHYSICS MODEL, INCLUDING

DISCRIMINATOR LOSS (LEFT) AND GENERATOR LOSS (RIGHT)

Figures 15 and 16 demonstrate that the discriminator did not actually converge to an ideal

value in this case. Ideally, the discriminator loss should converge to 0.5, which signifies the

inability of the discriminator to differentiate between the data created by the generator and data in

the ground truth dataset better than chance. However, in this case the discriminator loss was less

than 0.5 in both models, indicating some discriminatory accuracy. This should be addressed in

future work through careful hyperparameter tuning.

Despite this suboptimal training, the generator was able to converge successfully. The

failure of the discriminator to fully converge may be explained by the nature of the problem. The

dataset presented here contains quite a diverse set of fluid interactions, but the space of this dataset

is still quite limited compared to the ImageNet database, which is what the SRGAN was designed

to operate on. The discriminator architecture from SRGAN may have been too powerful for the

task, and perhaps a simpler discriminator network may have been more ideal.

29

Figure 17 provides several comparisons between different upsampling approaches, namely

linear upsampling, bicubic upsampling, and the two models presented in this work. These samples

were not present in the original training data. The furthest left column in the figure shows the low-

resolution input, and the furthest right column shows the ground truth high-resolution simulation.

The GAN models were able to capture a high degree of detail, with many high-level features

preserved and visible. It seems that the generator was able to learn many of the turbulent and

chaotic fluid behaviors present in the dataset. There seems to be very little difference visually

between the MSE-only model and the MSE+physics model.

An examination of Figure 17 also indicates that the GAN model outputs have much more

clarity and detail than the traditional up-sampling techniques. Turbulent trails of fluid were

captured in the upsampled results of these models which are not present in the linear or bicubic

results. Some details that are almost imperceptible in the low-reslution input were inferred by the

GAN models. For instance, thin, wispy trails of water splashing in the air that are almost

completely absent from the input and are only a few pixels in size in the high resolution simulation

are captured (see Figures 17AE and 17CE). In addition, small pockets of air resulting from the

collision of the water with the bottom boundary were somewhat preserved by the mode (see like

in Figures 17BE and 17DE). In some cases, like Figures 17BE and 17DE, these features are more

pronounced in the MSE+physics model than in the MSE-only model. A more extensive qualitative

analysis should be conducted to assess the extent to which this statement holds. These details do

differ slightly from the ground truth, but the ability of the model to learn these details is still

noteworthy.

30

FIGURE 17: EXAMPLES OF MODEL INFERENCE COMPARED TO LINEAR

UPSAMPLING, BICUBIC UPSAMPLING, AND GROUND TRUTH HIGH-RESOLUTION

SIMULATION.

The fine levels of detail can really be appreciated when looking closer at the snapshots in

figure 17.

31

FIGURE 18: FIG17 DD ENHANCED

FIGURE 19: FIG 17 DE ENHANCED

32

FIGURE 20: FIGURE & DF ENHANCED

 Here, the small details can be seen more clearly. The large trail of water created from of

the water collision with the right wall has been reproduced by the model quite well, as well as the

small air pockets underneath the mass of water. Another point to notice is that the MSE-only and

MSE + physics models do have slightly different outputs that can be seen more clearly in figures

18 and 19, even if these differences are very small. In figure 19, it seems that the MSE + physics

model seems to be closer to the ground truth, especially when looking at the trail on the right as

well as the positions of the air pockets, but in other cases the MSE-only model is better. No

definitive conclusion about model quality can be made from looking at these figures visually.

33

FIGURE 21: COMPARISON OF MAGNITUDE AND DISTRIBUTION OF LOSS VALUES

ON A PURE MSE LOSS FUNCTION ON A LOG SCALE FOR THE DIFFERENT

UPSAMPLING METHODS. THESE VALUES WERE TAKEN FROM A RANDOM SAMPLE

OF 10000 DATA POINTS FROM THE DATA SET.

34

FIGURE 22: COMPARISON OF MAGNITUDE AND DISTRIBUTION OF LOSS VALUES

ON THE CUSTOM MSE + PHYSICS LOSS FUNCTION ON A LOG SCALE FOR THE

DIFFERENT UPSAMPLING METHODS. THESE VALUES WERE TAKEN FROM A

RANDOM SAMPLE OF 10000 DATA POINTS FROM THE DATA SET.

35
Figure 21 shows the MSE loss values measured across all models with a log axis, and figure

22 shows the same values evaluated using the MSE + physics loss function. This shows that the

GAN models achieve loss that is substantially lower than nearest-neighbor, bicubic, and linear

upsampling approaches. These figures reveal quantitative evidence to back up several of the

observations from Figure 17. For instance, there is little difference between the loss values of the

MSE-only and MSE + physics models. The primary different is that the MSE + physics model

seems to have smaller error bounds than the MSE-only model. However, the MSE-only model

does achieve some lower loss values. Both of these models do significantly outperform bicubic

and linear upsampling. The variance is significant (crossing orders of magnitude for all upsampling

approaches), which may be explained by the variability of the dataset, as demonstrated in Figure

9.

As measured by loss values only, the MSE-only model does appear to out-perform the

physics-informed model. It could be that MSE alone provides enough information to guide the

training process on this dataset, and the scope of the output space is not further reduced by adding

the physical constraint. In other words, minimizing the MSE value may already result in fluid

volume consistency. More comprehensive models that reconstruct other fluid properties like

pressure and velocity have a much larger output space, and therefore may benefit more from

physical constraints. A more complex physics-based constraint could yield better results for the

current multi-phase problem.

The capabilities of the model presented here should help make the argument for further

research into the field of SRCFD, because the computational resources saved could potentially be

36
immense. Up-sampling low-resolution CFD simulations to an acceptable quality using a neural

network instead of directly running high-resolution CFD simulations with traditional numerical

methods can save a lot of computation time, potentially leading to the streamlining of many

workflows. The results presented here are not perfect, but the success found here definitely

warrants further research and experimentation nonetheless.

