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Abstract

Overall, the goal of this project is to make use of the machine learning algorithm of deep
neural networks (DNNs) to solve differential equations. Specifically, this project aims to solve two
different second-order differential equations: Poisson and Ginzburg-Landau equations. Results for
the Poisson equation show an accurate solution can be acquired using a single layer network with
no activation function due to the linearity of the equation. These results demonstrate that finding
solutions to differential equations is possible through the use of deep neural networks. For the
Ginzburg-Landau equation, two different loss functions are utilized with adjustments being made
to account for boundary conditions and derivatives. Results indicate an accurate approximation
for various mesh sizes (i.e., coarse versus fine mesh) and allow for the comparison of network
architectures for each mesh size in order to determine the parameters necessary for an accurate
solution.
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Chapter 1

Defining the Project
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1.1 Introduction
Overall, the idea of this project is to find an approximate solution to a differential equation in

a space of functions by minimizing a loss function with gradient descent method. This effectively
converts the differential equation into an optimization problem that can be solved numerically.
In other words, when the loss function provides a sufficiently small result, this implies that the
approximation is sufficiently close to the true solution of the differential equation. In order to do
these computations, deep neural networks (DNNs) are utilized with the network itself consisting
of n input nodes based on the dimension of the equation’s domain. The DNN then outputs to
the last layer yielding the approximate solution. This solution is achieved by training the DNN
with a specific loss function that is based in part on the (boundary and initial) conditions specified
within the differential equation. Use of backpropagation then allows for efficient correction of the
weight matrices within the deep neural network so that all derivatives necessary for the differential
equation can be obtained.

In the past, methods for solving PDEs have included finite difference method (FDM) and finite
element method (FEM). While FDM is a fairly intuitive and economical way to compute such
solutions, it also tends to encounter issues when boundary conditions become increasingly com-
plex. In addition, FEM tends to involve intensive coding techniques that may delay its efficient
implementation. The method of using DNNs to solve differential equations, however, provides
several advantages over its finite difference and finite element counterparts. One such advantage
includes that DNNs are at least as good as finite element method when it comes to dealing with
dimensionality. This can be seen by comparing the number of mesh points in FEM to the num-
ber of parameters involved with the DNN. This advantage can become especially apparent when
considering higher dimensions, where DNNs perform much better than other methods. For more
advantages of DNNs, see Section 2.3.

Since solving ordinary differential equations (ODEs) remains a central feature to problems in
engineering, physics, biology, etc. acquiring robust algorithms for solving ODEs is crucial and
deep neural networks provide such an algorithm. Overall, the idea is to create a framework to
approximate a differential operator for a function depending on many parameters, determine the
optimal DNN parameters for acquiring the best numerical approximation, and show that when the
parameters are sufficiently optimized, the DNN framework provides good approximations to the
solution of the ODE.

1.2 Preliminaries
We first introduce the concept of differential operators in order to build the appropriate back-

ground knowledge for how to solve differential equations with DNNs. A differential operator is a
function of differentiation operators that act on a functional space. Perhaps, the simplest way to un-
derstand differential operators is through the following examples. Consider a differential operator
of the form:

A = a(x)
dn

dxn
+ b(x)

dn−1

dxn−1
. (1.1)
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This operator is applied to an (at least) nth differentiable function which then returns a new function
after the operator is applied. Another example would be of the form:

A(F (x)) =
dF

dx
= f(x) (1.2)

which simply takes the derivative of a function F (x). If we take F (0) = 0, then we can define the
inverse operator:

A−1f =

∫ x

0

f(t) dt = F (x)− F (0) = F (x) (1.3)

where A−1 is commonly known as taking the integral operator on the function f .
These examples help to motivate the idea of being able to find an inverse operator so as to

solve for an unknown function. In this project, we will aim to find u in the differential equation
Au(x) = f(x) with boundary conditions, where A is a differential operator, by finding the inverse
operator A−1. That is, we will use DNNs to approximate u = A−1f .

1.3 General Differential Equation
We will consider ODE boundary value problems of the form:

A(u(x)) = f(x), x ∈ (0, 1) (1.4)
u(0) = a (1.5)
u(1) = b (1.6)

where A is a differential operator (can be nonlinear) and u,f are from the appropriate functional
spaces. In particular, for this project, we have A as a second order differential operator (i.e.,
Laplacian, ∂2

∂x2 + ∂
∂x

, etc.), u ∈ C2([0, 1]), and f ∈ C0([0, 1]). Note that a function in Ck([0, 1])
is defined to be one with the property that all derivatives up to and including k exist and are
continuous on the interval [0, 1]. Thus, C0([0, 1]) is all continuous functions on [0, 1]. The goal is
then to use a DNN to numerically approximate A−1f = F (f), where F maps f into the solution u
(if such F exists). Thus, given data f, a, b, we can quickly calculate an approximation to u = A−1f .

