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Abstract
As we further extend our reach into outer space, there exists an unmet need for au-
tonomous agents to carry out highly dexterous manipulation tasks such as on-orbit
servicing and habitat construction. In order to be packaged efficiently for transport
and autonomously deployed at a remote destination, these robotic mechanisms must be
lightweight, yet highly articulated. Tensegrity structures, which comprise a continuous
tendon network, are a suitable candidate for carrying out dexterous manipulation tasks
in outer space. This thesis focuses on controlling the shape of tensegrity structures by
changing the tension in the supporting tendons.

A vector-based approach is used to model the multi-body dynamics of tensegrity
structures in a non-minimal coordinate system. By modeling the dynamics of each bar
member with 6 degrees of freedom rather than 5, we avoid the use of transcendental
functions to improve the accuracy of numerical simulations. This methodology is further
extended to handle Class-k structures by modeling bar contact forces as Lagrange
constraint forces. A reduced-order model is then constructed to solve for the corresponding
Lagrange multipliers in closed-form. Leveraging the vector-based dynamics model, a
state feedback controller is developed to regulate the shape of a tensegrity structure to a
desired reference trajectory. We define the control variable as the string force density to
make the governing equations of motion linear in the control variable. This allows the
required string force density to be solved for linearly at each time step by solving a convex
linear programming problem. The developed control law is implemented in simulation
on several Class-1 and Class-k tensegrity structures, clearly showing the effectiveness
of the developed ideas in modeling and control of tensegrity structures. Combining our
results, we develop a novel robotic manipulator by using self-similar iterations to yield a
structure that is both highly dexterous and lightweight, proving that the modeling and
control framework can be used to design complex engineering structures.
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Ȳa Acceleration trajectory matrix, p. 38

z String damping constant, p. 61

ix



Acknowledgments

I would like to thank my research advisor, Dr. Puneet Singla, for his endless support
and mentorship throughout the course of my academic journey. His many teachings have
provided an environment in which I could be challenged and enlightened academically. I
am very thankful to have been introduced to dynamics and control through Dr. Singla.
His lectures have always inspired me to look beyond the face value of an equation.

I’d also like to thank my academic advisors, Dr. Melton and Dr. Lesieutre, as well as
department head, Dr. Pritchett, in the aerospace engineering department. Dr. Melton has
supported me since the very beginning of my studies, helping me progress academically
in ways that I couldn’t have imagined. Dr. Lesieutre has played a crucial role in my
discovery of academic research, which I am very thankful for. It was a pleasure to be a
student in the aerospace department with Dr. Pritchett as the department head. She
always went out of her way to make students feel acknowledged and appreciated. I
would also like to thank Erin Hostetler, whose guidance and encouragement in the REU
program greatly enriched my thesis research.

Finally, to my family and friends, thanks for always being there to cheer me up. I
couldn’t go without mentioning members of the AIAA executive board, Kellie, Nick, and
Taelor, who kept the aerospace spirit alive during our weekly meetings. Also, thanks
to Himavath Jois for his friendship and mentorship through the IUG program. The
importance of a good mentor cannot be overstated. Lastly, to my rock climbing partners,
Quin, Kevi, and Nelson, thanks for helping me to not take life too seriously and for
double checking my knots when the thesis was the only thing on my mind.

This material is based upon work supported by the NASA Pennsylvania Space Grant
Consortium and the U.S. Government. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author and do not necessarily
reflect the views of the NASA Pennsylvania Space Grant Consortium.

x



Chapter 1 |
Introduction

With NASA’s lunar exploration missions slated for the end of the decade and plans to
send the first astronauts to Mars right around the corner, humankind marches towards
its next giant leap in outer space. Our return to the lunar surface will rely upon seamless
and efficient operation in cislunar space, the volume between Earth and the moon. To
provide vital life support for the lunar astronauts and facilitate the transport of rovers
and other robots, NASA is currently developing the Lunar Gateway, a moon-orbiting
outpost [1, 2]. Still, plans of establishing a lunar gateway and colonizing the red planet
are faced with the difficult challenge of constructing large-scale habitats in the low-gravity
environment of outer space. At that, the payload costs associated with NASA’s Journey
to Mars remain a significant financial hurdle, making it difficult for policy makers to
fund such an ambitious plan. To this end, there is an unmet need for lightweight space
robots with autonomous construction capabilities.

Figure 1.1. Deployment of a fractal-based tensegrity robotic arm
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Recent results suggest that the tensegrity structure, an example of which is depicted
in Figure 1.1, is a minimal mass structure subject to a stiffness constraint [3]. In this
research, we aim to exploit this realization by developing a model-based tensegrity shape
control law with a specific focus on dexterous manipulation.

1.1 Historical Background
Buckminster Fuller first coined the word tensegrity in the 1950s as a conjunction of
the two words tension and integrity [3, 4]. Though the exact origin of tensegrity is
debated, the first physical tensegrity was built by American sculptor Kenneth Snelson
as an art installation [5]. One such example of Snelson’s work can be found outside the
Hirshhorn Museum and Sculpture Garden in Washington D.C. ‘Needle Tower’ (Figure
1.2(a)), as it is named, showcases the visual elegance of tensegrity structures. Due to
its presence in membranes and tissues [6–8], as well as in mammalian musculoskeletal
systems [9, 10], tensegrity has been referred to as ‘The Architecture of Life’ [11]. Figure
1.2(b) shows the flexor and extensor tendons in a cat’s hind legs, which can be idealized by
tensegrity. Its artistic beauty, presence in nature, minimal-mass characteristics and shape
morphability have turned tensegrity research into an interesting point of convergence for
artists, biologists, and engineers alike.

(a) Needle Tower tensegrity sculpture [12] (b) Cat hind leg [13]

Figure 1.2. Tensegrity in art and nature
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To date, the majority of tensegrity research has been centered around applications
for deployable and compliant structures [14–16]. Thus, many advancements have been
made in tensegrity statics [17] and kinematic analysis [18]. In recent decades, interest in
tensegrity has shifted from static analysis to dynamic analysis. As a result, a handful
of dynamic models have been developed for different tensegrity systems [19–21] leading
to advancements in the actuation and control of tensegrity structures [22–24]. One
notable result is the Super Ball Bot developed at NASA Ames (Figure 1.3) which uses
evolutionary algorithms to change its center of mass by altering cable lengths, resulting in
a rolling motion [25,26]. Other bio-inspired tensegrity structures have emerged mimicking
fish [27], joints [28], hands [29], and feet [30]. Despite these recent advancements in the
dynamics and control of tensegrity systems, current tensegrity modeling and simulation
packages focus on very particular topologies. There is still a need to develop a unifying
control framework facilitating the shape change of any given tensegrity structure.

Figure 1.3. NASA Super Ball Bot [26]
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1.2 Objectives
To facilitate the emergence of space-based tensegrity robotic systems, this thesis focuses
on the development and implementation of a model-based tensegrity shape control law.
In support of this objective, the main elements of this thesis are as follows.

1. Develop a single matrix differential equation to simulate the multi-body dynamics
of tensegrity systems in non-minimal coordinates

2. Implement a model-based shape control law that uses state feedback to control the
shape of a tensegrity structure

3. Utilize the concept of self-similar iterations to design a dexterous tensegrity robotic
arm

4. Simulate the deployment of a novel tensegrity robotic arm

1.3 Definitions
Tensegrity structures are axially loaded compressive members (bars or struts) that are
stabilized by a network of tensile members (strings or cables) [3]. The nomenclature used
to describe compressive and tensile elements often varies from paper to paper. In this
manuscript, we refer to the compressive elements as bars and the tensile members as
strings.

(a) Not a tensegrity configura-
tion

(b) A tensegrity configuration (c) A tensegrity system

Figure 1.4. Tensegrity definition

We depict bar elements in grey and string elements in red, as portrayed in Figure
1.4. To work towards a more precise engineering definition of tensegrity, we define the
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set of positions and orientations of all rigid bodies in the structure as the tensegrity’s
configuration. On the other hand, we refer to the set of connections between bars and
strings as the tensegrity’s connectivity.

Definition. We say that the configuration of rigid bodies is a tensegrity
configuration if there exists a string connectivity able to stabilize the
configuration [3].

As a subset for illustration, notice that the collection of bar elements in Figure 1.4(a)
is not a tensegrity configuration as there is no string connectivity to stabilize the two
bars. On the other hand, the collection of bars in Figure 1.4(b) is called a tensegrity
configuration because one could attach strings around the outer perimeter to stabilize
the structure. Once strings are added to stabilize the configuration, it is referred to as a
tensegrity system, as depicted in Figure 1.4(c).

(a) Class-1 tensegrity system (b) Class-2 tensegrity system

Figure 1.5. Tensegrity classification

To further distinguish between the different types of systems which fit this definition,
we add one more distinction.

Definition. A tensegrity configuration that has no contacts between its
rigid bodies is a Class-1 tensegrity system, and a tensegrity system with
as many as k rigid bodies in contact is a Class-k tensegrity system [3].

Figure 1.5(a) depicts a Class-1 tensegrity system, commonly known as the T-bar, while
Figure 1.5(b) depicts a Class-2 system known as the D-bar. One may question, at first,
why the definition of tensegrity must be so precise. As we will later see, the design and
optimization of tensegrity systems relies very heavily on precise mathematical definition.
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1.4 Overview
This thesis is organized as follows. In Chapter 2, we derive a computationally efficient
nonlinear dynamic model to simulate tensegrity system dynamics. To simplify the
governing equations, a non-minimal coordinate system is used to locate each bar member
(6 degrees of freedom for each bar instead of 5). This allows us to formulate Class-1
tensegrity system dynamics as a compact matrix differential equation. Through the use of
connectivity matrices, we exploit the tensegrity’s mathematical structure, which reduces
computational errors in the numerical simulation. Then, we modify the equations of
motion to account for Class-k structures by modeling bar contact forces. A reduced-order
model is provided to solve for the bar contact forces analytically. At the end of the
chapter, simulation results are provided to verify the Class-1 and Class-k equations of
motion.

In Chapter 3, we design a model-based shape control law that uses state feedback
to control the shape of a tensegrity structure. This is done by utilizing the dynamics
model from Chapter 2 to regulate the error dynamics about a nominal state trajectory.
We define the control variable as the force density in each string. This allows the
equations of motion to be written in control-affine form. Leveraging concepts from
Lyupanov theory, we assess the system stability and then formulate a second order
matrix differential equation in the error dynamics. Then, we pose the control law as a
linear algebra problem that can be used to solve for the required string force density
at each time step. The physical control variable (string tensions) can be obtained with
a nonlinear transformation. We discuss several important considerations to guarantee
feasible solutions for the required string tensions. At the end of Chapter 3, we verify the
control law for Class-1 and Class-K tensegrity systems by simulating the position control
of basic T-bar and D-bar structures.

Finally, in Chapter 4, a novel robotic arm is developed by combining our results from
the basic T-bar and D-bar structures. We introduce the concept of self-similar iterations
to design compressive structures of increasing complexity. Several design considerations
are discussed, such as optimizing the mass or dexterity of the structure. A new robotic
arm is designed by replacing the horizontal compressive elements of the T-bar with
basic D-bar structures. In this chapter, we introduce the 3-dimensional analogues of
the T-bar and D-bar structures. This enables the design and simulation of physically
realizable structures. At the end of the chapter, we simulate the robotic arm’s extension
by regulating certain node coordinates to nominal reference trajectories. Our simulation
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proves that the dynamic model and control framework can be used to seamlessly design,
analyze, and control complex tensegrity structures.