37

Conclusions and Future Work

This work presented a physics-informed neural network model for the super-resolution of

multi-phase CFD simulations. The current scope of the field of SRCFD research has focused

predominantly on single phase fluid flow simulations. In this work, we demonstrated that those

methods work on multiphase fluid flow as well. The model presented here can reconstruct

turbulent multiphase flow at a higher resolution with high accuracy, far exceeding bicubic and

linear upsampling. We observed that the discriminator may have failed to converge during training,

but this may be a consequence of directly applying the SRGAN discriminator architecture to a

more limited dataset. This is an issue that should be investigated in future work, and perhaps a

weaker discriminator could be experimented with to improve loss values.

Future work should further investigate the application of refined and modified SRCFD

models to multiphase turbulent flow. CFD simulations include a time component, and subsequent

timesteps are dependent on one another. Recurrent models could possibly provide improved results

by taking advantage of the information contains in subsequent simulation frames. This work also

focused solely on the fluid phase fraction, but a comprehensive model that reconstructs additional

fluid properties like pressure and velocity for multiphase flow would potentially benefit more

significantly from physics-based constraints. Finally, this work was conducted using two-

dimensional CFD simulations only. Three-dimensional simulations incur even greater

computational penalties when resolution is increased, so super-resolution should be investigated

for those cases as well.

McComb, Chris
Expand this section with more ideas for future work.

38
Future work could also focus on investigating the scalability and adaptability of SRCFD.

The scope of this project only included rectangular geometries, and it will be worth investigating

if the capabilities of the model presented here can transfer to more complex geometries. For

instance, more complex obstacles can be added to the simulations instead of a single dam, or more

bodies of water can be added at the start. Future work could also try to replicated the success found

in this work with other simulations using other numerical solvers besides interFoam.

39
Appendix A

Code used to assemble OpenFOAM data into matrix format

Full source code for this project can be found at:

https://github.com/matthewli125/SRCFD/releases/tag/v1.0

import numpy as np
import re

#gets the vertices from the blockMeshDict file and makes a list of tuples, the
#list index of each vertex will correspond to its vertex number
def getVertices(File):
 points = []
 line = ""
 while line != "vertices\n":
 line = File.readline()
 line = File.readline()
 while line != ");\n":
 line = File.readline()
 if len(line)>4: points.append(eval(line[4:].replace(" ", ",")))
 return points

#gets the blocks from the blockMeshDict file, creates a list of blocks, which
#are sets of numbers corresponding to vertices
def getBlocks(File, points):
 # blocks = np.array([])
 blocks = []
 line = ""
 while line != "blocks\n":
 line = File.readline()
 line= File.readline()
 while line != ");\n":
 line = File.readline()
 filtered = re.split('\(|\)', line[4:])
 if len(filtered)<4: break
 Vertices = eval("[" + filtered[1].replace(" ", ",") + "]")
 Vertices = list(map(lambda x: points[x], Vertices))
 Density = eval("[" + filtered[3].replace(" ", ",") + "]")
 # blocks = np.append(blocks, (Vertices, Density))
 blocks.append((Vertices, Density))

https://github.com/matthewli125/SRCFD/releases/tag/v1.0.
McComb, Chris
Do two more things:�1. In the github repo that houses this code, make a release of the current state of the code.2. Add a link to that release here.

40
 return blocks

#gets the largest xyz values from all vertices
def xyzmax(pointList):
 x = max(pointList, key = lambda x: x[0])[0]
 y = max(pointList, key = lambda x: x[1])[1]
 z = max(pointList, key = lambda x: x[2])[2]
 return [x,y,z]

#builds a block from data points in a file
def buildBlock(block, File, channel):
 finalblock = np.empty(block[1])
 finalblock = finalblock.reshape(block[1][1], block[1][0], block[1][2])
 for k in range(block[1][2]):
 for i in reversed(range(block[1][1])):
 for j in range(block[1][0]):
 data = File.readline()
 if data[0] == "(":
 points = [float(i) for i in data[1:-2].split(" ")]
 point = points[channel]
 else:
 point = float(data)
 # finalblock[i][j][k] = point if point > 0.00001 else 0
 finalblock[i][j][k] = point
 return finalblock

#builds all the blocks in a given case into a single array, works for both 2d
#and 3d cases; does array arithmetic based on xyzmax and res (point density)
def buildarr(res, datafile, meshfile, channel=0):
 final = np.zeros(res)
 data = open(datafile, "r")
 mesh = open(meshfile, "r")
 points = getVertices(mesh)
 XYZmax = np.array(xyzmax(points))
 mul = list(map(int, np.divide(res, XYZmax)))
 blocks = getBlocks(mesh, points)
 for i in range(23):
 discard = data.readline()
 for i in range(len(blocks)):
 st = blocks[i][0][0]
 st = (st[1]*mul[1], st[0]*mul[0], st[2]*mul[2])

41
 st = list(map(int, st))
 blocks[i] = buildBlock(blocks[i], data, channel)
 shp = blocks[i].shape
 final[res[0]-(st[0]+shp[0]):res[0]-st[0], st[1]:st[1]+shp[1], \
 st[2]:st[2]+shp[2]] = blocks[i]
 return final

#performs buildarr on all cases in a directory, but sorts each level based on
#filename so they are saved and named in the correct time and case order. Uses
#global path vars. Set high to true if doing highres to follow file naming
#convention.
def buildall(res, high, savepth):
 FILES = ["alpha.water"]
 filFunc = lambda x: "highres" in x if high else "highres" not in x
 for i in sorted(filter(filFunc, PTHd), key= lambda x: int(x.split("_")[0])):
 # for i in [h + "_highres" for h in brokencases]:
 print("doing case {} {}\n".format(i, "highres" if high else "lowres"))
 for j in tqdm(list(filter(lambda x:x[0].isdigit(),listdir(PTH+"/"+i)))):
 for k in filter(lambda x: x in FILES, listdir(PTH+"/"+i+"/"+j)):
 try:
 arr = buildarr(res, PTH+"/"+i+"/"+j+"/"+k, PTH+"/"+i+blockMes
hDictPath)
 np.save(savepth+"{}-{}x{}x{}-{}-{}.npy".format \
 (i, *res, k, j), arr)
 except:
 print("fail")