1.4 Results from Literature
In the past, several research studies on solving differential equations have incorporated deep

neural networks into their algorithms for approximating a solution. In one study by Aarts and van
der Veer [1], a method using a single hidden layer feedforward network was introduced with the
hopes of solving second-order linear differential equations. In order to solve the equations, three
deep neural networks were run simultaneously with each of the three networks accounting for one
of the function and its derivatives. It is important to note that the differential equations were time
dependent with both Dirichlet and Neumann boundary conditions (BCs). One differential equation
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which was investigated was the model for damped free vibration of the form:

d2y

dt2
+ 4

dy

dt
+ 4y = 0, t ∈ [0, 4] (1.7)

y(0) = 1 (1.8)
dy

dt
(0) = 1 (1.9)

One network accounted for the Dirichlet BCs in (1.8) and was trained using a set consisting of
input from a mesh on the points t ∈ [0, 4] and having 1 for all outputs. Another network then used
the same inputs as the first network but handled (1.9) by having all inputs trained to produce 1
as the output. The third network then approximated the second derivative so that the combination
of all three networks would produce the desired solution. That is, dϕ

dt
and d2ϕ

dt2
approximate dy

dt

and d2y
dt2

, where ϕ is the DNN. Further, the number of neurons per hidden layer for the networks
approximating the boundary conditions were taken to be 6. Results for this approach indicated
that all weights and biases needed to be restricted to the interval [−5, 5]. With this restriction, the
network approximation did tend to resemble that of the analytic solution, implying that deep neural
networks can be used to solve differential equations. Perhaps, some of the biggest drawbacks of
this study included the need for three networks to be run simultaneously. Thus, the computational
time and complexity of implementing this network could be a problem for higher dimensional
equations. Another drawback included the need for all outputs to have a value 1 in order to handle
the boundary conditions. This poses another restriction on the generalizability of the model. Lastly,
the weights of the network had to undergo a restriction to the interval [−5, 5] which leads to the
question of what would occur without these constraints [1].

Other work on solving differential equations with deep neural networks has been conducted
by Dockhorn [4] through an investigation of how to solve the Poisson and Navier-Stokes equa-
tions. The goal of this study was to find the DNN approximation to the solution of the differential
equation by minimizing the loss function

L(θ) =
1

Nint

Nint∑
i=1

(Aû(xi)− f(xi))
2 +

1

Nbou

Nbou∑
j=1

(û(sj)− g(sj))
2 (1.10)

Here A is a differential operator, u is the function being approximated, f and g are the known
right-hand sides of the differential equation, xi are points in the domain Ω, and sj are points on
the boundary ∂Ω. This loss function takes a penalty approach to the optimization as it taxes the
boundary conditions of the differential equation in addition to the equation itself. With solutions to
both differential equations being known, Dockhorn was able to compare the DNN approximation
to the true solution by making use of a finite difference inspired scheme. Upon investigation of the
Poisson equation in two dimensions, results indicated that the most accurate approximation could
be made via a network with one hidden layer with the maximum number of iterations being placed
at 20000. This error was found to be of order around 10−5 to 10−6. In particular, the DNN ap-
proximation encountered the most issues when attempting to capture the nature of the differential
equation at the corners of the boundary. In addition, the correlation between the DNN approxima-
tion and the finite difference approximation was rather small which indicated that future work may
need to take the direction of modifying the loss function. This became especially apparent as the
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Navier-Stokes equation was able to be solved with a similar order of error but a higher correlation
in the approximation and finite difference estimation [4].

Another study that has discussed the implications of solving differential equations with deep
neural networks is one study by Lagaris, Likas, and Fotiadis [6]. In this study, the researchers
considered how a differential equation can be broken into two parts with the first satisfying the
boundary conditions and containing no changeable parameters and the second being a feedforward
deep neural network that accounts of the other portions of the equation. The design of this study
suggested to minimize the error in the function:

E(p̄) =
∑
i

(
d2u(xi)

dx2
− f(xi, u(xi),

du(xi)

dx
))2 (1.11)

where p̄ are the weight parameters to be optimized. This loss function was constructed specifically
for the second order ODE of the form:

d2u(x)

dx2
= f(x, u,

du

dx
) (1.12)

with Dirichlet BCs. By expressing the loss function in this way, the researchers were able to elim-
inate the need for a training set and take an unsupervised learning approach. Note that this study
also discussed how to solve higher dimensional ODEs as well as PDEs. Overall, this study was
able to determine several advantages of using deep neural networks to solve differential equations.
The first of such advantages includes that DNNs are able to handle higher dimensional problems
much easier than that of finite element methods. When dimensionality increases, the number of
mesh points also increases leading methods that solve the equation locally to have large increases
to computational time. However, with deep neural networks, the number of objects in the training
set is the only aspect that changes with dimensionality and the ability to perform calculations in
parallel eliminates the need for any extensive computational time. Another advantage found in
this study is that finite element methods become less accurate on a coarse mesh when compared
with the method of deep neural networks. In fact, this study found that in two dimensions, DNNs
could handle a 10x10 point mesh whereas finite element method required a 18x18 point mesh to
achieve an accurate solution. Lastly, this study suggested that based on the results, the compu-
tational time needed for using deep neural networks had a linear relationship as the number of
parameters increased whereas finite element methods experienced an increase in computational
time that appeared to be quadratic [6].