In Chapter 5, suggestions for future work are presented. We provide a brief overview
of an experimental tensegrity testbed that uses computer vision to track nodes in the
structure. Several considerations are discussed for the physical control of a cylindrical
triplex tensegrity. We also discuss shortcomings and present avenues for future research
in the optimal control and robust control of tensegrity systems.

7



Chapter 2 |
Tensegrity System Dynamics

We begin this chapter by developing a vector-based approach to model tensegrity system
dynamics, closely following recent developments made by Goyal and Skelton [20]. Starting
with Class-1 systems, we generalize the dynamics of a single bar element subject to
arbitrary forces at its endpoints. Then, connectivity matrices are defined and introduced
to locate each bar member in a non-minimal coordinate system (6 degrees of freedom
for each bar instead of 5). By making use of the connectivity matrices, we formalize the
internal tension network acting throughout the string elements. To verify the dynamics
model, we simulate the free response of a basic tensegrity structure known as the T-bar.

Furthermore, we extend the Class-1 dynamics model to handle Class-k tensegrity
systems. In Class-k systems, multiple bar members meet at a single node, causing contact
forces to arise. To model these contact forces, we introduce a geometric constraint
equation and solve analytically for the Lagrange multipliers which satisfy this constraint.
The Class-1 dynamics equation is then modified with the added constraint forces. To
verify the Class-k dynamics model, we simulate the free response of a simple D-bar
tensegrity structure. Then, a case study is done on the double pendulum to compare
this approach to the Lagrangian dynamics formulation in minimal coordinates.

2.1 Vector Notation
Owing to their network of strings and bars, tensegrity structures are very well suited for
the rich field of vector analysis. In this approach, we employ Gibbs vector notation [31]
and represent three-dimensional objects with magnitude and direction in boldface script.
For example, the Gibbs vector v can be described in any reference frame. In a specified
reference frame, the components of the Gibbs vector v are denoted by a 3× 1 matrix
v = [v1 v2 v3]T .

8



A vector can be defined in multiple reference frames and we represent a reference
frame by a 3× 3 vectrix [32] E ≡ [ê1 ê2 ê3] where êi (i = 1, 2, 3) form a right-handed set
of basis vectors for which

êi · êj = 0 ∀ i 6= j

êi · êj = 1 ∀ i = j

êi × êj = êk ∀ (i, j, k) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

For two vectors described in the same frame (a = EaE and b = EbE), it is convenient
to define the dot and cross products in component form as

a · b =
(
EaE

)
·
(
EbE

)
= aE

T
(
ET · E

)
bE = aE

T
bE

a× b =
(
EaE

)
×
(
EbE

)
= EãEbE

where

ãE =


0 −aE3 aE2

aE3 0 −aE1
−aE2 aE1 0


is the skew-symmetric matrix from the three components of aE .

2.2 Vector Kinematics

Figure 2.1. Direction cosines
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Let us consider two reference frames, N ≡ [n̂1 n̂2 n̂3] and B ≡ [b̂1 b̂2 b̂3], where N is
a global, inertial, reference frame and B is a body-fixed reference frame attached to an
arbitrary bar member. Then, a vector can be represented with components in both of
these frames as:

v = NvN

= BvB

which implies

vB =
(
BTN

)
vN = CBNvN

where we define CBN as the Direction Cosine Matrix (DCM) [33] which maps vector
components in the inertial frame to the body-fixed frame. The two frames are depicted
in Figure 2.1. Let the angles α1i be the angles formed between the first body vector
b̂1 and the three inertial basis vectors n̂1, n̂2 and n̂3. The cosines of these angles are
referred to as the direction cosines of the vector b̂1 relative to the frame N . To illustrate,
the unit vector b̂1 can be projected onto the inertial reference frame N as

b̂1 = cosα11 n̂1 + cosα12 n̂2 + cosα13 n̂3. (2.1)

Put simply, the direction cosines cosα1j are the orthogonal components of the vector b̂j
on the inertial reference frame. Similarly, we have the orthogonal projections

b̂2 = cosα21 n̂1 + cosα22 n̂2 + cosα23 n̂3. (2.2)

b̂3 = cosα31 n̂1 + cosα32 n̂2 + cosα33 n̂3. (2.3)

Combining Eqs. (2.1)-(2.3), the vectrix B = [b̂1 b̂2 b̂3] can be compactly expressed as

BT =


cosα11 cosα12 cosα13

cosα21 cosα22 cosα23

cosα31 cosα32 cosα33

N T = CBNN T

Taking the transpose,

B = NCNB

where CNB = CBNT . It is also convenient to specify the inertial velocity of a vector v as

10



v̇ = ḂvB + Bv̇B = B
[
ω̃BvB + v̇B

]
. (2.4)

where ω is the angular velocity of frame B with respect to frame N and we have applied
the transport theorem [33] to take the time rate of change of the non-inertial reference
frame B.

2.3 Dynamics of a Single Bar
Tensegrity systems comprise a set of bars connected by an internal tension network. As
a step toward developing the equations of motion for an entire tensegrity system, we
will first generalize the dynamics of a single bar element. For Class-1 systems, internal
forces are applied throughout the network via string tensions. When we later consider
Class-k systems, we must also account for bar contact forces. To simplify our preliminary
developments, we will consider forces acting at the bar ends to be arbitrary.

2.3.1 Rotational Dynamics

To begin, consider a vector b along an arbitrary bar member of length l = ‖b‖, as depicted
in Figure 2.2. The vector r locates the center of mass of the bar. Let the body-fixed
reference frame B be aligned with the bar such that b̂3 is parallel to the bar vector b.

Figure 2.2. A single bar member

In body coordinates, the bar vector b is described as

b = BbB, bB = [0 0 l]T . (2.5)

11



Applying Eq. (2.4) to Eq. (2.5), the inertial velocity of the bar vector, described in body
coordinates, is

ḃ = ḂbB + BḃB = ḂbB = Bω̃BbB (2.6)

where we have applied ḃB = 0 due to the constant length of the bar.
Now, the angular momentum of a bar about its center of mass is

hb = Ibωb (2.7)

where ωb and Ib are the angular velocity and moment of inertia of the bar, respectively.
Our goal is to represent Eq. (2.7) in terms of the bar vector b and the bar velocity vector
ḃ. To this end, it is useful to compute b× ḃ as

b× ḃ =
(
BbB

)
×
(
Bω̃BbB

)
= Bb̃Bω̃BbB = −Bb̃Bb̃BωB = −B

(
b̃B
)2
ωB

(2.8)

Now, using the identity

(
b̃B
)2

= −
(
bB

T

bBI3 − bBbB
T
)
, (2.9)

where, in general, In is the n× n identity matrix, Eq. (2.8) becomes

b× ḃ = B
(∥∥∥bB∥∥∥2

I3 − bBbB
T
)
ωB (2.10)

Recalling that bB = [0 0 l]T and l =
∥∥∥bB∥∥∥, Eq. (2.10) can be further simplified as

b× ḃ = B



l2 0 0
0 l2 0
0 0 l2

−


0 0 0
0 0 0
0 0 l2


ωB

= B


l2 0 0
0 l2 0
0 0 0

ωB = Bl2


ωB1

ωB2

0

 = ‖b‖2ωb

In summary, the relationship between ωb, the angular velocity of bar b, and the vectors
b and ḃ is

ωb = b× ḃ
‖b‖2 (2.11)
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This result is also shown in [34]. Substituting Eq. (2.11) into Eq. (2.7), the angular
momentum of bar b about its mass center is:

h = hb = Ibωb

=
(
mbl

2

12 + mbr
2
b

4

)(
b× ḃ
l2

)

=
(
mb

12 + mbr
2
b

4l2

)
b× ḃ = Jb× ḃ

where rb is the radius of the bar and J = mb

12 + mbr
2
b

4l2 . It is also useful to compute the time
derivative of the angular momentum as

ḣ = J ḃ× ḃ+ Jb× b̈

= Jb× b̈
(2.12)

Now, the law of conservation of angular momentum states that the time derivative of
the bar’s angular momentum vector h is equal to the sum of torques τ acting about the
bar’s center of mass. As illustrated in Figure 2.2, we consider two arbitrary forces, f1

and f2, acting on opposite ends of the bar member. The resulting conservation equation,
written in terms of the bar vector b is

ḣ = τ

= 1
2b× (f2 − f1)

(2.13)

Combining Eqs. (2.12) and (2.13) yields

Jb× b̈ = 1
2b× (f2 − f1), (2.14)

which describes the rotational dynamics of a bar member subject to arbitrary forces at its
end points. In fact, Eq. (2.14) is well known to describe the rotational dynamics of truss
elements and can be checked in [35, 36]. Eq. (2.14) can be written in any coordinates.
However, to simplify the final equations of motion, we choose to write it in inertial
coordinates and hereafter define b = bN . Now, we can write Eq. (2.14) as

J b̃b̈ = 1
2 b̃(f2 − f1), (2.15)

So far, we have chosen to represent a bar member as a vector in a global, non-minimal,
coordinate system. In order to ensure that the magnitude of the bar vector, ‖b‖, remains
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constant with its length l, a constant length constraint must be imposed on the rotational
dynamics:

bTb = l2 (2.16)

Now, the goal is to augment the rotational dynamics of Eq. (2.15) with the constant
length constraint. Differentiating Eq. (2.16) twice:

ḃTb+ bT ḃ = 0 = 2bT ḃ

ḃT ḃ+ bT b̈ = 0

bT b̈ = −ḃT ḃ

(2.17)

Having reformulated the constant bar length constraint in terms of b̈, the rotational
dynamics (Eq. (2.15)) and the new length constraint (Eq. (2.17)) can be combined in
matrix form as

 b̃
bT

 b̈ =
 1

2J b̃(f2 − f1)
−ḃT ḃ

 , (2.18)

which results in a single linear algebra problem that can be solved for b̈. By inspection
of Eq. (2.18), one can verify the existence condition for a solution and the full rank of
the matrix multiplying b̈. Denoting the pseudoinverse by the † superscript, the unique
solution for b̈ is

b̈ =
 b̃
bT

†  1
2J b̃(f2 − f1)
−ḃT ḃ


= 1
l2

[
−b̃ b

]  1
2J b̃(f2 − f1)
−ḃT ḃ


= 1
l2

[
− 1

2J b̃b̃(f2 − f1)− bḃT ḃ
]

= − 1
2Jl2

(
−l2I3 + bbT

)
(f2 − f1)− 1

l2
bḃT ḃ

(2.19)

where we have used the identity of Eq. (2.9). Rearranging Eq. (2.19) yields the complete
rotational dynamics of a single bar member including the length constraint:

J b̈ = 1
2(f2 − f1)− 1

2l2bb
T (f2 − f1)− J

l2
bḃT ḃ (2.20)
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2.3.2 Translational Dynamics

Returning our attention to Figure 2.2, a single bar element of mass mb is represented as
a vector b with its center of mass located by the vector r. Two arbitrary forces, f1 and
f2, act on opposite ends of the bar. From Newton’s 2nd Law, the sum of these forces
influence the inertial acceleration of the bar’s mass center as

mbr̈ = f1 + f2, (2.21)

which can be written in any coordinate system. To simplify the final equations of motion,
we choose to write Eq. (2.21) in inertial coordinates.