@cached()
def getBroken(cases):
 brokenCasesLR = {str(i[0]) for i in [(y,len([x for x in listdir(LRDATAPTH)
 if x.startswith("{}-
".format(y))])) for y in tqdm(range(num))] if i[1] < cases}

 brokenCasesHR = {str(i[0]) for i in [(y,len([x for x in listdir(HRDATAPTH)
 if x.startswith("{}_highres-
".format(y))])) for y in tqdm(range(num))] if i[1] < cases}

 print(list(brokenCasesLR.union(brokenCasesHR)))
 return list(brokenCasesLR.union(brokenCasesHR))

42

def buildpartial(res, high, savepth, cases):
 filFunc = lambda x: "highres" in x if high else "highres" not in x
 for i in cases:
 print("doing case {} {}\n".format(i, "highres" if high else "lowres"))
 for j in tqdm(list(filter(lambda x:x[0].isdigit(),listdir(PTH+"/"+i)))):
 for k in filter(lambda x: x in FILES, listdir(PTH+"/"+i+"/"+j)):
 try:
 arr = buildarr(res, PTH+"/"+i+"/"+j+"/"+k, PTH+"/"+i+blockMes
hDictPath)
 np.save(savepth+"{}_highres-{}x{}x{}-{}-{}.npy".format \
 (i, *res, k, j), arr)
 except:
 print("fail")

43
Appendix B

Code used to distribute computation of OpenFOAM simulations to multiple CPUs

import subprocess
from os import listdir
from tqdm import tqdm
import numpy as np
import multiprocessing as mp
from checkComplete import getBroken
from paths import PTH

num = 800 #number of cases to run

calls the openFoam executable Allrun sequentially for a given list of
directories
def Run(cases):
 failedCases = []
 for i in tqdm(cases):
 # result1 = subprocess.call([PTH + "/" + i + "/Allclean", "&>", "/dev/nul
l"])
 result2 = subprocess.call([PTH + "/" + i + "/Allrun", "&>", "/dev/null"])
 if result2 != 0:
 failedCases.append(i)

finds all the folders that have incomplete or empty timesteps and puts them
all in a list for easier handling
def GetIncomplete(correct_count):
 sum = 0
 incomplete = []
 print("searching for incomplete cases")
 for i in tqdm(list(listdir(PTH))):
 for j in listdir(PTH+"/"+i):
 sum+=1
 if sum < correct_count:
 incomplete.append(i)
 sum = 0
 return incomplete

def Distribute(cases):
 nextLargest = len(cases)
 while nextLargest % numCores > 0:
 nextLargest-=1

44

 distributedCases = list(np.split(np.array(cases)[:nextLargest], numCores))
 distributedCases = [list(i) for i in distributedCases]

 for i in range(len(cases[nextLargest:])):
 distributedCases[i % numCores].append(cases[nextLargest:][i])

 return distributedCases

if __name__ == "__main__":
 numCores = mp.cpu_count()-2
 print(str(numCores) + "cores available for use\n")
 incomplete = GetIncomplete(65) #correct number of items per folder
 print(incomplete)
 print(str(len(incomplete)) + " cases to be handled\n")
 pool = mp.Pool(numCores)
 pool.map(Run, Distribute(incomplete))

45
Appendix C

Code used to define the GAN model

#title :Network.py
#description :Architecture file(Generator and Discriminator)
#author :Deepak Birla (modified by Matthew Li)
#date :2018/10/30
#usage :from Network import Generator, Discriminator
#python_version :3.5.4

Modules
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import UpSampling2D
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras.layers import LeakyReLU, PReLU
from tensorflow.keras.layers import Add

Residual block
def res_block_gen(model, kernal_size, filters, strides):

 gen = model

 model = Conv2D(filters = filters, kernel_size = kernal_size, strides = stride
s, padding = "same")(model)
 model = BatchNormalization(momentum = 0.5)(model)
 # Using Parametric ReLU
 model = PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_constr
aint=None, shared_axes=[1,2])(model)
 model = Conv2D(filters = filters, kernel_size = kernal_size, strides = stride
s, padding = "same")(model)
 model = BatchNormalization(momentum = 0.5)(model)

 model = Add()([gen, model])

 return model

46
def up_sampling_block(model, kernal_size, filters, strides):

 # In place of Conv2D and UpSampling2D we can also use Conv2DTranspose (Both a
re used for Deconvolution)
 # Even we can have our own function for deconvolution (i.e one made in Utils.
py)
 #model = Conv2DTranspose(filters = filters, kernel_size = kernal_size, stride
s = strides, padding = "same")(model)
 model = Conv2D(filters = filters, kernel_size = kernal_size, strides = stride
s, padding = "same")(model)
 model = UpSampling2D(size = 2)(model)
 model = LeakyReLU(alpha = 0.2)(model)

 return model

def discriminator_block(model, filters, kernel_size, strides):

 model = Conv2D(filters = filters, kernel_size = kernel_size, strides = stride
s, padding = "same")(model)
 model = BatchNormalization(momentum = 0.5)(model)
 model = LeakyReLU(alpha = 0.2)(model)

 return model

Network Architecture is same as given in Paper https://arxiv.org/pdf/1609.04802
.pdf
class Generator(object):

 def __init__(self, noise_shape):

 self.noise_shape = noise_shape

 def generator(self):

 gen_input = Input(shape = self.noise_shape)

 model = Conv2D(filters = 64, kernel_size = 9, strides = 1, padding = "sam
e")(gen_input)
 model = PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_co
nstraint=None, shared_axes=[1,2])(model)

 gen_model = model

47
 # Using 16 Residual Blocks
 for index in range(16):
 model = res_block_gen(model, 3, 64, 1)

 model = Conv2D(filters = 64, kernel_size = 3, strides = 1, padding = "sam
e")(model)
 model = BatchNormalization(momentum = 0.5)(model)
 model = Add()([gen_model, model])