Additionally, the study by Pedro et al. [7] also utilized an unsupervised approach to solving
differential equations with deep neural networks. In this study, the researchers aimed to solve the
one-dimensional advection equation as well as the two-dimensional advection-diffusion equation.
In order to implement unsupervised learning, the inputs to the network were taken to be the spacial
independent variables as well as the time variable with the corresponding outputs being ϕ(x̄, t)
where ϕ is the dependent variable. After feeding the inputs through the network, the dependent
variable and the appropriate derivatives of the dependent variable at a specific point could be eval-
uated. The loss function was then built by taking these derivatives to match those of the original
differential equation and minimizing to get a value close to 0. In addition, a loss function based
on the mean squared error was then constructed to approximate the boundary conditions. The
researchers reported that the results from training could then be used to obtain an acceptable solu-
tion to other conditions not seen in training. However, there was no indication as to exactly what
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constitutes the solution being acceptable. In addition, while taking this unsupervised approach
eliminated the need for a training set, the researchers did encompass several drawbacks that moti-
vate the need for a supervised method. The first of such concerns was that multiple loss functions
had to be implemented in order to get an approximation. This increases the computational time
necessary as well as the difficulty of the problem for more complex differential equations. Another
drawback was the need to re-train for changing boundary conditions as one of the loss functions
depended directly on the given conditions [7].

Overall, this previous research directs the design for this project in several ways. The work of
Aarts and van der Veer [1] indicates the need for the integration into one deep neural network that
can solve the differential equation rather than three separate networks. In addition, more flexibility
is needed when dealing with different boundary conditions. In other words, if the boundary condi-
tion value is changed, the network needs to be better suited to handle these modifications without
needing to be re-trained. The results of Pedro et al. [7] showed a similar concern with the lack
of adaptability to changing boundary conditions. By taking a supervised approach, a training set
consisting of a variety of boundary conditions can be used so that when inputs not from the training
set are encountered, the network is able to approximate a solution without re-training. In addition,
the study conducted by Dockhorn [4] suggests that a loss function of the form (1.10) may be used
to acquire an accurate approximation to the differential equation. This work also motivates the idea
that equations such as the Poisson equation may have some underlying property that requires less
hidden layers in order to get an accurate approximation. There may also need to be some other hy-
perparameter that aims to control the approximation at the corners of the boundary. Additionally,
the Lagaris, Likas, and Fotiadis [6] study delineates several advantages to utilizing DNNs, where
DNNs are primarily able to eliminate issues pertaining to dimensionality and computational time.
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Chapter 2

Deep Neural Network (DNN)
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ps

α1i,j
α2i,j

X1Figure 2.1: Diagram of DNN w/ 2 layer functions, X1 mapping from the left column of neurons to
the middle, and X2 mapping from the middle column of neurons to the right.

2.1 Project Design for Deep Neural Network

We introduce a deep neural network (DNN) ϕα(f) where α are the parameters and f ∈
C0([0, 1]) are the input. We have that ϕα is a composition with:

ϕα = XM ◦XM−1 ◦ · · · ◦X1 (2.1)

where X i : RNi−1 → RNi is a layer function. First, it is important to note that there are seemingly
two definitions for a “layer” which must be distinguished. Mathematically, a “layer” is actually a
layer function of the form X i : RNi−1 → RNi . In Figure 2.1, a mathematical layer function can be
thought of as the lines connecting the green and blue dots, where the dots are known as neurons
(or sometimes called nodes). Geometrically, a “layer” is a column of neurons. In Figure 2.1, a
geometric layer would be a column of neurons of the same color (e.g., all green dots). Note that
when just the word “layer” is used in this project, it is referring to the geometric definition (as this
is the more intuitive understanding).

Additionally, we also define the neurons in the input to X1 as the input layer, neurons in each
following layer as a hidden layer, and neurons in the last layer, or output of XM , as the output layer.
The deep in deep neural network refers to many layers (i.e., M > 1 in the DNN composition of
mathematical layer functions). In this project, we considered:

• Parameters α = (α1, · · · , αM) for ϕα, also called weights, where αi is an Ni ×Ni−1 matrix,

• Mathematical layer functions given by X i(y) = λ̄ ◦ Y i(y) for y ∈ RNi−1 where:

– Y i : RNi−1 → RNi is a linear map with matrix αi,
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– λ̄ : RNi → RNi is a non-linear activation function, e.g. ReLU (see Section 2.2.2).

Note that Ni is the number of neurons in the geometric layer i (where geometric layer 0 is the input
layer and geometric layer M is the output layer).

The objective of this project was then to approximate the inverse differential operator A−1f :
C0([0, 1]) → C2([0, 1]) where A−1 was unknown for most f ∈ C0([0, 1]). In other words, the
goal was to find α so that ϕα(f) approximated A−1 for each f ∈ C0([0, 1]). We then wanted the
difference between ϕα(f) and A−1f to be minimized via choosing an optimal α.