2.4 Matrix Formulation of Tensegrity Dynamics
Together, Eqn. (2.20) and Eqn. (2.21) govern the dynamics of any bar member in a
classical tensegrity structure. Consequently, a full tensegrity structure comprising β
bar members would yield 2β vector equations to describe the system dynamics. The
classic multibody dynamics approach to formulating the governing equations would stack
these equations into a single vector [35]. However, a more compact approach exists
for modeling tensegrity structures that exploits their unique topology. In this section,
connectivity matrices are introduced to describe tensegrity system dynamics with a single
matrix differential equation.

Figure 2.3. Numbering convention of a single bar

Consider a full tensegrity structure comprising β bar members and α string members.
We define a 3 × 2β node matrix N = [n1 n2 · · · n2β] which appends the inertial
components of the node vectors ni. Similarly, we define the 3× β matrix of bar vectors
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B = [b1 b2 · · · bβ] and the 3× α matrix of string vectors S = [s1 s2 · · · sα] from the
inertial components of bi and si, respectively. By convention, we define the matrix of
nodes at the base of each bar member as N1 = [n1 n2 · · · nβ] and the matrix of nodes
at the terminal ends is defined as N2 = [n1+β n2+β · · · n2β]. By this convention, a
tensegrity structure with n = 2β nodes yields the 3× n node matrix N = [N1 N2].

In short, connectivity matrices are used to relate the matrix of bar members B and
the matrix of string members S to the node matrix N . By inspecting the network,
one can immediately define connectivity matrices Cb and Cs with appropriate elements
(0,1,-1) such that B = NCT

b and S = NCT
s . To illustrate, consider the bar member

numbering convention depicted in Figure 2.3. The bar vector bi could be written in
terms of the node vectors as bi = ni+β − ni. For the node matrix N = [N1 N2], the
above convention yields Cb = [−Iβ Iβ]. In general, Cb is a β × n matrix in which the
rows specify the connectivity of each bar member. Now, the vector locating the center
of mass of the bar member in Figure 2.3 is ri = ni + 1

2bi. By the above convention, we
define the matrix

R = N1 + 1
2B

= N1 + 1
2(N2 −N1)

= N
1
2

Iβ
Iβ

 = NCT
r

(2.22)

Now that we have defined the connectivity matrices, Cb, Cs, and Cr, the next step is to
extend the dynamics of Eq. (2.20) to include the rotational dynamics of each bar member.
To begin, we append the rotational dynamics of the ith bar member in Eq. (2.20) to the
ith column of the matrix B̈Ĵ as

B̈Ĵ =
[
b̈1 b̈2 · · · b̈β

]

J1 0 · · · 0
0 J2 · · · 0
... ... . . . ...
0 0 · · · Jβ

 =
[
J1b̈1 J2b̈2 · · · Jβb̈β

]
(2.23)

where the {̂ } operator forms a diagonal matrix from the elements of a vector. Similarly,
we can extend the terms on the right hand side of Eq. (2.20) to include the rotational
dynamics of every bar in the structure. Proceeding, we define the force matrix F whose
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ith column is the total force vector acting on the ith node, including both internal forces
from string tensions and external forces. Hence, the terms on the right hand side of Eq.
(2.20) can be rewritten for the ith bar as

1
2 (f2i

− f1i
) = 1

2
[
FCT

b

]
i
, (2.24)

− 1
2l2i
bib

T
i (f2i

− f1i
) = −1

2
[
Bl̂−2

⌊
BTFCT

b

⌋]
i
, (2.25)

−Ji
l2i
biḃ

T
i ḃi = −

[
BĴ l̂−2

⌊
ḂT Ḃ

⌋]
i
. (2.26)

where the b◦c operator sets every off-diagonal element of the square matrix to zero.
Combining Eqs. (2.23)-(2.26) leads to a single matrix expression describing the rotational
dynamics of every bar member in a tensegrity structure:

B̈Ĵ = 1
2FC

T
b −

1
2Bl̂

−2
⌊
BTFCT

b

⌋
−BĴ l̂−2

⌊
ḂT Ḃ

⌋
(2.27)

We can further simplify Eq. (2.27) by defining λ̂ to emphasize the influence of the bar
length constraint:

λ̂ = −Ĵ l̂−2
⌊
ḂT Ḃ

⌋
− 1

2 l̂
−2
⌊
BTFCT

b

⌋
, (2.28)

B̈Ĵ = 1
2FC

T
b +Bλ̂. (2.29)

The next step is to extend the translational dynamics of Eq. (2.21) into a matrix
expression for the entire structure. Using Eq. (2.22), we can write the translational
dynamics of the ith bar as

mbi
r̈i = f1i

+ f2i
=
[
R̈m̂b

]
i

= 2
[
FCT

r

]
i
, (2.30)

which leads to the matrix expression for the translational dynamics of every bar member:

R̈m̂b = 2FCT
r . (2.31)

Now, the matrix expressions for rotational and translational dynamics (Eqn. (2.29)
and Eqn. (2.31), respectively) can be combined into a single matrix expression as
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[
B̈ R̈

] Ĵ 0
0 m̂b

+
[
B R

] −λ̂ 0
0 0

 = F
[

1
2C

T
b 2CT

r

]
. (2.32)

Taking the inverse
[

1
2C

T
b 2CT

r

]−1
=
[
CT
b CT

r

]T
[37], Eq. (2.32) can be rewritten as

[
B̈ R̈

] Ĵ 0
0 m̂b

 Cb
Cr

+
[
B R

] −λ̂ 0
0 0

Cb
Cr

 = F,

[
B̈ R̈

]  ĴCb
m̂bCr

+
[
B R

] −λ̂Cb
0

 = F. (2.33)

The expressions for bar connectivity and bar center of mass connectivity can be compactly
expressed in matrix form as

[
B R

]
= N

[
CT
b CT

r

]
(2.34)

Substituting Eq. (2.34) into Eq. (2.33) leads to

N̈
[
CT
b CT

r

]  ĴCb
m̂bCr

+N
[
CT
b CT

r

] −λ̂Cb
0

 = F. (2.35)

Carrying out the matrix multiplication in Eq. (2.35) results in a single expression for
tensegrity system dynamics in terms of the node matrix N :

N̈
(
CT
b ĴCb + CT

r m̂bCr
)
−N

(
CT
b λ̂Cb

)
= F. (2.36)

Thus far, we have loosely defined the force matrix F such that the ith column
corresponds to the total force vector acting on the ith node. Further elaborating, we
can subdivide each force vector fi into the internal force due to string tension and the
external force. Define the external force matrix W such that the ith column corresponds
to the external force vector wi acting on node ni, as depicted in Figure 2.3. The internal
forces due to string tension act throughout the string network. Recall that we have
defined the string connectivity matrix Cs to satisfy S = NCT

s , where the ith column of
S describes the ith string vector si in inertial coordinates. The tension force in the ith

string member ti acts in equal and opposite directions along si. Therefore, the internal
node forces caused by string tensions T is described by TCs.

To enable control laws that can be developed independently of the material properties
of the strings, the control variable is defined as the string ‘force density’ vector γ where
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each element of γ corresponds to the force density in the corresponding string. The
tension vector in the ith string is written as ti = siγi (See Appendix A for elastic string
modeling). Therefore, the full string tension matrix T can be written as T = Sγ̂ = NCT

s γ̂.
Then, the internal node forces are described by NCT

s γ̂Cs. Combining the internal node
forces with the external forces, the full force matrix can be written as

F = W −NCT
s γ̂Cs. (2.37)

Substituting Eq. (2.37) into Eq. (2.36) leads to

N̈
(
CT
b ĴCb + CT

r m̂bCr
)

+N
(
CT
s γ̂Cs − CT

b λ̂Cb
)

= W. (2.38)

By defining mass and stiffness matrices M and K, we arrive at a single matrix differential
equation describing the nonlinear rotational and translational dynamics of a full tensegrity
structure:

N̈M +NK = W (2.39a)

M = CT
b ĴCb + CT

r m̂Cr, (2.39b)

K = CT
s γ̂Cs − CT

b λ̂Cb. (2.39c)

λ̂ = −Ĵ l̂−2
⌊
ḂT Ḃ

⌋
− 1

2 l̂
−2
⌊
BTFCT

b

⌋
. (2.39d)

2.5 Class-k Tensegrity Systems
Class-k tensegrity structures are topologies in which k bar members meet at any given
node in the structure [3]. We define the ‘class’ of a tensegrity structure by the maximum
number of bar members that meet at any given node in the structure. By convention,
Class-k nodes are defined as frictionless ball joints. If there are no ‘bar-to-bar’ joints
in a given structure, the structure is said to be Class-1 and the predefined equations
of motion (Eqs. (2.39a)-(2.39c)) are valid. If at least one node in a given tensegrity
structure connects two bar members, that structure is said to be Class-2, and so on.
Due to contact forces at bar-to-bar joints, Eqs. (2.39a)-(2.39c) are not valid for Class-k
systems and must be modified.
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We proceed by deconstructing each Class-k joint into k Class-1 joints that are
constrained to coincide. The geometric constraint can be written as

NP = D, (2.40)

where P ∈ Rn×c and D ∈ R3×c are specified such that the constrained nodes coincide for
c total constraints in the structure. For example, if nodes 1 and 2 are constrained to
coincide, one would specify corresponding columns in P and D so that n1−n2 = 0. Due
to the added constraints, the original equations of motion are modified to include contact
forces, which can be written as ΩP T where Ω is the 3× c matrix of Lagrange multipliers
satisfying the dynamics and constraints at all time steps. Based on the developments
presented in [20], the added constraint forces are factored into the original dynamics
equation to yield the Class-k equations of motion:

N̈M +NK = W + ΩP T , (2.41a)

M = CT
b ĴCb + CT

r m̂Cr, (2.41b)

K = CT
s γ̂Cs − CT

b λ̂Cb, (2.41c)

λ̂ = −Ĵ l̂−2
⌊
ḂT Ḃ

⌋
− 1

2 l̂
−2
⌊
BT (W + ΩP T −NCT

s γ̂Cs)CT
b

⌋
. (2.41d)

Note that Eq. (2.41d) has been modified to account for the added constraint forces.

2.6 Reduced-order Dynamics
Due to the linear constraints that result from bar contact forces, the motion is restricted
in certain dimensions. In other words, the geometric constraints will cause the system
dynamics to span a smaller subspace. It is therefore convenient to change the coordinate
system to better represent the constrained motion.

To see more clearly why one would desire a change of coordinates, consider the double
pendulum system depicted in Figure 2.4. The center of mass of the upper bar could
be located in non-minimal (Cartesian) coordinates as (x1, y1). However, because the
bar end is pinned at node n1, the center of mass of the bar is constrained to a circular
trajectory. Therefore, it is more convenient to locate the center of mass of the pinned bar
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by its angle from vertical θ1. For Class-k tensegrity systems, it is equivalently convenient
to represent the constrained motion in a different coordinate system. As we will also
see, this approach provides us with a closed-form solution for the matrix of Lagrange
constraint multipliers Ω.