 # Using 2 UpSampling Blocks
 for index in range(2):
 model = up_sampling_block(model, 3, 256, 1)

 model = Conv2D(filters = 1, kernel_size = 9, strides = 1, padding = "same
")(model)
 model = Activation('sigmoid')(model)

 generator_model = Model(inputs = gen_input, outputs = model)

 return generator_model

Network Architecture is same as given in Paper https://arxiv.org/pdf/1609.04802
.pdf
class Discriminator(object):

 def __init__(self, image_shape):

 self.image_shape = image_shape

 def discriminator(self):

 dis_input = Input(shape = self.image_shape)

 model = Conv2D(filters = 64, kernel_size = 3, strides = 1, padding = "sam
e")(dis_input)
 model = LeakyReLU(alpha = 0.2)(model)

 model = discriminator_block(model, 64, 3, 2)
 model = discriminator_block(model, 128, 3, 1)
 model = discriminator_block(model, 128, 3, 2)
 model = discriminator_block(model, 256, 3, 1)
 model = discriminator_block(model, 256, 3, 2)
 model = discriminator_block(model, 512, 3, 1)
 model = discriminator_block(model, 512, 3, 2)

48

 model = Flatten()(model)
 model = Dense(1024)(model)
 model = LeakyReLU(alpha = 0.2)(model)

 model = Dense(1)(model)
 model = Activation('sigmoid')(model)

 discriminator_model = Model(inputs = dis_input, outputs = model)

 return discriminator_model

49
Appendix D

Code used to train GAN model

from gan import Generator, Discriminator
from foam_case_class import Foam_Case
import random
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input
from tensorflow.keras.optimizers import Adam, SGD, RMSprop
from tqdm import tqdm
from os import listdir
import numpy as np

from loss_functions import master_loss

import tensorflow as tf

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
 try:
 # Currently, memory growth needs to be the same across GPUs
 for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)
 logical_gpus = tf.config.experimental.list_logical_devices('GPU')
 print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
 except RuntimeError as e:
 # Memory growth must be set before GPUs have been initialized
 print(e)

data_file = "gan_data.h5"
np.random.seed(10)
epochs = 1
model_save_dir = "gan models"

Remember to change image shape if you are having different size of images
image_shape = (16,16,1)
image_shape_scaled = (64,64,1)

lr_res = (16,16,1)
hr_res = (64,64,1)

adam = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

50

def get_data(ratio):
 lr_data_path = "E:/gan_data/ground_only/phase_only/lowres/"
 hr_data_path = "E:/gan_data/ground_only/phase_only/highres/"

 print("loading data into memory")

 lr_data = np.array([np.load(lr_data_path + i) for i in tqdm(listdir(lr_data_p
ath)[:5000])])
 hr_data = np.array([np.load(hr_data_path + i) for i in tqdm(listdir(hr_data_p
ath)[:5000])])

 print(hr_data[1].shape)

 index = int(len(lr_data) * ratio)

 return lr_data[:index], hr_data[:index], lr_data[index:], hr_data[index:]

def get_gan_network(discriminator, generator, optimizer):
 discriminator.trainable = False
 gan_input = Input(shape = image_shape)
 x = generator(gan_input)
 gan_output = discriminator(x)
 gan = Model(inputs=gan_input, outputs=[x,gan_output])
 gan.compile(loss=[master_loss, "binary_crossentropy"],
 loss_weights=[1., 1e-10],
 optimizer=optimizer)

 return gan

def train(epochs, batch_size, data_split_ratio):
 x_train_lr, x_train_hr, x_test_lr, x_test_hr = get_data(data_split_ratio)
 batch_count = int(x_train_hr.shape[0] / batch_size)

 generator = Generator(image_shape).generator()
 generator._name = "generator"
 discriminator = Discriminator(image_shape_scaled).discriminator()
 generator.compile(loss=master_loss, optimizer=adam)

 discriminator.compile(loss="binary_crossentropy", optimizer=adam)

 print(generator.summary())
 print(discriminator.summary())

51

 gan = get_gan_network(discriminator, generator, adam)

 for e in range(1,epochs+1):
 print ('-'*15, 'Epoch %d' % e, '-'*15)
 for batch in tqdm(range(batch_count)):

 rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
)

 image_batch_hr = x_train_hr[rand_nums]
 image_batch_lr = x_train_lr[rand_nums]
 generated_images_sr = generator.predict(image_batch_lr)

 real_data_Y = np.ones(batch_size) - np.random.random_sample(batch_siz
e)*0.2
 fake_data_Y = np.random.random_sample(batch_size)*0.2

 discriminator.trainable = True

 d_loss_real = discriminator.train_on_batch(image_batch_hr, real_data_
Y)
 d_loss_fake = discriminator.train_on_batch(generated_images_sr, fake_
data_Y)
 discriminator_loss = 0.5 * np.add(d_loss_fake, d_loss_real)

 rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
)
 image_batch_hr = x_train_hr[rand_nums]
 image_batch_lr = x_train_lr[rand_nums]

 gan_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2
 discriminator.trainable = False
 gan_loss = gan.train_on_batch(image_batch_lr, [image_batch_hr,gan_Y])

 print("discriminator_loss : %f" % discriminator_loss)
 print("gan_loss :", gan_loss)
 gan_loss = str(gan_loss)

 loss_file = open(model_save_dir + 'losses.txt' , 'a')
 loss_file.write('epoch%d : gan_loss = %s ; discriminator_loss = %f\n' %(e
, gan_loss, discriminator_loss))
 loss_file.close()

52

 generator.save_weights("generator_weights_physics")
 discriminator.save_weights("discriminator_weights_physics")

def get_data_paths(path):

 print("FETCHING DATA PATHS...")

 def sortbynum(nums):
 return sorted(nums, key = lambda x: float(x.split("_")[0]))

 #this sorts all the directories in the path; each of these directories
 #is an openfoam case that has subdirectories for timesteps
 lowres = sortbynum([i for i in listdir(path) if "highres" not in i])
 highres = sortbynum([i for i in listdir(path) if "highres" in i])
 data = list(zip(lowres, highres))

 def expand(paths):
 all_sub_paths = []
 isnum = lambda x: x[0].isdigit() and float(x) != 0
 for i in tqdm(paths):
 times = sortbynum(list(filter(isnum, listdir("".join([path,"/",i]))))
)
 sub_paths = ["".join([path,"/",i,"/",timestep]) for timestep in times
]
 all_sub_paths+=sub_paths

 return all_sub_paths

 lowres_expanded = expand(lowres)
 highres_expanded = expand(highres)

 print("DATA PATHS FETCHED")

 return list(zip(lowres_expanded, highres_expanded))