Since computers can only output finite-dimensional objects, we utilized a discretization so that
ϕα(f) ∈ RNM , NM finite. This left the question of how we could compute the difference between
ϕα(f) and A−1f ∈ C2([0, 1])? The solution was to discretize u = A−1f , i.e.

u → ũ =

(
u

(
1

NM + 1

)
, u

(
2

NM + 1

)
, · · · , u

(
NM

NM + 1

))
∈ RNM (2.2)

One example of this discretization would be if we discretize u and f on the interval [0, 1] so that
we only see the values at every 0.1,

ũ = {u(0), u(0.1), u(0.2), u(0.3), . . . , u(0.9), u(1)} (2.3)
f̃ = {f(0), f(0.1), f(0.2), f(0.3), . . . , f(0.9), f(1)} (2.4)

The “best” network (α) was then found by minimizing the following error called loss:

L̄(α) =
1

|T |
∑
f∈T

∥ũ− ϕα(f)∥2ℓ2 (2.5)

on a training set T ⊂ C2([0, 1]) where the target u = A−1f was known for each f ∈ T . Note that
the ℓ2 norm of a vector x̄ = (x1, x2, ..., xn) is given by:

∥x̄∥ℓ2 =

√√√√ n∑
i=1

|xi|2. (2.6)

Minimizing the loss in (2.5) is called training because it is an iterative process during which the
DNN continuously improves. It is typically done through some form of gradient descent, i.e. the
starting parameters α(0) are chosen at random and refined through the iteration:

α(n+1) = α(n) − τ∇α(n)L̄ (2.7)

where τ ∈ R is called the learning rate. In particular, we made use of stochastic gradient descent
(SGD) where L̄ was calculated as an average over T (n) ⊂ T , where T (n) was randomly chosen
with fixed size for each iteration (also called a batch). Note that SGD is often more efficient than
gradient descent [2].

Why did this work? Because for optimal α, the DNN ϕα(f) was similar to A−1f even when
A−1 was unknown. That is, for every ϵ > 0 there existed δ > 0 such that if loss L̄ < δ then
|u− ϕα(f)| < ϵ for all f /∈ T as suggested by [3].
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2.2 General Structural Components

2.2.1 Hidden Layers
The most commonly altered component of the deep neural networks in this project was the

number of hidden layers in the network as well as the number of neurons in each layer. First, note
that the deep neural networks in this project were all feedforward networks meaning each neuron
in the previous layer was connected to each neuron in the following layer [5]. The number of
hidden layers was typically placed between 2 to 5 so as to keep the network running efficiently. As
a whole, the general deep neural network scheme was to have a decreasing number of neurons in
each layer throughout the hidden layers. The number of neurons per layer typically ranged between
16 and 2000 depending on the dimensions of the input and output data. Many of the networks also
used the following scheme of varying the layer size depending on the input data dimension (N):

N + 2 (input with BCs) −→ 1.5N −→ 1.3N −→ 1.1N −→ M (output) (2.8)

It is important to note that the input data sizes were based on the partition of the mesh being used
which was either considered fine (1024) or coarse (16).

Overall, these structures were chosen because we wanted to ensure that the network itself was
not too large with the goal of keeping computational time small. For the non-linear ODE we also
needed at least one hidden layer due to the non-linear nature of the equation. This also explains
the lack of hidden layers necessary for the linear ODE (results explained further in Chapter 3). In
addition, the second layer of the network also needed to store information on the first and second
derivatives in order to find the solution.

2.2.2 Activation Function
For most of the deep neural networks in this project, the Rectified Linear Unit (ReLU) activa-

tion function λ(x) was used. If we consider just one dimension, without loss of generality, ReLU
is characterized as a piecewise linear function that will either output zero or a positive real number
depending on if the input is negative/zero or positive respectively [2].

Figure 2.2: Graph courtesy [8]
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In addition to ReLU, we also utilized the Gaussian Error Linear Units (GELU) function. This
function is similar in nature to ReLU, excluding points around 0. In particular, this activation
function is based on the cumulative distribution function for the Gaussian (normal) distribution.
The goal of using GELU was to smooth out the DNN approximation since the function itself does
not have the corner that is present in the ReLU function [2].

Figure 2.3: Graph courtesy [8]

Note that in higher dimensions, these activation functions are applied component-wise to the
components of a vector. For example, if we have the vector x̄ = (1,−2, 3), then for the ReLU
activation function we have λ̄(x̄) = (λ(1), λ(−2), λ(3)) = (1, 0, 3) [2].

2.2.3 Momentum
Momentum is an adaption to the method of stochastic gradient descent that works to prevent lo-

cal minima from being reached while the DNN is minimizing the error. This value typically ranges
between 0 and 1 with larger values indicating that the network is using more information (magni-
tude and direction) from the previous step’s gradient to determine the magnitude and direction of
the current step size. In other words, momentum acts as a hyperparameter that uses information
from previous gradient calculations to update the current iteration. Note that if the value for mo-
mentum is 0 then this is simply a DNN with no momentum. Perhaps, the most intuitive way to
understand momentum in a deep neural network is to consider a bicycle going down a hill. As the
bicycle travels down the hill, imagine the rider applying the brakes as it approaches a local mini-
mum. The bicycle will slow down due to the braking as it approaches the local minimum but the
momentum, in terms of physics, will force the bicycle to skid past this point as the tires become
locked up. This causes the bicycle to continue on to the global minimum. Similarly, the DNN
with momentum will try to stop (similar to the bicycle braking) at a local minimum. However, the
momentum will force the error to move past any local minima (similar to the bicycle continuing
to skid through the local minimum) and continue in the updated direction until, if the momentum
factor is chosen correctly, it arrives at the global minimum. Caution must be taken with using
momentum, however, as too much momentum may cause oscillations for unstable systems [2]. In
this project, the momentum value was set to 0.9 for all deep neural networks.
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2.2.4 Learning Rate
The learning rate is a hyper-parameter that controls how much the weights within the deep