To this end, we use the singular value decomposition to factorize the geometric
constraint matrix as

P = UΣV T =
[
U1 U2

] Σ1

0

 [V T
]

(2.42)

where U ∈ Rn×n and V ∈ Rc×c are orthogonal matrices whose columns are the left- and
right-singular vectors of P , respectively, while Σ1 ∈ Rc×c is a diagonal matrix of positive
singular values. The submatrices U1 ∈ Rn×c and U2 ∈ Rn×(n−c) decompose the vector
space that is spanned by P into two lower-dimensional subspaces. We define

η = [η1 η2] , NU = [NU1 NU2], (2.43)

which transforms the system node vectors into a new space with singular vector basis.
Now, the constraint equation (Eq. (2.40)) can be modified as

NP = NUΣV T =
[
η1 η2

] Σ1

0

 [V T
]

= D (2.44)

which implies

η1 = DV Σ−1
1 , η̇1 = 0, η̈1 = 0 (2.45)

After applying the transformation, the columns of η1 span the no-motion space in
transformed coordinates and η2 represents the constrained dynamics in a new coordinate
system. Substituting Eqs. (2.42)-(2.45) into Eq. (2.41a) leads to the constrained dynamics:

N̈UUTM +NUUTK = W + ΩV ΣTUT

η̈2U
T
2 M + η1U

T
1 K + η2U

T
2 K = W + ΩV ΣTUT (2.46)

Post-multiplying Eq. (2.46) by the non-singular matrix [U2M
−1U1] will yield two equations,

where the first equation is a second order dynamics equation in the reduced coordinates:
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η̈2U
T
2 MU2 + η2U

T
2 KU2 = WU2 − η1U

T
1 KU2

⇒ η̈2M2 + η2K2 = W̃ (2.47)

where M2 = UT
2 MU2, K2 = UT

2 KU2, and W̃ = WU2−η1U
T
1 KU2. The second part yields

an algebraic equation that is used to solve for the Lagrange Multiplier:

η̈2U
T
2 MM−1U1 + η1U

T
1 KM

−1U1 + η2U
T
2 KM

−1U1 = WM−1U1 + ΩV ΣT
1U

T
1 M

−1U1

⇒ NKM−1U1 − ΩP TM−1U1 = WM−1U1 (2.48)

Notice that K is also a linear function of Ω from Eqs. (2.41c) and (2.41d), meaning that
the matrix of Lagrange multipliers can be obtained analytically by solving the linear
algebra problem. The full analytical solution of Ω can be found in Appendix C.

2.7 Dynamics Verification: Double Pendulum
To verify the non-minimal dynamics model developed in the previous section, we will
investigate the double pendulum system, which has been well studied in the field of
multibody dynamics. As depicted in Figure 2.4, the system comprises two rigid bars with
uniform mass distribution. First, we will carry out the analytical solution of the double
pendulum by taking the Lagrangian of the system in minimal coordinates. Then, we
specify the node and connectivity matrices for the system and numerically implement Eqs.
(2.41a-2.41d) to obtain the position history of each node in the structure. By plotting the
position errors for each node in the structure, we find that the non-minimal dynamics
equations are accurate to machine precision.
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Figure 2.4. Double pendulum system

2.7.1 Analytical Solution

The center of mass of each rigid bar can be located in terms of the minimal coordinates
θ1 and θ2 as

x1 = `

2 sin(θ1)

y1 = − `2 cos(θ1)

x2 = `
(

sin(θ1) + 1
2 sin(θ2)

)
y2 = −`

(
cos(θ1) + 1

2 cos(θ2)
)

where ` is the length of each bar and θ1 and θ2 describe the angle of each respective bar
from vertical. Define the kinetic energy of the system as
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T = m

2
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2

)
+ 1

2I
(
θ̇2

1 + θ̇2
2

)
(2.49)

where I = 1
12ml

2 is the moment of inertia of the bar about its center of mass. The first
term in Eq. (2.49) represents the translational kinetic energy of the system while the
second term represents the system’s rotational kinetic energy. The potential energy of
the system is written as

V = −mg(y1 + y2) (2.50)

where y1 and y2 represent the vertical height of each respective bar mass center. Now,
define the Lagrangian as L = T − V . For a conservative system with no virtual work,
Lagrange’s Equation can be written in generalized coordinates as

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0 (2.51)

where q is the generalized coordinate. In the case of the double pendulum, there are two
generalized coordinates (θ1 and θ2). Substituting the Lagrangian L = T − V into Eq.
(2.51) and taking the partial derivatives leads to the equations of motion for the double
pendulum system:

8θ̈1 + 3θ̈2 cos(θ1 − θ2) + 3θ̇2
2 sin(θ1 − θ2) + 9g

l
sin(θ1) = 0 (2.52)

2θ̈2 + 3θ̈1 cos(θ1 − θ2)− 3θ̇2
1 sin(θ1 − θ2) + 3g

l
sin(θ2) = 0 (2.53)

where we have applied m1 = m2 = 1 kg, b1 = b2 = ` = 1m.

2.7.2 Numerical Solution

Next, the non-minimal dynamics model is verified by numerically simulating Eqs. (2.41a-
2.41d) for the double pendulum system. In the remaining examples, we use a Matlab-based
vector dynamics package [38] to integrate the equations of motion with a fourth-order
Runge-Kutta integration scheme. For more information on the numerical implementation,
see Appendix B for the system dynamics flow charts corresponding to both Class-1 and
Class-k tensegrity structures.

To perform a numerical simulation in the tensegrity dynamics package, one must
specify the structure’s configuration (node and connectivity matrices) as well as the
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integration time step and simulation time. In this example, we initialize the double
pendulum at an angle of 45 degrees. Following the convention defined above, we prescribe
the initial node and connectivity matrices:

N0 =


0
√

2/2
√

2
0 −

√
2/2 −

√
2

0 0 0

 , Cb =
−1 1 0

0 −1 1

 , Cs =
−1 1 0

0 −1 1

 .

By carrying out the multiplication B = NCT
b and S = NCT

s , one can verify the bar
and string vectors in a given tensegrity structure. Due to the nature of the tensegrity
software, at least one string must be specified. To account for this, we define massless
strings along each bar member. Next, we specify an integration time step of ∆t = 0.001
and numerically integrate the system for a total time of 5 seconds. Figure 2.5(a) depicts
the node position histories obtained via the numerical simulation. Next, Eqs. (2.52) and
(2.53) are numerically integrated in order to compare the numerical results with the
analytically obtained solution.

(a) Node position (b) Node position error

Figure 2.5. Comparison between double pendulum analytical and numerical solution

Figure 2.5(b) depicts the error in node x and y positions between the numerically
obtained solution and the analytical solution. We see that the errors are on the order of
10−13 and 10−14, which indicates that the simulation results align well with the analytical
solution for the double pendulum. This proves that the developed equations of motion
for tensegrity system dynamics are sufficiently accurate.
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2.8 Class-1 Dynamics Verification: T-bar Simulation
Next, we simulate the open-loop vibrational response of a fundamental tensegrity structure
known as the T-bar. The T-bar tensegrity is a 2-dimensional structure that consists of
one horizontal bar member and one lateral bar member to form the shape of a cross as
depicted in Figure 2.6(a). Four string members are connected around the outer perimeter
to prevent global buckling in the structure. Because only one bar resides at any given
node, the T-bar is defined as a Class-1 tensegrity structure. Despite its simplicity, the
T-bar structure has been shown to exhibit an exceptionally high mass-to-stiffness ratio
and is considered to be a minimum mass structure for a given compressive load [39]. The
low mass and high stiffness of the T-bar structure makes it an attractive candidate for
deployable space structures.

(a) T-bar in static equilibrium (b) T-bar preloaded to induce horizontal vibration

Figure 2.6. T-bar tensegrity system with different initial conditions

In this example, we configure a static T-bar structure with nodes at the locations
(−1, 0), (0,−1), (1, 0) and (0, 1). This yields the following node and connectivity matrices:
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N =


−1 0 1 0
0 −1 0 1
0 0 0 0

 , Cb =
−1 0 1 0

0 −1 0 1

 , Cs =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1


It is convenient to define the distance from the center of the cross to the leftmost node
of the equilibrated structure n1 as `0. When the structure is in static equilibrium, each
of the strings forms the hypotenuse of an equilateral triangle with length ‖si‖ =

√
2. We

assign pre-stress in the strings by specifying their rest lengths ρi (unstretched) to be
50% of their given lengths so that ρi = 0.5 ‖si‖ =

√
2/2. In this example, we prescribe

an extensional stiffness of k = 100 N/m and no damping (z = 0 Ns/m) to each string
member. Therefore, the tension in each string of the static T-bar structure can be
calculated as t = ti = k (‖si‖ − ρi) = 100

(√
2−
√

2/2
)
N. By observing the free body

diagram in Figure 2.6(a), one can easily see how uniform pre-stress in the four strings
causes the force balance that is necessary for static equilibrium.

Shifting focus to Figure 2.6(b), we then perturb the structure from its equilibrium by
moving the vertical bar member to the left by a distance of `0/2. This leads to an uneven
distribution of tension in the structure. Using trigonometry, the new tension in strings s1

and s4 is calculated as tleft = 100
(√

0.52 + 1−
√

2/2
)
≈ 0.58t. Similarly, strings s2 and

s3, take on new tension values of tright = 100
(√

1.52 + 1−
√

2/2
)
≈ 1.55t. By looking

into the force imbalance depicted in Figure 2.6(b), it is clear to see how asymmetric
pre-stress will induce vibration in the T-bar structure.
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(a) Node position (b) Node velocity

(c) String force density (d) String tension

Figure 2.7. Initial condition response of the horizontally preloaded T-bar system

To collect free response data for the T-bar, we initialize the structure in the preloaded
state of Figure 2.6(b) and simulate for a total time of 5 seconds with an integration time
step of ∆t = 0.001 seconds. Figure 2.9(a) depicts the position of each node over the
5 second interval. As expected, the y-positions of the four nodes do not change over
the time interval. The x-position of each node oscillates about the static equilibrium
condition at a frequency of roughly 3.73 Hz. If there were damping in the strings (z 6= 0),
then the structure would eventually return to its static equilibrium position. In Figure
2.9(c), we see that the force density in the strings oscillates between roughly 36 N/m
and 61 N/m. The string tensions, depicted in Figure 2.9(d), are obtained by multiplying
the force densities by the corresponding string lengths at each time step.
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2.9 Class-k Dynamics Verification: D-bar Simulation
In this section, we investigate the free response of another fundamental tensegrity
structure known as the D-bar. Depicted in Figure 2.8(a), the D-bar tensegrity structure
comprises two tensile members and four compressive members arranged in the shape
of a diamond. At each node, two bar members are connected through frictionless ball
joints [3], making the D-bar a Class-2 tensegrity structure. The vertical string supports
a compressive load applied at the two end points while the horizontal string is needed to
stabilize the structure and maintain static equilibrium. As we will see later, the horizontal
string can also be utilized to deploy the structure. The D-bar is regarded as a minimum
mass structure for a given tensile load. It is also considered to be the topological dual
of the T-bar structure, as the two structures exchange compressive members for tensile
members [39]. Because the tendons have the ability to articulate each Class-2 joint, the
D-bar has the unique feature of being deployable and presents a high packaging efficiency.
These characteristics makes the D-bar a suitable candidate for deployable, articulated
space structures.