#this helper function loads the data from a given list of file directories. This
#allows the data to be loaded and unloaded on the fly, making the operation more
#memory efficient.
def load_data_batch_unbuilt(batch, res, type):
 return np.array([Foam_Case(res, file_path, type).fetch().enum() for file_path
 in tqdm(batch)])

53
def load_data_batch(num, res, type):
if type == "lowres":
return np.load("E:/gan_data/lowres/%d.npy" % num[0])
else:
return np.load("E:/gan_data/highres/%d.npy" % num[0])

def load_data_batch(nums, res, type):
 if type == "lowres":
 return np.array([np.load("E:/gan_data/lowres_downsample/%d.npy" % i) for
i in nums])
 else:
 return np.array([np.load("E:/gan_data/highres_single/%d.npy" % i) for i i
n nums])
#this helper function takes a loaded list of data files and deletes them, freeing
#memory.
def unload_data_batch(batch):
 [foam_case.crunch() for foam_case in batch]

def train_mem_efficient(epochs, batch_size, data_split_ratio):
 path = "E:/dambreak_cases4"
 lr_res = (16,16,1)
 hr_res = (64,64,1)

 x_train_hr = x_train_lr = np.array(range(48000))

 batch_count = int(x_train_hr.shape[0] / batch_size)

 generator = Generator(image_shape).generator()
 discriminator = Discriminator(image_shape_scaled).discriminator()
 generator.compile(loss=master_loss, optimizer=adam)
 discriminator.compile(loss="binary_crossentropy", optimizer=adam)

 gan = get_gan_network(discriminator, generator, adam)

 for e in range(1,epochs+1):
 print ('-'*15, 'Epoch %d' % e, '-'*15)
 for batch in tqdm(range(batch_count)):

 # rand_nums = np.random.randint(0, x_train_hr.shape[0], size=1) #keep
 size as 1 for now; each file has 60 data points
 rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
)

54
 image_batch_hr = load_data_batch(x_train_hr[rand_nums], hr_res, "high
res")
 image_batch_lr = load_data_batch(x_train_lr[rand_nums], lr_res, "lowr
es")
 generated_images_sr = generator.predict_on_batch(image_batch_lr)

 real_data_Y = np.ones(batch_size) - np.random.random_sample(batch_siz
e)*0.2
 fake_data_Y = np.random.random_sample(batch_size)*0.2

 discriminator.trainable = True

 d_loss_real = discriminator.train_on_batch(image_batch_hr, real_data_
Y)
 d_loss_fake = discriminator.train_on_batch(generated_images_sr, fake_
data_Y)
 discriminator_loss = 0.5 * np.add(d_loss_fake, d_loss_real)

 rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size
)
 image_batch_hr = load_data_batch(x_train_hr[rand_nums], hr_res, "high
res")
 image_batch_lr = load_data_batch(x_train_lr[rand_nums], lr_res, "lowr
es")

 gan_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2
 discriminator.trainable = False
 gan_loss = gan.train_on_batch(image_batch_lr, [image_batch_hr,gan_Y],
 return_dict=True)

 print("discriminator_loss : %f" % discriminator_loss)
 print("gan_loss :", gan_loss)
 gan_loss = str(gan_loss)

 loss_file = open(model_save_dir + 'losses.txt' , 'a')
 loss_file.write('epoch%d : gan_loss = %s ; discriminator_loss = %f\n' %(e
, gan_loss, discriminator_loss))
 loss_file.close()

 generator.save_weights("E:/gan_data/generator_weights_phase_only")
 discriminator.save_weights("E:/gan_data/discriminator_weights_phase_only")

55
Appendix E

Foam Case Class code; helper class for training GAN model

import numpy as np
import os
from foamToPy import buildarr

class Foam_Case:
 def __init__(self, res, file_path, type):
 self.type = type #highres or lowres
 self.res = res
 self.mesh_file = os.path.dirname(file_path) + "/system/blockMeshDict"
 self.alpha_path = file_path + "/alpha.water"
 self.U_path = file_path + "/U"
 self.p_path = file_path + "/p"

 def fetch(self):
 self.alpha = np.squeeze(buildarr(self.res, self.alpha_path, self.mesh_fil
e))
 self.p = np.squeeze(buildarr(self.res, self.p_path, self.mesh_file))
 self.Ux = np.squeeze(buildarr(self.res, self.U_path, self.mesh_file, c
hannel = 0))
 self.Uy = np.squeeze(buildarr(self.res, self.U_path, self.mesh_file, c
hannel = 1))
 self.Uz = np.squeeze(buildarr(self.res, self.U_path, self.mesh_file, c
hannel = 2))

 return self

 def crunch(self):
 del self.alpha
 del self.p
 del self.Ux
 del self.Uy
 del self.Uz

 def enum(self):
 return np.stack([self.alpha, self.p, self.Ux, self.Uy, self.Uz], axis=-1)

56
Appendix F

Code used to evaluate GAN model

from gan import Generator, Discriminator
from loss_functions import *
from foam_case_class import Foam_Case
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input
from tensorflow.keras.optimizers import Adam, SGD, RMSprop
from tqdm import tqdm
import numpy as np
import cv2
from loss_functions import master_loss, MSE

import tensorflow as tf
import matplotlib.pyplot as plt

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
 try:
 # Currently, memory growth needs to be the same across GPUs
 for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)
 logical_gpus = tf.config.experimental.list_logical_devices('GPU')
 print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
 except RuntimeError as e:
 # Memory growth must be set before GPUs have been initialized
 print(e)

image_shape = (16,16,1)
image_shape_scaled = (64,64,1)

lr_res = (16,16,1)
hr_res = (64,64,1)

adam = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

def plot_comparison(gen1, gen2):
 cases = np.random.choice(listdir("E:/gan_data/ground_only/phase_only/lowres/"
)[5000:], 1000, replace=False)