neural network are updated based on the error found. It is important to note that too large of
a learning rate can result in unstable training whereas too small of a rate can cause the training
process to stall out. In other words, the learning rate affects the convergence rate of the network to
the solution [2]. Values for the learning rate typically range between 0.0-1.0 and in our case were
typically placed at 0.001 and 0.00001 for the linear ODE. In addition, for the non-linear ODE,
we used two different adjusted learning rates in order to help train the network. The first adjusted
rate implemented involved the rate being cut in half every 50 epochs. This change prevented the
learning rate from updating the weights too much resulting in a more stable deep neural network.
This was tested on the non-linear ODE as the error appeared to oscillate after 80-100 epochs which
may be a result of the learning rate. We then transitioned to a learning rate that was more adapted
to the network results as it was calculated by picking the starting value (τ0) to be 0.01 and updating
τ by finding:

max[(
CurrentTrainingSetLoss

OriginalTrainingSetLoss
)1/2 ∗ τ0, 0.0005] (2.9)

2.3 Motivation for Utilizing DNNs
When attempting to solve differential equations, there is often an issue, known as the “Curse

of Dimensionality,” which involves the problem becoming exponentially more difficult in higher
dimensions for traditional algorithms (finite difference, finite element, etc.). This is likely due to
the fact that differential equation solving algorithms approximate the solution on a grid or a col-
lection of points in a region of Ω ⊂ Rn. Therefore, traditional methods require a small distance
between points for an accurate approximation. So as n increases, these algorithms need exponen-
tially more points to maintain small distance between points. With this in mind, DNNs are more
robust to maintaining the distances between points in the grid as volume increases when compared
with traditional algorithms.

An additional advantage of DNNs arises when solving an ODE such as (1.4) where f is vari-
able. For example, if one uses a traditional algorithm to solve for u, one must repeat the process
from the beginning for every f , taking time for each use. On the other hand, after some initial
computation time, a DNN can quickly output a solution u for any input f .

In addition, once a DNN is trained, it can compute the solution to (1.4)-(1.6) very quickly for
a given f . That is, the DNN only needs to apply matrix multiplication and activation functions in
order to find a solution. This typically takes less than a second for even very large networks. In
contrast, when considering complex nonlinear differential equations, solving via finite elements or
finite difference methods can take a much longer time, even days or weeks.

Lastly, by utilizing DNNs, we gain the advantage of easy customization associated with DNNs.
In particular, we may easily change the number of layers, layer size, activation function, learning
rate, etc. to best suit the given differential equation.

While using DNNs has its advantages, there are several disadvantages that must be addressed.
Perhaps, the most prominent one involves the long duration of time DNN may need to train. In
addition, we do not know a priori if the DNN will generalize well to new functions, f , sufficiently
different from those of the training set.
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Chapter 3

Differential Equations and Results
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3.1 Training Set Generation
For each differential equation considered, a training set T was created by randomly generating

a collection of C2 functions u1, u2, · · · , uN for the given equation and calculating fi = Aui for
each i (satisfying boundary conditions). Thus, the training set T consisted of pairs of the form:

T = {(u1, Au1), (u2, Au2), · · · , (uN , AuN)}. (3.1)

Each function ui was constructed as a fourth-degree polynomial whose coefficients were generated
randomly from a Gaussian distribution (mean=0, sd=1). Upon this generation, the training and test
sets then consisted of input data f and exact solutions u that could be used to determine the solution
of the differential equation.

For example, if we select 10 solutions from 4th degree polynomials with integer coefficients
between 0 and 5

{u1, u2, . . . , u10} = {2x4 + x2 + 5x+ 1, . . . , 4x4 + 2x3 + 2x2 + 4x}. (3.2)

Then for fi := Aui with A = − d2

dx2
, we would obtain

T = {(u1, Au1), · · · , (u10, Au10)} (3.3)
= {(2x4 + x2 + 5x+ 1,−24x2 − 2), . . . , (3.4)
(4x4 + 2x3 + 2x2 + 4x,−48x2 − 12x− 4)}. (3.5)

Another such example would be if we again select 10 solutions from 4th degree polynomials with
integer coefficients between 0 and 5

{u1, u2, . . . , u10} = {2x4, . . . , x4 + 1}. (3.6)

Then with Ginzburg-Landau differential equation
d2u

dx2
+u−u3 = f and fi = Aui we would obtain

T = {(u1, Au1), · · · , (u10, Au10)} (3.7)
= {(2x4,−8x12 + 2x4 + 24x2), . . . , (3.8)
(x4 + 1,−x12 − 3x8 − 2x4 + 12x2)}. (3.9)

Overall, 80% of T in (3.1) constituted the training set and was used to find optimal parameters
α(end) for the DNN. The remaining 20% of T comprised the test set and was used to evaluate the
accuracy of ϕ(α(end), ·). This 80/20 split is a typical choice for machine learning algorithms in
DNN training. It is also important to note that all randomly generated numbers were acquired
from different generation seeds. Lastly, the boundary conditions were chosen to match the ui at
the endpoints 0 and 1. After training the DNN, the mean squared error was calculated for:

• training set w/ initial parameters α(0)

• training set w/ parameters α(end) at the end of training

• test set w/ parameters α(end)

We then calculated the relative ℓ2 error for training and test sets:

Relative ℓ2 error =
L̄

1
|T |

∑
ũi∈T ∥ũi∥2ℓ2
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3.2 Linear ODE
The first type of differential equation solved by the deep neural network was the linear second-

order ODE:

u′′ = f(x) in (0, 1) (3.10)
u(0) = a (3.11)
u(1) = b (3.12)

In this ODE, we have u ∈ C2([0, 1]) and f ∈ C0([0, 1]) and the equation itself is known as the
Poisson equation which has connections to electrostatics, holomorphic functions, and more.