We configure a static D-bar structure with nodes at the locations (−1, 0), (0,−1),
(1, 0) and (0, 1). This yields the following node and connectivity matrices:

N =


−1 0 1 0
0 −1 0 1
0 0 0 0

 , Cb =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , Cs =
 0 −1 0 1
−1 0 1 0



In this configuration, the strings have length ‖si‖ = 2. We prescribe pre-stress in the
strings by setting their rest lengths to 50% of the given lengths, so that ρi = 1. Assigning
stiffness k = 100 N/m and damping z = 0 Ns/m to each string member yields a tension
of t = k (‖si‖ − ρi) = 100(2 − 1) = 100 N in each static string member. Looking into
the free body diagram depicted in Figure 2.8(a), one can easily see how uniform tension
keeps the D-bar structure in static equilibrium.
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(a) D-bar in static equilibrium (b) D-bar vertically preloaded

Figure 2.8. D-bar tensegrity system with different initial conditions

Now, shifting our attention to Figure 2.8(b), we perturb the D-bar structure from its
static equilibrium by halving the distance between node n1 and node n3. At this point,
the given length of string s2 is equal to its rest length, ρ2. Therefore, there is no initial
pre-stress in string s2 of the perturbed D-bar structure in Figure 2.8(b). On the other
hand, the tension in string s1 increases to t1 = 100

(
2
√

2− 0.52 − 1
)
≈ 1.65t. Due to the

force imbalance between strings, the perturbed D-bar is set into motion.
In this example, the D-bar is initialized in the preloaded state of Figure 2.8(b) to

induce motion. Using the class-k equations of motion, we simulate the D-bar structure
for a total time of 5 seconds with an integration time step of ∆t = 0.001 seconds. Figure
2.9 depicts the free response data for the D-bar structure. Looking into Figure 2.9(a), we
see that the D-bar structure oscillates about its static equilibrium position at a frequency
of approximately 1.87 Hz after being perturbed. The D-bar’s frequency of oscillation is
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approximately half that of the T-bar, likely due to the added mass of the two additional
bar members. Moreover, we see in Figure 2.9(c) that the force density of the structure
oscillates between roughly 62 N/m and 0 N/m. In the next chapter, we’ll design a shape
control law to regulate the force density in each string based on desired control objectives.

(a) Node position (b) Node velocity

(c) String force density (d) String tension

Figure 2.9. Initial condition response of the vertically preloaded D-bar system
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Chapter 3 |
Model-based Shape Control

In the previous chapter, we developed the equations of motion to simulate tensegrity
systems in a non-minimal coordinate system. This enabled the system dynamics to be
written compactly in the matrix form. In this chapter, we will utilize our dynamics model
to derive a model-based feedback control law to control the shape of a tensegrity structure.
Our approach builds upon recent contributions made by Skelton and Henrickson [40]. In
this approach, we define the control variable as the string force density vector so that the
system dynamics can be written linearly in terms of the control variable. This allows us
to solve for the control at each time step with linear programming. The physical control
variable (string tensions) can be easily obtained by multiplying the string force density
vector by the vector of string lengths at each time step.

We begin this chapter by defining shape objectives to regulate particular nodes in
the structure and then utilize Lyupanov theory to assess the stability of tendon-actuated
tensegrity systems. Next, we derive a state-feedback control law to solve for the control
signal which regulates node positions to a specified reference trajectory. After developing
the shape control law, we return our attention to the T-bar and D-bar tensegrity
structures, this time implementing the control law to maneuver between desired shapes
in simulation. Finally, we demonstrate the performance of the developed controller by
controlling the T-bar and D-bar tensegrity structures through a wide range of shapes.
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3.1 State Feedback

Figure 3.1. Quasi-static shape change

Recall that Eqs. (2.41a)-(2.41d) govern the full nonlinear motion of Class-k tensegrity
systems. In this work, we define the control variable as the string force density vector,
γ ∈ Rα×1, where α is the number of strings in the structure. This means that tensegrity
system dynamics are linear in the control but nonlinear with respect to the state. We
can write Eq. (2.41a) in a general nonlinear form as

ẋ = f(x) + g(x)u→ N̈ = f(N, Ṅ) + g(N)(γ̂)h(N, Ṅ). (3.1)

Systems in the form of Eq. (3.1) are known as control-affine systems or affine-in-control
systems and have been studied extensively in nonlinear control theory [41,42]. A state
feedback control law (i.e., closed-loop) is developed to regulate the tensegrity structure
between different equilibrium configurations. A feedback controller is desirable due to
their insensitivity to state perturbations and external disturbance while guaranteeing
stability [43]. The primary objective of this chapter is to utilize our dynamics model to
design a control law that will move the tensegrity structure between its static equilibria.

In the previous chapter, we studied the free response of the T-bar tensegrity structure
about its symmetric equilibrium position. As we will see next, the T-bar is considered to
be in static equilibrium as long as the two bar members are overlapping, as in Figure 3.1.
When the bar members overlap, string tensions can be found to sufficiently equilibrate the
structure through force balance. In general, a tensegrity system is in static equilibrium
when the node vectors are inertially fixed. Substituting Ṅ = 0 and N̈ = 0 into Eq.
(2.41a), we have the static equilibrium condition:

NK = N
(
CT
s γ̂Cs − CT

b λ̂Cb
)

= W + ΩP T , (3.2)
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The set of node matrices satisfying Eq. (3.2) for given a connectivity (Cb and Cs)
constitute the geometric solution space for a given tensegrity structure. This process of
finding the whole range of equilibrated shapes for a given tensegrity structure continues
to be a growing area of research [18]. In this work, we focus on developing a control law
that can be used to dynamically maneuver between static equilibria in the geometric
solution space of any tensegrity structure. That is, given an initial shape and a desired
final shape, we derive a control policy to dynamically regulate the structure between
these two states (the intermediate steps in Figure 3.1). We call this type of motion
‘quasi-static’.

3.2 Shape Objectives

To maintain flexibility in the control law, we define two matrices, L ∈ Rj×3 and R ∈ Rn×h,
that specify which axes and nodes are to be controlled, where j is the number of “axes
of interest” and h is the number of “nodes of interest”. By multiplying LNR, we identify
the “node coordinates of interest”. The goal is to regulate the node coordinates of interest
to some desired final shape or trajectory. Therefore, we must also define Ȳ ∈ Rj×h,
whose columns are the corresponding node coordinates of the desired final shape. One
can similarly define a reference trajectory by specifying Ȳ as a function of time. The
reference trajectory can be user provided or can be the outcome of an optimal trajectory
generation process. The node position error and its time derivatives are written as

E = LNR− Ȳ = L(η1U
T
1 + η2U

T
2 )R− Ȳ , Ė = Lη̇2U

T
2 R , Ë = Lη̈2U

T
2 R. (3.3)

where we recall that η̇1 = 0 and η̈1 = 0 due to the no-motion space.

3.3 Stability Considerations

To begin, we define the candidate Lyupanov Function V (N, Ṅ):

V (N, Ṅ) = 1
2Tr(E

TΘE + ĖT Ė) > 0 ∀[E, Ė] 6= 0 (3.4)

where Tr(◦) is the trace operator and the matrix Θ > 0 (positive definite), allows us to
change the weights between position error and position error velocity. The first time
derivative of Eq. (3.4) is
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V̇ = Tr(ĖTΘE + ĖT Ë). (3.5)

For asymptotic stability, we require the time derivative of the candidate Lyapunov
function to be negative definite, i.e.,

V̇ = −Tr(ĖTΨĖ) < 0 (3.6)

where Ψ is any positive definite matrix. Substituting Eq. (3.6) into Eq. (3.5), we obtain

Tr(ĖT Ë + ĖTΨĖ + ĖTΘE) = 0. (3.7)

After using the properties of the trace operator, we obtain the following expression for
the closed loop error dynamics:

Ë + ĖΨ + EΘ = 0. (3.8)

Note that the closed-loop error dynamics follow a second order spring mass damper
structure with the matrix Ψ being the equivalent damping and the matrix Θ being the
equivalent stiffness.

3.4 Position Control
Eq. (3.8) is a second-order differential equation in the error dynamics which is used to
regulate node coordinates by tuning the control gain matrices, Ψ ∈ Rh×h and Θ ∈ Rh×h

for the desired performance. To begin, formulating the control law as a linear algebra
problem requires writing the bar force density vector as a linear function of the string
force density vector. This is done by first writing the ith diagonal element of Eq. (2.41d)
as

λi = −Jil−2
i e

T
i

⌊
ḂT Ḃ

⌋
ei −

1
2 l
−2
i e

T
i

⌊
BT (W + ΩP T − Sγ̂Cs)CT

b

⌋
ei (3.9)

where ei is a column vector of zeros except for the ith element, which is equal to one. To
isolate γ, we utilize the algebraic manipulation x̂y = ŷx where x and y are both column
vectors. Recall that the {̂ } operator forms a diagonal matrix from the elements of a
vector. Applying this to Eq. (3.9) and stacking each ith diagonal element into a column
vector:
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λ = Λγ + τ (3.10)

where
Λ =

[
ΛT

1 ΛT
2 · · ·ΛT

β

]T
, τ =

[
τT1 τT2 · · · τTβ

]T
,

τi = −Jil−2
i ||ḃi||2 −

1
2 l
−2
i bTi (W + ΩP T )CT

b ei,

Λi = 1
2 l
−2
i bTi S(CsCT

b ei

∧

) for i = 1, 2 · · · β.

Returning our attention to the error dynamics, we substitute Eq. (2.47) and Eq. (3.3)
into Eq. (3.8) to obtain

L(WU2 − η1U
T
1 KU2 − η2U

T
2 KU2)M−1

2 UT
2 R + Lη̇2U

T
2 RΨ

+
[
L(η1U

T
1 + η2U

T
2 )R− Ȳ .

]
Θ = 0. (3.11)

Rearranging Eq. (3.11) to isolate known terms,

LWU2M
−1
2 UT

2 R + Lη̇2U
T
2 RΨ +

[
L(η1U

T
1 + η2U

T
2 )R− Ȳ

]
Θ

= L(η1U
T
1 KU2 + η2U

T
2 KU2)M−1

2 UT
2 R, (3.12)

where we can simplify the right hand of Eq. (3.12) as

L(η1U
T
1 KU2 + η2U

T
2 KU2)M−1

2 UT
2 R = LNKU2M

−1
2 UT

2 R (3.13)

Substituting Eq. (2.41c) into the righthand side of Eq. (3.13) and taking the ith column
yields

LNKU2M
−1
2 UT

2 Rei = LNCT
s γ̂CsU2M

−1
2 UT

2 Rei − LNCT
b λ̂CbU2M

−1
2 UT

2 Rei. (3.14)

Applying the algebraic manipulation x̂y = ŷx to the righthand side of Eq. (3.14) yields

LNKU2M
−1
2 UT

2 Rei = LNCT
s (CsU2M

−1
2 UT

2 Rei

∧

)γ −LNCT
b (CbU2M

−1
2 UT

2 Rei

∧

)λ. (3.15)
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Now, substituting Eq. (3.10) into Eq. (3.15) yields

LNKU2M
−1
2 UT

2 Rei = −LNCT
b (CbU2M

−1
2 UT

2 Rei

∧

)τ

+
(
LNCT

s (CsU2M
−1
2 UT

2 Rei

∧

)− LNCT
b (CbU2M

−1
2 UT

2 Rei

∧

)Λ
)
γ. (3.16)

Finally, substituting Eq. (3.16) back into Eq. (3.12) and repeating this process for every
column yields a linear algebra problem that is used to solve for the string force density
vector at each time step:


Γ1

Γ2
...