57
 cases = [
 "40552.npy",
 "22078.npy",
 "23555.npy",
 "22139.npy",
 "46791.npy"
]

 labs = ["A", "B", "C", "D", "E"]
 i = 0

 for case in cases:

 input = np.array([np.load("E:/gan_data/ground_only/phase_only/lowres/%s"
% case)])
 outputMSEphysics = gen1.predict(input)
 outputMSEonly = gen2.predict(input)
 real = np.load("E:/gan_data/ground_only/phase_only/highres/%s" % case)

 cubic = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_
CUBIC)
 linear = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER
_LINEAR)
 nearest = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTE
R_NEAREST)

 fig,ax = plt.subplots(nrows=1, ncols=6, figsize=(18,3))

 im1 = ax[0].imshow(np.squeeze(input), vmin=0, vmax=1)
 im2 = ax[1].imshow(cubic, vmin=0, vmax=1)
 im3 = ax[2].imshow(linear, vmin=0, vmax=1)
 im4 = ax[3].imshow(np.squeeze(outputMSEonly), vmin=0, vmax=1)
 im5 = ax[4].imshow(np.squeeze(outputMSEphysics), vmin=0, vmax=1)
 im6 = ax[5].imshow(np.squeeze(real), vmin=0, vmax=1)

 ax[0].set_title("input")
 ax[1].set_title("linear")
 ax[2].set_title("bicubic")
 ax[3].set_title("GAN MSE only")
 ax[4].set_title("GAN MSE + physics")
 ax[5].set_title("ground truth")

 ax[0].set_xlabel("(%sA)" % labs[i])
 ax[1].set_xlabel("(%sB)" % labs[i])

58
 ax[2].set_xlabel("(%sC)" % labs[i])
 ax[3].set_xlabel("(%sD)" % labs[i])
 ax[4].set_xlabel("(%sE)" % labs[i])
 ax[5].set_xlabel("(%sF)" % labs[i])

 i+=1

 fig.colorbar(im1, fraction=0.046, ax=ax[0], pad=0.04)
 fig.colorbar(im2, fraction=0.046, ax=ax[1], pad=0.04)
 fig.colorbar(im3, fraction=0.046, ax=ax[2], pad=0.04)
 fig.colorbar(im4, fraction=0.046, ax=ax[3], pad=0.04)
 fig.colorbar(im5, fraction=0.046, ax=ax[4], pad=0.04)
 fig.colorbar(im6, fraction=0.046, ax=ax[5], pad=0.04)

 fig.tight_layout()

 plt.show()

def make_violinplot(gen1, gen2):
 cases = np.random.choice(listdir("E:/gan_data/ground_only/phase_only/lowres/"
)[5000:], 10000, replace=False)

 losses = {"nearest": [], "bicubic": [], "linear":[], "model MSE only":[], "mo
del MSE + physics": []}
 losses_physics = {"nearest": [], "bicubic": [], "linear":[], "model MSE only"
:[], "model MSE + physics": []}

 for case in tqdm(cases):

 input = np.array([np.load("E:/gan_data/ground_only/phase_only/lowres/%s" % ca
se)])
 outputMSEphysics = gen1.predict(input).astype("float64")
 outputMSEonly = gen2.predict(input).astype("float64")
 real = tf.convert_to_tensor(np.load("E:/gan_data/ground_only/phase_only/highr
es/%s" % case))

 cubic = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_CUBI
C)
 linear = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_LIN
EAR)
 nearest = cv2.resize(np.squeeze(input), (64,64), interpolation = cv2.INTER_NE
AREST)

59
 losses["nearest"].append(MSE(nearest, real).numpy())
 losses["bicubic"].append(MSE(cubic, real).numpy())
 losses["linear"].append(MSE(linear, real).numpy())
 losses["model MSE only"].append(MSE(outputMSEonly, real).numpy())
 losses["model MSE + physics"].append(MSE(outputMSEphysics, real).numpy())

 losses_physics["nearest"].append(master_loss(nearest, real).numpy())
 losses_physics["bicubic"].append(master_loss(cubic, real).numpy())
 losses_physics["linear"].append(master_loss(linear, real).numpy())
 losses_physics["model MSE only"].append(master_loss(outputMSEonly, real).nump
y())
 losses_physics["model MSE + physics"].append(master_loss(outputMSEphysics, re
al).numpy())

 fig, ax = plt.subplots(nrows = 2, ncols = 1, figsize =(6,12))

 v1 = ax[0].violinplot([losses[i] for i in losses])
 ax[0].set_yscale('log')
 ax[0].set_title("Comparison of Loss Values on pure MSE")

 v2 = ax[1].violinplot([losses_physics[i] for i in losses_physics])
 ax[1].set_yscale('log')
 ax[1].set_title("Comparison of Loss values on MSE + Physics")

 labels = ['Nearest Neighbor', 'Bicubic', 'Linear', 'GAN MSE only', 'GAN MSE +
 physics']

 def set_axis_style(ax, labels):
 ax.get_xaxis().set_tick_params(direction='out')
 ax.xaxis.set_ticks_position('bottom')
 ax.set_xticks(np.arange(1, len(labels) + 1))
 ax.set_xticklabels(labels, rotation = 55)
 ax.set_xlim(0.25, len(labels) + 0.75)

 for i in [ax[0],ax[1]]:
 set_axis_style(i, labels)

 plt.tight_layout()
 plt.show()

60
if __name__ == "__main__":

 from os import listdir
 from tqdm import tqdm

 dir = "E:/gan_data/ground_only/phase_only/"
 save_dir = "E:/gan_data/outputs/"

 generatorMSE = Generator(image_shape).generator()
 generatorMSE.compile(loss="MSE", optimizer=adam)
 generatorMSE.load_weights("MSE_only_weights/generator_weights")

 generatorMSEphysics = Generator(image_shape).generator()
 generatorMSEphysics.compile(loss="MSE", optimizer=adam)
 generatorMSEphysics.load_weights("MSE+physics_weights/generator_weights_physi
cs")

 plot_comparison(generatorMSEphysics, generatorMSE)
 make_violinplot(generatorMSEphysics, generatorMSE)