First, it is important to note that we originally tried to solve the differential equations with the
deep neural network software made available by the MatLAB Deep Learning Toolbox. However,
after many attempts on a computer with 4 i7 cpu, the network took almost an hour to run one
iteration. As we were unable to resolve this issue of slow computing time, a transition to the
Python-based Jupyter Notebook was necessary. This transition was successful in that we were able
to significantly reduce the computational time necessary to run the DNN.

After training over 30 different DNNs for the linear ODE, we determined it could be solved
by a 1-layer (rather than deep) neural network with no activation function. Overall, the DNN
training time was measured in epochs where 1 epoch consists of enough iterations so that each
element of the training set can be chosen once for stochastic gradient descent. For the linear
ODE, a network with a single linear layer provided an error of about 10−4 after a couple hundred
epochs. This single linear layer neural network connects the input directly to the output with
no hidden layers or activation function and is sometimes called support vector machine. This
network structure outperformed any of the networks tested containing multiple layers with the
ReLU activation function.

Overall, we concluded the results for the single layer network performed better than the deep
neural networks due to the linear nature of the ODE. In other words, it is best to approximate the

linear operator
(

d2

dx2

)−1

with a linear function with no nonlinear activation function, e.g., ReLU.
These results can also be seen in Figures 3.1 and 3.2. In particular, Figure 3.1 illustrates the true
solution of the ODE (blue) versus the solution approximated by the single layer network (red).

These results are similar to those acquired in the study by Dockhorn [4] in that Dockhorn also
found the Poisson equation to require a rather small network in order to obtain a solution. In the
study, one hidden layer was used to find a solution with error 10−5. The results of this project then
indicated that, perhaps, no hidden layers are required for the network to find an accurate solution.
This idea is backed on the premise that the equation itself is linear and that a non-linear scheme
could be leading to less accuracy.

In addition, when DNNs with multiple layers and the ReLU activation function were imple-
mented, results indicated that adding more neurons to the first hidden layer effectively reduced
the error. Further indication of these results can be see in Figure 3.3. While the error for these
networks were significantly higher than that of the simple network, the results demonstrated that
more neurons increased the accuracy of the DNN.
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Figure 3.1: Simple network with no hidden layers or activation function: true solution (blue) vs.
DNN approximation (red)

Figure 3.2: Simple network with no hidden layers or activation function: difference between exact
solution and DNN approximation

Figure 3.3: Network with ReLU and three hidden layers: differing # first hidden layer neurons
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3.3 Non-Linear ODE
In addition to the linear case, we also considered the non-linear second-order ODE:

u′′ + u− u3 = f in (0, 1) (3.13)
u(0) = a (3.14)
u(1) = b (3.15)

Here, u ∈ C2([0, 1]) and f ∈ C0([0, 1]). This ODE is known as the real Ginzburg-Landau equation
which is related to super-conductivity when u is a vector/complex number, liquid crystal theory
for the cases when u is a tensor, and, for our purposes, we are considering the case when u is real
scalar function [2].

3.3.1 Case 1: Original Loss Function
Using the same loss function as the linear ODE in (3.10), five DNNs with three hidden layers

of sizes 2000, 1800, and 1500, respectively, where utilized to find a solution to the ODE. These
networks feature an adjusted learning rate that started at 0.001 and was cut in half every 50 epochs.
The total number of epochs permitted for training each DNN was 200 and the momentum was set
to 0.9. This choice for the number of epochs was determined based on the motivation to find an
accurate solution in a short computational time frame. Table 3.1 shows the mean squared error
(MSE) and relative ℓ2 error for five trials of the same DNN.

DNN Init Train Set MSE Final Train Set Rel ℓ2 Err Final Test Set Rel ℓ2 Err

1 1.1280 0.0715 0.0733
2 1.1457 0.0825 0.0832
3 1.1086 0.0827 0.0899
4 1.1261 0.0757 0.0813
5 1.1237 0.0694 0.0753

Table 3.1: Nonlinear ODE original results

These results show that after 200 epochs the network was able to achieve a relative ℓ2 error typically
around 0.08 or 8% for both the training and test sets (see Figure 3.4). The approximation itself
appeared to obtain some noise/oscillations that prevented an accurate solution from being obtained.
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Figure 3.4: Result for one DNN and one element of T

These results indicated that one possible way to eliminate the oscillations was to utilize DNNs
with a different number of hidden layer neurons. With this in mind, three different DNNs with first
hidden layer sizes as 2000, 3000, 4000, and 5000 respectively were evaluated. Upon running these
DNNs, the average mean squared error was found over five different networks of each structure
type. Each DNN featured an adjusted learning rate that started at 0.001 and was cut in half every 50
epochs. Aside from the first hidden layer, all the networks also had the same number of neurons for
other layers, 1800 and 1500 respectively. The total number of epochs each network was permitted
to run was again set at 200.