Γh





γ1

γ2
...
γα


=


µ1

µ2
...
µh

 (3.17)

where

Γi = LNCT
s (CsU2M

−1
2 UT

2 Rei)
∧

− LNCT
b (CbU2M

−1
2 UT

2 Rei)
∧

Λ

µi =
(
LWU2M

−1
2 UT

2 R + Lη̇2U
T
2 RΨ +

[
L(η1U

T
1 + η2U

T
2 )R− Ȳ

]
Θ
)
ei

+ LNCT
b (CbU2M

−1
2 UT

2 Rei)
∧

τ

for i = 1, 2 . . . h

and h is the number of nodes of interest. Here, we have the dimensions γ ∈ Rα×1,
Γ ∈ Rjh×α, and µ ∈ Rjh×1. Because the tensegrity structure is generally an underactuated
system (less strings than degrees of freedom), one must carefully choose the node
coordinates of interest so that Eq. (3.17) becomes an underdetermined system. In the
overdetermined case (jh > α), one cannot guarantee a solution for the control variable.
Physically, this translates to assuring that there are enough strings in the structure to
regulate the node coordinates of interest.

3.5 Velocity and Acceleration Control
In the previous section, we showed how to regulate the node positions in a tensegrity
structure by defining the node position error Ep = LpNRp − Ȳp. Here, we introduce the
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subscript to emphasize that the error corresponds to node positions only. In this section,
we’ll detail a similar process to control the velocity and acceleration of certain nodes in
the structure. To begin, Eq. (3.17) can be written compactly as

Γpγ = µp , γ > 0. (3.18)

To control the velocity of nodes in the structure, we define the node velocity error

Ev = LvṄRv − ˙̄Yv (3.19)

and we use a first order equation in the velocity error dynamics:

Ėv + EvΨv = 0. (3.20)

In this case, only the first derivative of error Ev is needed to regulate the node velocity.
Now, taking the same approach as discussed in Section 3.4, we arrive at a linear algebra
problem used to solve for the string force densities which regulate the node velocity error:


Γv1

Γv2
...

Γvh





γ1

γ2
...
γα


=


µv1

µv2
...
µvh

 (3.21)

where

Γvi
= LvNC

T
s (CsU2M

−1
2 UT

2 Rvei)
∧

− LvNCT
b (CbU2M

−1
2 UT

2 Rvei)
∧

Λ

µvi
=
(
LvWU2M

−1
2 UT

2 Rv +
(
Lvη̇2U

T
2 Rv − ˙̄Yv

)
Ψv

)
ei

+ LvNC
T
b (CbU2M

−1
2 UT

2 Rvei)
∧

τ

for i = 1, 2 . . . h

We can write Eq. (3.21) compactly as

Γvγ = µv , γ > 0. (3.22)

Now, the node acceleration error can be written as

Ea = LaN̈Ra − ¨̄Ya. (3.23)
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The error dynamics can be achieved directly by setting Eq. (3.23) to zero as

Ea = 0. (3.24)

Again, using the same procedure as discussed in the previous section, we arrive at a
linear algebra problem used to solve for the string force densities which regulate the node
acceleration error:


Γa1

Γa2
...

Γah





γ1

γ2
...
γα


=


µa1

µa2
...
µah

 (3.25)

where

Γai
= LaNC

T
s (CsU2M

−1
2 UT

2 Raei)
∧

− LaNCT
b (CbU2M

−1
2 UT

2 Raei)
∧

Λ

µai
=
(
LaWU2M

−1
2 UT

2 Ra − ¨̄Ya
)
ei + LaNC

T
b (CbU2M

−1
2 UT

2 Raei)
∧

τ

for i = 1, 2 . . . h

which can be written compactly as

Γaγ = µa , γ > 0. (3.26)

Finally, combining Eqs. (3.18), (3.22) and (3.26) into a single linear algebra problem
allows us to simultaneously control the position, velocity and acceleration of the desired
node coordinates as


Γp
Γv
Γa

γ =


µp

µv

µa

 , γ > 0. (3.27)

3.6 Control Law Implementation
It is very important to consider that the strings cannot physically provide a compressive
force and therefore must always remain in tension to prevent slackness. Mathematically,
this can be accounted for by augmenting Eq. (3.27) with the positive string force density
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constraint (γ > 0). In numerical simulations, we obtain the control signal by solving the
convex optimization problem:

minimize: ||γ||2
subject to: Γγ = µ , γ > 0.

(3.28)

To solve Eq. (3.28), we use CVX, a package for specifying and solving convex
programs [44], [45].

3.7 Case Study: T-bar Position Control
To verify the newly developed shape control law, we return our attention to the T-bar
tensegrity structure, a standard baseline for testing in two dimensions. Our new objective
is to move the T-bar from the initial shape depicted in Figure 3.2(a) to the final shape
of Figure 3.2(d). In this example and the following examples, bar elements are depicted
in black while string elements are depicted in red. Specifically, we aim to move nodes n1

and n2 to the coordinate position (0.5, 0.5). To proceed in this effort, we must specify
the control objective matrices L, R and Ȳ as well as the control gain matrices Ψ and Θ.
The control objective matrices are as follows:

L =
1 0 0

0 1 0

 , R =


1 0
0 1
0 0
0 0

 , Ȳ =
0.5 0.5

0.5 0.5

 .

Recall that the dimension of control objective matrices governs the overall dimension of
the linear algebra problem. In order to guarantee solutions to Eq. (3.28), the control
designer should specify a total number of control objectives that is less than or equal to
the total number of strings in the structure. In this case, we have specified L ∈ R2×3 and
R ∈ R4×2 so that Γ ∈ R4×4 and therefore the system in Eq. (3.28) is uniquely determined.
For this particular example, the control gain matrices are

Ψ =
3 0

0 3

 , Θ =
1 0

0 1

 .
Recall that the control gain matrices Ψ and Θ must be positive definite for asymptotic
stability. In a standard test case, it is common to start by making the control gain
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matrices equal to the identity matrix of equal dimension. However, in this case we have
increased the derivative gain matrix Ψ to 3I due to stability issues that resulted in
excessive overshoot. Increasing the derivative gain matrix Ψ has the effect of decreasing
the overshoot while slowing down the rise time. On the other hand, increasing the
proportional gain matrix Θ has the effect of decreasing the rise time but increases the
overshoot. For all of the remaining examples, the string material parameters are set to
k = 100 and z = 0. The integration time step is ∆t = 0.01 and we simulate the maneuver
for a total time of 10 seconds. A four image time lapse is provided in Figure 3.2.

(a) T-bar, t = 0.00 seconds (b) T-bar, t = 3.33 seconds

(c) T-bar, t = 6.66 seconds (d) T-bar, t = 10.00 seconds

Figure 3.2. T-bar position control sequence

By observing Figure 3.2, we can immediately see that the position controller succeeded
in driving nodes n1 and n2 to the desired final location of (0.5, 0.5). To gain further
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insight into the controller’s performance, the node position history, node velocity history
and string force density are depicted in Figure 3.3.

(a) Node position (b) Node velocity

(c) String force density (d) Control error residual

Figure 3.3. T-bar position control simulation results

Within 8 seconds, nodes n1 and n2 are already within 0.05 m of the desired location.
At this point, the node velocity is nearly zero, which indicates that increasing Ψ did have
the effect of reducing the overshoot. The string force density history, depicted in Figure
3.3(c), varies between 0 and 0.5 N/m. At the beginning of the maneuver, strings s1 and
s4 located on the right hand side of the structure have the highest string force density.
This has the desired effect of pulling nodes n1 and n2 towards the desired location. At
time t = 1 sec., strings s3 and s4 are engaged to minimize overshoot. In Figure 3.3(d),
the residual error ‖Γγ − µ‖2 is plotted on a log scale. We see that the controller was
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able to find feasible solutions roughly on the order of 10−14, which is within machine
precision.

3.8 Case Study: D-bar Position Control
In this example, we turn our attention back to the D-bar tensegrity structure. The
objective here is to move the structure from the initial shape depicted in Figure 3.5(a) to
the desired shape of Figure 3.5(d). More specifically, our goal here is to move node n3 to
the position (0.5, 0.5).

Figure 3.4. Modified D-bar structure

To enhance the controllability of the structure, slight modifications have been made to
the basic D-bar structure. As depicted in Figure 3.4, we attached two additional strings
to nodes n2 and n4. This has the effect of improving the controllability of the structure
in the lateral direction. In addition, we have pinned node n1 so that it is constrained
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to coincide with the point (−1, 0) at all times. Though subtle, these modifications
drastically increase the overall reachability of the structure.

To illustrate, one may briefly consider the basic D-bar structure depicted in Figure
2.8(a). Comprising a total of four Class-2 nodes and only two strings, the basic D-bar is
scarcely underactuated. That is, the overall system has a total of eight degrees of freedom
and only two actuators. In this type of scenario, the control designer is faced with
two options. One can either modify the structure’s topology by adding more actuators
or decrease the number of control objectives so that the linear programming problem
becomes underdetermined. In this case, we have chosen to change the topology of the
structure because it is the only way to achieve the control objective. In this example,
the control objective matrices are chosen so that the coordinates of node n3 are driven
from the starting position to the point (0.5, 0.5) with unity control gains. That is,

Ψ = 1 , Θ = 1 , Ȳ =
0.5

0.5

 .
Again, the integration time step is ∆t = 0.01 and we simulate the maneuver for a total
time of 10 seconds. A four image time lapse is provided in Figure 3.5. Inspecting Figure
3.5, we can immediately see that the position controller succeeded in driving node n3 to
the desired final location of (0.5, 0.5). This time, however, the controller did overshoot
the objective position by roughly 0.1 meters in both x and y directions. This can be seen
in Figure 3.6(a). Nonetheless, Figure 3.6(b) shows that static equilibrium was achieved
by roughly t = 8 seconds. Observing the string force density history in Figure 3.6(c), we
can see how string s3 initially engaged at a force of roughly 1.2 N to pull node n3 to its
target in approximately 2 seconds. At this point, the node overshoots its target, which is
why strings s1 and s4 engage to return the node to the target position. In future tests,
the derivative gain matrix Ψ could be increased to reduce overshoot. In Figure 3.6(d),
we see that the residual error of the linear programming problem remained near machine
precision for all time steps, which verifies the feasibility of the obtained force densities.
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(a) D-bar, t = 0.00 seconds (b) D-bar, t = 3.33 seconds

(c) D-bar, t = 6.66 seconds (d) D-bar, t = 10.00 seconds

Figure 3.5. D-bar position control sequence
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(a) Node position (b) Node velocity

(c) String force density (d) Control error residual

Figure 3.6. D-bar position control simulation results
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Chapter 4 |
Tensegrity Robotic Arm

In this chapter, a robotic arm is developed based on previous work [46] by combining
the fundamental T-bar and D-bar tensegrity structures in a fractal-based realization.
The concept of self-similar iterations is utilized to design a dexterous tensegrity robotic
arm that could be used to manipulate objects in the environment of outer space. This
approach has the benefit of allowing the designer to optimize weight or dexterity by tuning
the fractal complexity. To verify the developed control laws, we study the position control
of a T2D1 tensegrity structure. The T2D1 robotic arm is constructed by abstracting
the basic T-bar structure and replacing the horizontal compressive elements with basic
D-bar structures.