61
Appendix G

Code used to implement loss function

import numpy as np
import tensorflow.keras.backend as K
import tensorflow as tf

this loss function calculates the difference between the sums of the phase
fractions of two single dambreak frames. Because the interFoam solver solves
for incompressible fluids, meaning the amount of fluid should remain constant
with time.
def phase_fraction_loss(y_true, y_pred):
 alpha_true_sum = tf.math.reduce_sum(y_true)
 alpha_pred_sum = tf.math.reduce_sum(y_pred)

 size = 64 * 64

 return (alpha_true_sum/size - alpha_pred_sum/size)**2

62
Appendix H

Optimized matrix functions and benchmark Code

import numpy as np
from numba import jit, prange, njit
from timer import timeit_wrapper
from functools import lru_cache

##SEQUENTIAL

def matrixMax(arr): # finds max value of a 2d matrix
 return np.max([np.max(i) for i in arr])

def matrixMin(arr): # finds min value of a 2d matrix
 return np.min([np.min(i) for i in arr])

def matrixAvg(arr): # finds average value of a 2d matrix
 return np.mean([np.mean(i) for i in arr])

def matrixNormalize(arr, min, max): # normalizes values of a 2d matrix to 0 and 1
 return [(i - min)/(max - min) for i in arr]

##PARALLEL

def pmatrixMax(arr):
 prowMaxs(arr)
 return np.max(arr)

@njit(parallel=True)
def prowMaxs(arr):
 for i in prange(len(arr)):
 arr[i] = np.max(arr[i])

def pmatrixMin(arr):
 prowMins(arr)
 return np.min(arr)

@njit(parallel=True)
def prowMins(arr):
 for i in prange(len(arr)):
 arr[i] = np.min(arr[i])

63
def pmatrixAvg(arr):
 prowMeans(arr)
 return np.mean(arr)

@njit(parallel=True)
def prowMeans(arr):
 for i in prange(len(arr)):
 arr[i] = np.mean(arr[i])

@njit(parallel=True)
def pmatrixNormalize(arr, min, max):
 for i in prange(len(arr)):
 for j in prange(len(arr)):
 arr[i,j] = (arr[i][j] - min)/(max - min)

from time import perf_counter
from timeit import timeit, Timer
from decimal import Decimal
from foamToPy import buildarr
from matrix import *
from tqdm import tqdm
from functools import partial

def timeFunc(func, *args, **kwargs):
 # start = Decimal(perf_counter())
 t = Timer(partial(func, *args, **kwargs))
 retVal = t.timeit(number=100)
 # end = Decimal(perf_counter())
 # return end-start
 return retVal

if __name__ == "__main__":
 a = np.squeeze(buildarr((512,512,1), "D:/openfoamData/dambreak_cases5/1_highr
es/2./alpha.water","D:/openfoamData/dambreak_cases5/0_highres/system/blockMeshDic
t"))

 seqTimes = {"min":0, "max":0, "avg":0, "normalize":0}
 parTimes = {"min":0, "max":0, "avg":0, "normalize":0}

 ##initialize jit functions
 pmatrixMin(a)

64
 pmatrixMax(a)
 pmatrixAvg(a)
 pmatrixNormalize(a, pmatrixMin(a), pmatrixMax(a))

 seqTimes["min"] += timeFunc(matrixMin, a)
 seqTimes["max"] += timeFunc(matrixMax, a)
 seqTimes["avg"] += timeFunc(matrixAvg, a)
 seqTimes["normalize"] += timeFunc(matrixNormalize, a, matrixMin(a), matrixMax
(a))

 parTimes["min"] += timeFunc(pmatrixMin, a)
 parTimes["max"] += timeFunc(pmatrixMax, a)
 parTimes["avg"] += timeFunc(pmatrixAvg, a)
 parTimes["normalize"] += timeFunc(pmatrixNormalize, a, pmatrixMin(a), pmatrix
Max(a))

 print("parallel matrix min:", "{0:1.2f}X improvement".format(seqTimes["min"]/
parTimes["min"]))
 print("parallel matrix max:", "{0:1.2f}X improvement".format(seqTimes["max"]/
parTimes["max"]))
 print("parallel matrix average:", "{0:1.2f}X improvement".format(seqTimes["av
g"]/parTimes["avg"]))
 print("parallel matrix normalize:", "{0:1.2f}X improvement".format(seqTimes["
normalize"]/parTimes["normalize"]))

65
Bibliography

[1] Bhaskaran, R., and Collins, L., 2005, “Introduction to CFD Basics,” Cornell Univ. -

Sibley Sch. Mech. Aerosp. Eng. Ithaca, USA.

[2] Lane, G. L., Schwarz, M. P., and Evans, G. M., 2005, “Numerical Modelling of Gas-

Liquid Flow in Stirred Tanks,” Chem. Eng. Sci., 60(8-9 SPEC. ISS.), pp. 2203–2214.

[3] Chung, T. J., 2010, Computational Fluid Dynamics, Second Edition.

[4] Ganesh Ram, R. K., Cooper, Y. N., Bhatia, V., Karthikeyan, R., and Periasamy, C., 2014,

“Design Optimization and Analysis of NACA 0012 Airfoil Using Computational Fluid

Dynamics and Genetic Algorithm,” Appl. Mech. Mater., 664(August), pp. 111–116.

[5] Shah, S. R., Jain, S. V., Patel, R. N., and Lakhera, V. J., 2013, “CFD for Centrifugal

Pumps: A Review of the State-of-the-Art,” Procedia Engineering.

[6] Badra, J., Khaled, F., Tang, M., Pei, Y., Kodavasal, J., Pal, P., Owoyele, O., Fuetterer, C.,

Brenner, M., and Farooq, A., 2020, “Engine Combustion System Optimization Using CFD and

Machine Learning: A Methodological Approach,” ASME 2019 Internal Combustion Engine

Division Fall Technical Conference, ICEF 2019.

[7] Norton, T., and Sun, D. W., 2006, “Computational Fluid Dynamics (CFD) - an Effective

and Efficient Design and Analysis Tool for the Food Industry: A Review,” Trends Food Sci.

Technol.

[8] Sun, D. W., 2007, Computational Fluid Dynamics in Food Processing.

[9] Malekjani, N., and Jafari, S. M., 2018, “Simulation of Food Drying Processes by

Computational Fluid Dynamics (CFD); Recent Advances and Approaches,” Trends Food Sci.

Technol.