# First Layer
Neurons

Average Initial Train
Set MSE

Average Final Train
Set MSE

Average Final Test
Set MSE

2000 1652.5379 140.2140 150.2999
3000 1661.4181 146.6518 163.2427
4000 1650.4153 144.1105 162.0282
5000 1641.0877 170.5839 188.6214

Table 3.2: Nonlinear ODE results w/ different first hidden layer size

Figure 3.5: Network with three hidden layers: Differing # first hidden layer neurons
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From these results, we determined that deeper networks with more neurons per hidden layer did
not produce significantly better results than the corresponding shallower networks. In particular,
the average mean squared error is nearly the same regardless of the increased number of neurons.
It is important to note, however, that this is an AVERAGE over five approximations using the same
DNN and there was typically an outlier with a large MSE for one of the approximations (see Figure
3.5).

3.3.2 Case 2: Updated Loss Function
After evaluation of these initial results, we determined that some aspect other than network

structure must need altered in order to produce more accurate results for the nonlinear ODE. With
this in mind, adjustments were made to the loss function so that the new loss function took the
form:

L̄(α) =
∑
f∈T

∥ũ− ϕα(f)∥2ℓ2 + λ2∥ũ′ − ϕ′
α(f)∥2ℓ2 (3.16)

+λ1(ũ(0)− ϕα(f))
2 + λ1(ũ(1)− ϕα(f))

2 (3.17)

Here ∥ũ− ϕα(f)∥2ℓ2 penalized the network if the values of the approximation were far away from
u and λ1(ũ(0)− ϕα(f))

2 + λ1(ũ(1)− ϕα(f))
2 imposed a penalty with weight coefficient λ1 when

the boundary conditions did not hold for the approximation. We also had a λ2∥ũ′ − ϕ′
α(f)∥2ℓ2

term that aimed to restrict the derivative. Note that the ũ′ here is the derivative of u taken over
its discretization and that we considered λ1 = λ2 in all cases for this project. Therefore, this loss
enforced both the differential equation and boundary conditions of (1.4)-(1.6).

We then tried a variety of values for the penalty coefficients λ1 and λ2 in the loss function. The
goal of trying various values was to penalize the boundary conditions and derivative, thus allowing
for the approximation to converge to the true solution more accurately. The following results used
data size 1024 and had hidden layer sizes 2000, 1800, and 1500, respectively. We also trained the
network for 200 epochs for comparison purposes with the original loss function results. Note again
that we considered λ1 = λ2.

λ1 and λ2

Values
Initial Train Set
MSE

Final Train Set Rela-
tive ℓ2 Error

Final Test Set ℓ2 Er-
ror

0.00001 1489.6370 0.6713 0.6899
0.001 1477.2289 0.6447 0.6935
0.005 1479.8466 0.6492 0.6728
0.01 1468.6582 0.6555 0.6751

Table 3.3: Nonlinear ODE results w/ different penalty coefficients

Against intuition, the results became much worse upon changing the loss function initially. Thus,
we decided to change the dimension of the data for u and f to determine if the mesh size being
used was leading to the oscillations seen in the approximation. Table 3.4 and Figures 3.6-3.11
display the results for each data size. The deep neural network structure was also edited with the
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hidden layer sizes being changed to adapt to the data size. In particular, each layer was the integer
part of 1.5 times the data size, 1.3 times the data size, 1.1 times the data size, and the data size
itself, respectively. For example, in the 256 case, the schematic network structure would be:

258 (input with BCs) −→ 384 −→ 332 −→ 281 −→ 256 (output) (3.18)

This adjusted network structure allowed for more neurons and thus more parameters to be opti-
mized when the data size increased. In addition, training time was increased to 500 epochs as the
stopping criteria and the lambda values were placed at 0.0001 based on the previous results.

Data Size Initial Train Set
MSE

Final Train Set Rela-
tive ℓ2 Error

Final Test Set ℓ2 Er-
ror

16 23.2916 0.0004419 0.0008099
32 46.2514 0.0004209 0.0005536
64 93.0453 0.0003634 0.0004714
128 179.1681 0.002039 0.003736
256 364.0416 0.002812 0.01068
1024 1479.8466 0.6492 0.6728

Table 3.4: Nonlinear ODE results w/ different data sizes

Figure 3.6: Approximate solution and error with data size 16
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Figure 3.7: Approximate solution and error with data size 32

Figure 3.8: Approximate solution and error with data size 64

Figure 3.9: Approximate solution and error with data size 128
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Figure 3.10: Approximate solution and error with data size 256