We begin the chapter by discussing the concept of self-similar iterations. Several
design considerations are proposed for optimizing the weight and deployability of basic
two-dimensional structures. We focus mainly on applications for tensegrity robotics.
Then, the basic T-bar and D-bar structures are modified, resulting in three-dimensional
counterparts for the basic structures. This enables the design and simulation of physically
realizable structures. At this point, we return to the simulation environment and initialize
the T2D1 robotic arm in its packaged state. By implementing the position control law,
we show that we are able to drive the end effector of the robotic arm to a desired location.
This example proves the capability of the newly developed control law and shows that it
is capable of regulating the shape of complex structures.

4.1 Self-Similar Iterations
Self-similar iterations are the result of replacing a geometrical object with yet another
similar geometrical object [3]. We define the iteration complexity q as the number of
times the object’s components are replaced by itself.
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Figure 4.1. T-bar self-similar iterations

Figure 4.2. Two-dimensional T2D1 configuration

As the iteration complexity approaches infinity, the resulting object is called a fractal.
Fractals have been a topic of interest in both art and science for many years, and are
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often found in biological systems. Sea shells are a common example of this [48]. As
such, self-similar iterations have been a common point of interest in the design and
optimization of tensegrity structures. The majority of fractal-based tensegrity design has
been centered around optimizing the mass efficiency of compressive structures [47]. Our
goal here is to extend this area of research by utilizing self-similar iterations to optimize
the dexterity of tensegrity robotic arms.

The T-bar structure has been shown to exhibit a higher mass efficiency than the
D-bar structure [39]. As such, the T-bar serves as a good starting point for designing
a lightweight robotic manipulator. We begin by replacing each horizontal compressive
member in the T-bar structure with a similar T-bar structure. This is depicted in Figure
4.1. We define the T-bar complexity qT as the number of times each compressive member
has been replaced by itself. A T-bar with k stages would have complexity qT = k. Several
design parameters can be tuned to enhance the mechanical properties of the self-similar
T-bar structure. To reduce mass or tune the structural stiffness, the designer may alter
the horizontal and vertical bar lengths `i and `vi as well as change the T-bar angle αi.

One disadvantage of the T-bar structure is that the horizontal compressive members
have a fixed length, making it difficult to efficiently package and deploy the structure. To
improve the deployability and overall dexterity of the structure, we replace the horizontal
compressive elements in the last stage with a D-bar structure of complexity qD = 1. For
a T-bar structure of complexity qT = k, this yields a TkD1 structure. Figure 4.2 shows
the two dimensional representation of of a T2D1 tensegrity structure with T-bar angles
αT1 and αT2, D-bar angle αD, and D-bar length `D.

4.2 Three-Dimensional Systems

(a) 3D T-bar structure, side view (b) 3D D-bar structure, side view

Figure 4.3. Basic three-dimensional structures
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Until now, we have only considered tensegrity structures in two dimensions. In the
pursuit of designing a physically realizable tensegrity robotic arm, we must extend our
developments to three dimensions. One can design three-dimensional extensions of the
basic T-bar and D-bar tensegrity structures by maintaining a similar topology and
utilizing rotational symmetry. The three-dimensional T-bar structure is depicted in
Figure 4.3(a). It has a total of six nodes with five total bar members and nine total string
members. At the center of the structure, the five bars connect at a single Class-5 joint,
which is modeled as a frictionless ball joint. In the middle of the structure, three string
members comprise the outer perimeter to keep tension in the structure. An additional
six strings attach the middle of the structure to the two ends in order to maintain static
stability.

Figure 4.3(b) depicts the three-dimensional D-bar structure, which comprises a total
of five nodes, six total bars and four total strings. There are a total of three Class-2
joints and two Class-3 joints. Three strings forming the outer perimeter of the structure
support compressive loading at the end points while one string attaching the ends of the
structure maintains stability. The inner string member can also be used to deploy the
structure, as we will see in the next section.

4.3 T2D1 Robotic Arm Extension
In the following example, we simulate the deployment of a T2D1 robotic arm by regulating
the positions of certain nodes in the structure. There are a total of 29 nodes in the
structure including the four constrained (pinned) nodes at the base of the structure. This
results in a total of 75 degrees of freedom in the system. The T2D1 robotic arm has a
total of 36 bar members and 46 string members. The control objective matrices L and
R are chosen specifically to regulate only the x-coordinate of all nodes excluding the
four nodes at the base of the structure. Therefore, L ∈ R1×3 and R ∈ R29×25. Because
there are only 25 control objectives and 46 total strings in the structure, the linear
programming problem is underdetermined, which guarantees solutions for the control
variable.
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(a) Packaged T2D1 (b) T2D1 in a deployed configuration

Figure 4.4. T2D1 fractal-based robotic arm deployment

For stability purposes, we have chosen to track a sinusoidal shape trajectory from
t = 0 seconds to t = 3 seconds and a 2-second buffer was added to ensure that the
desired shape has been reached. In other words, the desired node matrix Ȳ was specified
so that the end effector n23 follows a sinusoidal trajectory from its deployed position
to the location x = 7. This was done by specifying the position of the end effector as
x(t) = A(sin(ωt)) with amplitude A and frequency ω and using a kinematics model to
determine the trajectories of the remaining nodes. The resulting trajectories are depicted
in Figure 4.5. The control gains were chosen as Ψ = 20I and Θ = 30I to reduce the rise
time as node coordinates of interest are regulated to the reference trajectory.

51



Figure 4.5. Desired node trajectories

A four image time lapse is provided in Figure 4.6, where we see that the controller
succeeded in driving the end effector n23 to the desired location of x = 7.
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(a) T2D1 arm, t = 0.00 seconds (b) T2D1 arm, t = 1.66 seconds

(c) T2D1 arm, t = 3.33 seconds (d) T2D1 arm, t = 5.00 seconds

Figure 4.6. T2D1 robotic arm position control sequence

The node position histories are depicted in Figure 4.7(a). Only certain nodes were
plotted due to the symmetry of the structure. We can see that all of the plotted nodes
maintained y = 0 throughout the maneuver while nodes n2, n9, n16, and n20, which are
attached to the D-bars, moved from z = 1 to z = 0.5. The node velocity histories are
plotted in Figure 4.7(b), where we see that the end effector reaches a higher peak velocity
than the remaining nodes. The string force density is depicted in Figure 4.7(c). The
force density in string s1 peaks at roughly 45 N/m at t = 1 second. Figure 4.7(d) depicts
the control law residual error history. The control law error residual is near machine
precision, which verifies that the obtained control signal is physically realizable. The
string force densities can be uniquely converted back to the physical control variable
(string tensions) through a nonlinear transformation.
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(a) Node position (b) Node velocity

(c) String force density (d) Control error residual

Figure 4.7. T2D1 robotic arm extension simulation results
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Chapter 5 |
Conclusions and Future Work

5.1 Conclusions
In this thesis research, notable progress has been made towards the advancement of
space-based tensegrity robotic systems. In Chapter 2, a nonlinear dynamic model has
been developed to simulate the dynamics of any structure comprising a network of bar
and string members. By representing the dynamics for Class-1 and Class-K tensegrity
structures in a non-minimal coordinate system, we were able to avoid the computational
errors that can accrue due to the transcendental functions that arise in the minimal
coordinates approach. To verify the model, we simulated the dynamics of the double
pendulum and showed that the resulting state histories correlate well with the analytical
solution. We extended the dynamics model to handle Class-K tensegrity systems by
modeling bar-to-bar contact forces and then created a reduced order model to solve for the
Lagrange multipliers analytically. As a result, the tensegrity dynamics package is capable
of simulating any network of bar and string members. This offers an improvement over
pre-existing dynamics models, which are only capable of simulating Class-1 structures.
By simulating the free response of two fundamental tensegrity structures, the T-bar and
D-bar, we provided preliminary insights into the dynamic behavior of tensegrities about
static equilibria. These fundamental results proved to be useful in later simulations.

In Chapter 3, we built upon the developments of Chapter 2 to create a model-based
shape control law that uses state feedback to regulate the node positions. We specify
control objective matrices to give the designer more freedom in controlling the shape of
a given structure. Most notably, this allows the designer to regulate only specific nodes
in the structure so that the control law is guaranteed to yield feasible solutions. We
derived the error dynamics for position, velocity and acceleration so that they can be
controlled simultaneously in a single control law. By defining the control variable as
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the force density in the strings, we were able to formulate the equations of motion in
control-affine form. This allowed us to formulate the control problem as a linear algebra
problem in which convex optimization can be used to solve for the required string force
densities at each time step. To guarantee unique solutions, one must specify the control
objective matrices specifically so that there are enough strings to perform the desired
maneuver. One disadvantage of this approach is that an additional step is required to
reproduce the physical control variable (string tensions). However, string tensions can be
obtained easily by multiplying the string force density by the string length at each time
step.

At the end of Chapter 3, we implemented the shape control law on the fundamental
T-bar and D-bar structures. In both cases, we showed that the control law was able to
obtain feasible solutions for the string force density by plotting the error residual of the
linear algebra problem at each time step. We discovered that, in some cases, the control
gains must be tuned to avoid instability in the error dynamics. Instability can occur as a
result of commanding large maneuvers between static equilibria. To prevent this from
happening, we recommend specifying state trajectories so that the regions of attraction
are overlapping between the commanded equilibria. In certain cases, the topology of the
structure must be modified to enable the commanded maneuver. For example, the basic
D-bar structure comprises only two strings, making it a highly underactuated system.
To improve the reachability of the structure, we attached two additional strings. While
these modifications to the basic topology can improve overall reachability, the designer
should also consider how collision interference due to the added strings can have the
opposite effect.

Finally, in Chapter 4, we implemented the model-based control law to change the
shape of a very high degree-of-freedom tensegrity robot. A novel T2D1 tensegrity robotic
arm was introduced as a motivating example for the future of space-based tensegrity
structures. We gave a brief overview of self-similar iterations and explained how they can
be used to optimize the mass, stiffness and reachability of a tensegrity structure. The
T2D1 robotic arm was invented by replacing the horizontal compressive elements of the
T-bar with basic D-bar structures. This modification improved the overall reachability
and deployability of the structure.