66
[10] Philo, A. M., Butcher, D., Sillars, S., Sutcliffe, C. J., Sienz, J., Brown, S. G. R., and

Lavery, N. P., 2018, “A Multiphase CFD Model for the Prediction of Particulate Accumulation

in a Laser Powder Bed Fusion Process,” Minerals, Metals and Materials Series.

[11] Li, G., and Li, S., 2015, “Physics-Based CFD Simulation of Lithium-Ion Battery under

the FUDS Driving Cycle,” ECS Trans.

[12] Hilgenstock, A., and Ernst, R., 1996, “Analysis of Installation Effects by Means of

Computational Fluid Dynamics - CFD vs Experiments?,” Flow Meas. Instrum.

[13] Lai, W. S., Huang, J. Bin, Ahuja, N., and Yang, M. H., 2019, “Fast and Accurate Image

Super-Resolution with Deep Laplacian Pyramid Networks,” IEEE Trans. Pattern Anal. Mach.

Intell.

[14] Tong, T., Li, G., Liu, X., and Gao, Q., 2017, “Image Super-Resolution Using Dense Skip

Connections,” Proceedings of the IEEE International Conference on Computer Vision.

[15] Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., and Fu, Y., 2018, “Image Super-

Resolution Using Very Deep Residual Channel Attention Networks,” Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics).

[16] Dong, C., Loy, C. C., He, K., and Tang, X., 2016, “Image Super-Resolution Using Deep

Convolutional Networks,” IEEE Trans. Pattern Anal. Mach. Intell.

[17] Dong, C., Loy, C. C., and Tang, X., 2016, “Accelerating the Super-Resolution

Convolutional Neural Network,” Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

67
[18] Kim, J., Lee, J. K., and Lee, K. M., 2016, “Accurate Image Super-Resolution Using Very

Deep Convolutional Networks,” Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition.

[19] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.,

Tejani, A., Totz, J., Wang, Z., and Shi, W., 2017, “Photo-Realistic Single Image Super-

Resolution Using a Generative Adversarial Network,” Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017.

[20] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y., 2014, “Generative Adversarial Nets,” Advances in Neural

Information Processing Systems.

[21] Perez, L., and Wang, J., 2017, “The Effectiveness of Data Augmentation in Image

Classification Using Deep Learning.”

[22] Zhu, J. Y., Park, T., Isola, P., and Efros, A. A., 2017, “Unpaired Image-to-Image

Translation Using Cycle-Consistent Adversarial Networks,” Proceedings of the IEEE

International Conference on Computer Vision.

[23] Wang, Y., Shimada, K., and Farimani, A. B., “Airfoil GAN: Encoding and Synthesizing

Airfoils for Aerodynamic-Aware Shape Optimization.”

[24] Jiang, H., Yeo, R., Nie, Z., Farimani, A. B., and Kara, L. B., “S Tress GAN : A G

Enerative D Eep L Earning M Odel for 2D S Tress D Istribution P Rediction,” pp. 1–14.

[25] Zheng, J., 2020, “A Method of Leakage Parameters Estimation for Liquid Pipelines

Based on Conditional Generative Adversarial Network,” Proceedings of the Biennial

International Pipeline Conference, IPC.

68
[26] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X., 2016,

“Improved Techniques for Training GANs,” Advances in Neural Information Processing

Systems.

[27] Pant, P., and Farimani, A. B., 2020, “Deep Learning for Efficient Reconstruction of

High-Resolution Turbulent DNS Data,” (Ml), pp. 1–12.

[28] Fukami, K., Fukagata, K., and Taira, K., 2019, “Super-Resolution Reconstruction of

Turbulent Flows with Machine Learning,” J. Fluid Mech.

[29] Liu, B., Tang, J., Huang, H., and Lu, X. Y., 2020, “Deep Learning Methods for Super-

Resolution Reconstruction of Turbulent Flows,” Phys. Fluids, 32(2).

[30] Xie, Y., Franz, E., Chu, M., and Thuerey, N., 2018, “TempoGAN: A Temporally

Coherent, Volumetric GAN for Super-Resolution Fluid Flow,” ACM Trans. Graph.

[31] Liu, D., and Wang, Y., 2019, “Multi-Fidelity Physics-Constrained Neural Network and

Its Application in Materials Modeling,” Proceedings of the ASME Design Engineering Technical

Conference.

[32] Subramaniam, A., Wong, M. L., Borker, R. D., Nimmagadda, S., and Lele, S. K., 2020,

“Turbulence Enrichment Using Physics-Informed Generative Adversarial Networks,” pp. 1–14.

[33] Science, C., 2012, “Evaluating the Performance of the Two-Phase Flow Solver

InterFoam Evaluating the Performance of the Two-Phase Flow Solver InterFoam.”

[34] Jasak, H., 2009, “OpenFOAM: Open Source CFD in Research and Industry,” Int. J. Nav.

Archit. Ocean Eng.

[35] Jiang, C. M., Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa, M.,

Tchelepi, H. A., Marcus, P., Prabhat, and Anandkumar, A., 2020, “MeshfreeFlowNet: A

Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework.”

69

[36] Birla, D. “Keras-SRGAN”, (2018), Github repository,

https://github.com/deepak112/Keras-SRGAN.

	Acknowledgements
	Introduction
	Background
	The Importance of CFD
	Image Super-Resolution
	Generative Adversarial Networks
	Image Super-Resolution Applied to CFD

	Methods
	Problem Description
	FIGURE 1: illustration of problem statement: upsampling from a 16×16 rectilinear mesh to a 64×64 rectilinear mesh
	Using the OpenFOAM Software Library
	Time Continuity Divergence Problems
	Training Data Generation
	Converting OpenFOAM data to a usable format
	Network Architecture
	Network Implementation
	Loss Function Design

	Results and Discussion
	Conclusions and Future Work
	Appendix A Code used to assemble OpenFOAM data into matrix format
	Appendix B Code used to distribute computation of OpenFOAM simulations to multiple CPUs
	Appendix C Code used to define the GAN model
	Appendix D Code used to train GAN model
	Appendix E Foam Case Class code; helper class for training GAN model
	Appendix F Code used to evaluate GAN model
	Appendix G Code used to implement loss function
	Appendix H Optimized matrix functions and benchmark Code
	Bibliography