Figure 3.11: Approximate solution and error with data size 1024

As the goal of changing the loss function was to remove the oscillations found in the approxi-
mate solution, we thought such a result could be obtained via restricting the derivative as in (3.17).
However, this did not solve the issue because, as demonstrated by the data size 1024 case, the
oscillations have not been eliminated. One possible explanation for these results is due to the way
the data set is generated using fourth degree polynomials. The resulting f will be a twelfth degree
polynomial which is very oscillatory when discretizing using very high N. In order to move for-
ward, we proposed to use different dimensions for f and u. In particular, we started with a smaller
dimension for the input f and have a larger output dimension for u (i.e., 16 to 256). Making such
changes, lead to the results:

Data Size
(Input to
Output)

Initial Train Set
MSE

Final Train Set Rela-
tive ℓ2 Error

Final Test Set ℓ2 Er-
ror

16 to 256 363.6518 0.007617 0.007996
32 to 256 368.3765 0.005122 0.005537

Table 3.5: Nonlinear ODE results w/ different data sizes for input and output
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Figure 3.12: Approximate solution and error with data size 16 as input and 256 as output

Figure 3.13: Approximate solution and error with data size 32 as input and 256 as output

Overall, these approximations were able to capture the nature of the true solution with about 0.6%
error. This shows that using data from a coarse mesh can be generalized to give a solution in a finer
mesh. Visually, this generalization removed the oscillations found previously in the data size 256
case, but also accumulated a slightly larger error. It appeared that when going from a smaller data
size to a larger, the boundary conditions tended not to converge to the true value as in the previous
cases. With this in mind, we again returned to the case with the same input and output data size in
order to investigate how the oscillations could be removed, focusing specifically on 256 and 1024
data sizes.

As data size increased, the number of parameters needing to be optimized also increased. This
motivated the idea that longer amounts of training were required for larger data sizes and, therefore,
number of epochs must be adjusted. In the following results, the networks were run for 10000
epochs. In addition, the activation function was switched to the GELU function with the goal of
smoothing out the oscillations in the data.
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Data Size Initial Train Set
MSE

Final Train Set Rela-
tive ℓ2 Error

Final Test Set ℓ2 Er-
ror

256 365.0387 0.0001242 0.0003966
1024 1463.6688 0.0001609 0.0004484

Table 3.6: Nonlinear ODE results w/ 10000 epochs

Figure 3.14: Approximate solution and error with data size 256 for 10000 epochs

Figure 3.15: Approximate solution and error with data size 1024 for 10000 epochs

With the error for data size 256 around 0.01%, we concluded that issues with oscillations had been
resolved for this case. For data size 1024, the oscillations were not completely eliminated, however,
the approximation was able to converge to the solution as demonstrated by Figure 3.15. Ultimately,
these results indicated that solutions to the Ginzburg-Landau ODE were able to be acquired for a
variety of mesh sizes and that when the number of parameters increased, the training time also
needed to be increased.
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Chapter 4

Conclusions and Future Work
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4.1 General Discussion of Results
Based on the acquired results, we were able to determine that the linear ODE showed that

networks with no hidden layers or activation function produced the smallest error. This is likely due
to the linear nature of the ODE and needing to avoid a non-linear approximation for the equation.
In addition, we also demonstrated that with both the linear and non-linear ODE, increasing the
number of neurons per layer decreased the error (at least slightly). This result correlates with the
idea that adding infinitely more neurons per layer should lead to an accurate approximation.

For the non-linear ODE, we determined that decreasing the learning rate by cutting it in half
every 50 epochs effectively reduced the error for the non-linear ODE. Similar results were also
found for the second adjusted learning rate scheme implemented. Overall, we found that chang-
ing the loss function to penalize derivatives and boundary conditions did not effectively remove
oscillations for higher dimensions upon initial approximations. Such oscillations were removed
when the data was input from a coarser mesh and output to a finer mesh. Oscillations were also
removed by running the networks for more epochs and, therefore, allowing the increased number
of parameters to receive more time to be optimized.

4.2 Future Work
As solving ODEs with DNNs is still an area of mathematics that is being actively investigated,

we have recommended that future work in this area take one of several directions. The first such
direction involves changing the deep neural network structure to make use of convolutional layers.
Roughly speaking, instead of each neuron in each layer being connected to every neuron in the
following layer (fully connected), convolutional layers have a parameter k ∈ Z (i.e., k = 3) that
says each neuron in a given layer is to be connected to k neurons in the following layer. The idea
of adding these layers revolves around the fact that a convolutional layer can facilitate identifying
local features of the input. This is especially useful in that ODEs are typically solved locally.
Focusing on local features may also allow solutions to be approximated more efficiently.

Another direction the results of this project could promote is the transition to an unsupervised
learning approach. In general, since a DNN takes input in the form of a vector f̄ and provides as
output a vector ū, we could discretize the Ginzburg-Landau ODE in the following sense:

u′′ + u− u3 = f → B(ū) =
ui+1 − 2ui + ui−1

h2
+ ui − u3

i . (4.1)

We are then able to minimize the loss function of the form:

L̄ = ∥B(ū)− f∥. (4.2)

Making this transition, would allow for the removal of a training set that relies on obtaining values
by evaluating the function in the ODE. In addition, there is no longer the restriction to the type of
functions in the training set (i.e., fourth degree polynomials).

Lastly, future work could also consider higher dimensional problems for ODEs to exploit the
strength of DNNs in this area. Since DNNs are able to be easily adapted to higher dimensional
data, the usual restrictions of traditional methods are not encountered.
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