To showcase the advancements made in this thesis research, we simulated the de-
ployment of the T2D1 robotic arm. With 75 degrees of freedom, this is a very high
degree-of-freedom structure, which serves as a test-piece for the future of tensegrity
robotics. We showed that our control law is capable of extending the structure from a
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stowed configuration to an extended configuration. In the future, structures like this
one could be efficiently packaged in a launch vehicle (at a lower payload cost due to
minimum mass) and deployed at a remote destination. Upon arrival, the robotic arm
could be used to perform operations such as on-orbit servicing or habitat construction.
The robotic arm showcased here is just one of many different applications for deployable
tensegrity structures. The future holds great promise for the design and optimization of
space-based tensegrity structures.
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5.2 Future Work

5.2.1 Experimental Verification

(a) Simulated triplex, side (b) Simulated triplex, top

(c) Experimental triplex, side (d) Experimental triplex, top

Figure 5.1. Hardware implementation of the cylindrical triplex

We are currently developing an experimental testbed for the cylindrical triplex tensegrity
structure depicted in Figure 5.1. This lab-scale structure will be used to physically verify
the model-based shape control law and will serve as a basis for more robust control
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strategies.
The cylindrical triplex is one of the most simple 3-dimensional tensegrity topologies,

making it a suitable candidate for the transition of control laws from numerical simulation
to physical implementation. The triplex is a member of a broader class of cylindrical
tensegrity structures, which get their name from the ability to fit inside a cylinder. Since
its inception as an art piece, the cylindrical triplex tensegrity has been studied for its
potential as a lightweight, space-based, antenna [49]. This has led to developments in the
static analysis [50] and numerical form-finding of the triplex’s equilibrated shapes [51].

Our goal is to use state feedback to maneuver the triplex between equilibrated shapes.
To provide closed-loop feedback of the node positions, a stereo camera will be mounted
above the structure, as depicted in Figure 5.2. Based on previous work [52], computer
vision will be used to track the (x,y) position of nodes in the structure. Z-position data
will be obtained by comparing images taken by the different lenses of the stereo camera.
The camera must be placed at an adequate height to account for the focal length of the
camera.

Figure 5.2. Visual feedback of the cylindrical triplex
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5.2.2 Optimal and Robust Control Strategies

Although the model-based control law has proven to be successful in computer simulation,
additional constraints arise in the physical actuation of tensegrity structures. One
such constraint is member interference. Bar and string member collisions will cause
un-modeled dynamics to arise in the structure. This could eventually lead to control
law instability and even member failure. In the future, it is suggested that a trajectory
optimizer is implemented to avoid member collisions. To this end, one may consider
solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation to establish a link
between reachability and viability [53]

One advantage of having access to physical hardware is the ability to produce input-
output data for the system. If a tensegrity structure were to be implemented in outer
space, it is undeniable that structural vibrations will propagate throughout the lightly
damped string network. To account for these unmodeled dynamics, future work may
involve preliminary system identification on the experimental triplex structure. Several
approaches exist for the identification of linear and time-varying linear systems [54–56].
Though it is not currently understood whether these algorithms would capture the
nonlinear dynamics of tensegrity systems.
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Appendix A|
Elastic String Modeling

We prescribe tension in a given string by stretching it beyond its rest length. Assuming
that strings are Hookean and follow a viscous friction damping model, the tension in the
ith string is written as

‖ti‖ = ki (‖si‖ − ρi) + zi
sTi ṡi
‖si‖

(A.1)

where ρi is the rest length of the ith string, ki is the extensional stiffness, zi is the
damping constant, and si is the string vector written in inertial coordinates. In this work,
the control variable is defined as the string ‘force density’. We arrive at the string force
density in the ith string by simply dividing the tension by the length of the string as

γi = ‖ti‖
‖si‖

= ki

(
1− ρi
‖si‖

)
+ zi

sTi ṡi

‖si‖2 . (A.2)

If ρi > ‖si‖, Eq. (A.2) yields a negative value and the string tension should be set to
zero, as a string can never push along its length. Now, writing Eqs. (A.1) and (A.2) in
matrix form, we have

γ̂ =
(
I −

⌊
STS

⌋− 1
2 ρ̂
)
k̂ +

⌊
ST Ṡ

⌋ ⌊
STS

⌋−1
ẑ,

T = Sγ̂ = S
(
I −

⌊
STS

⌋− 1
2 ρ̂
)
k̂ + S

⌊
ST Ṡ

⌋ ⌊
STS

⌋−1
ẑ.

(A.3)

where the ith column of T is the string tension vector in the ith string. Eq. (A.3) can be
written more compactly as

T = Sγ̂ = (S − S0) k̂ + S
⌊
ST Ṡ

⌋ ⌊
STS

⌋−1
ẑ (A.4)

where S0 = S
⌊
STS

⌋− 1
2 ρ̂ represents the matrix containing the rest length vectors
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Appendix B|
Tensegrity Dynamics Flow Charts

Figure B.1. Class-1 dynamics flow chart
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Figure B.2. Class-k dynamics flow chart
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Appendix C|
Analytical Solution for the Class-
K Lagrange Multiplier

Our goal is to solve analytically for the 3 × c matrix of Lagrange multipliers Ω that
satisfies the system dynamics and c Class-k constraints. The developments here come
directly from [20]. We proceed by substituting K and λ̂ into the constraint equation (Eq.
(2.48)) to write the equation in terms of Ω and known variables only. Then, we separate
the known variables from the coefficients of Ω and solve for the constraint multipliers in
a linear algebra problem.

Lemma 1 The Lagrange multiplier that satisfies Eq. (2.48) can be computed as

ω1

ω2
...
ωc

 =


β∑
i=1

1
2l2i
CT:,i ⊗

(
bi ⊗ (biDi,:)T

)
−


E ⊗ eT1
E ⊗ eT2
E ⊗ eT3



−1 
AT1,:
AT2,:
AT3,:

 , (C.1)

where ωi is the ith column of Ω, C = P TCT
b , D = CbM

−1
s U1, E = P TM−1

s U1, A =
−Sγ̂CsM−1

s U1 +B
⌊

1
2 l̂
−2BT (Sγ̂Cs −W )CT

b − l̂−2ĴḂT Ḃ
⌋
CbM

−1
s U1 +WM−1

s U1 ∈ R3×c,
and ⊗ denotes the Kronecker Product [57].

Proof We begin by substituting Eq. (2.41c) into Eq. (2.48) as

N
(
CT
s γ̂Cs − CT

b λ̂Cb
)
M−1U1 − ΩP TM−1U1 = WM−1U1 (C.2)

Further substituting B = NCT
b and S = NCT

s , and expanding:
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Sγ̂CsM
−1U1 −Bλ̂CbM

−1U1 − ΩP TM−1U1 = WM−1U1 (C.3)

Now, substituting Eq. (2.41d) into Eq. (C.3) yields

1
2B

⌊
l̂−2BTΩP TCT

b

⌋
CbM

−1
s U1 − ΩP TM−1U1

= −Sγ̂CsM−1U1 +B
⌊1

2 l̂
−2BT (Sγ̂Cs −W )CT

b − l̂−2ĴḂT Ḃ
⌋
CbM

−1
s U1

+WM−1U1 = A (C.4)

By defining C = P TCT
b , D = CbM

−1
s U1, E = P TM−1

s U1, Eq. (C.4) can be written in
terms of Ω and known variables only as

1
2B

⌊
l̂−2BTΩC

⌋
D − ΩE = A (C.5)

In order to solve for the Lagrange multipliers, Ω must first be broken down into Ω =[
ω1 ω2 · · · ωc

]
∈ R3×c as

F = 1
2
⌊
l̂−2BTΩC

⌋
=



. . . 0 0

0
c∑
j=1

Cj,i
2l2i

bTi ωj 0

0 0 . . .

 (C.6)

Therefore, the element on themth row and nth column of the matrix G = 1
2B

⌊
l̂−2BTΩC

⌋
D,

for m ∈ {1, 2, 3} and n ∈ {1, 2, . . . , c} is

Gm,n = bm,1F1,1D1,n + bm,2F2,2D2,n + · · ·+ bm,βFβ,βDβ,n =
c∑
j=1

β∑
i=1

bm,iDi,n
Cj,i
2l2i

bTi ωj. (C.7)

Similarly, the second term in Eq. (C.5) can be expanded as

ΩE =
[
ω1 ω2 · · · ωc

]
E = ω1E1,: + ω2E2,: + · · ·+ ωcEc,: =

c∑
j=1

ωjEj,:. (C.8)

The element on the mth row and nth column of this matrix is
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(ΩE)m,n =
c∑
j=1

eTmωjEj,n =
c∑
j=1
Ej,neTmωj. (C.9)

Now, substituting the (m,n)th element from Eq. (C.7) and Eq. (C.9) into Eq. (C.5)
yields

c∑
j=1

β∑
i=1

bm,iDi,n
Cj,i
2l2i

bTi ωj −
c∑
j=1
Ej,neTmωj = Am,n

⇒
c∑
j=1

 β∑
i=1

bm,iDi,nCj,i
2l2i

bTi − Ej,neTm

ωj = Am,n. (C.10)

This can be rearranged into the matrix equation:

Θ3c×3c


ω1

ω2
...
ωnc

 =


AT1,:
AT2,:
AT3,:

 (C.11)

where


AT1,:
AT2,:
AT3,:

 =



β∑
i=1

b1,iC1,i

2l2i
Di,:bTi

β∑
i=1

b1,iC2,i

2l2i
Di,:bTi · · ·

β∑
i=1

b1,iCc,i
2l2i
Di,:bTi

β∑
i=1

b2,iC1,i

2l2i
Di,:bTi

β∑
i=1

b2,iC2,i

2l2i
Di,:bTi · · ·

β∑
i=1

b2,iCc,i
2l2i
Di,:bTi

β∑
i=1

b3,iC1,i

2l2i
Di,:bTi

β∑
i=1

b3,iC2,i

2l2i
Di,:bTi · · ·

β∑
i=1

b3,iCc,i
2l2i
Di,:bTi



×


ω1

ω2
...
ωc

−

ET1,:eT1 ET2,:eT1 · · · ETc,:eT1
ET1,:eT2 ET2,:eT2 · · · ETc,:eT2
ET1,:eT3 ET2,:eT3 · · · ETc,:eT3



ω1

ω2
...
ωc

 , (C.12)


AT1,:
AT2,:
AT3,:

 =
([

β∑
i=1

C1,i

2l2i
bi ⊗ (biDi,:)T

β∑
i=1

C2,i

2l2i
bi ⊗ (biDi,:)T · · ·

β∑
i=1

Cc,i
2l2i

bi ⊗ (biDi,:)T
]
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−


E ⊗ eT1
E ⊗ eT2
E ⊗ eT3




ω1

ω2
...
ωc

 , (C.13)


AT1,:
AT2,:
AT3,:

 =


β∑
i=1

1
2l2i
CT:,i ⊗

(
bi ⊗ (biDi,:)T

)
−


E ⊗ eT1
E ⊗ eT2
E ⊗ eT3




︸ ︷︷ ︸
Θ3c×3c


ω1

ω2
...
ωc

 . (C.14)

The above linear algebra problem represents 3c equations for 3c unknowns and can be
solved for the Lagrange multipliers by taking the inverse.
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