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ABSTRACT 

 

 Due to the exponential growth of video in all our lives, the goal to understand details and 

actions within videos has never been more important. When words and sentences are grounded 

into images and videos, they become far more meaningful. Incorporating both Computer Vision 

(CV) and Natural Language Processing (NLP), the task of temporal grounding aims to predict a 

specific range of time that an event happens within a video. Specifically, temporal grounding 

takes a natural language query and an untrimmed video as input. Tackling and ultimately 

optimizing this task can open a wide range of applications both in NLP and CV. From detecting 

actions and objects in a live video to creating unsupervised captions, temporal grounding has an 

abundance of benefits. In this thesis, I first recap the innovations presented in EVOQUER, a 

temporal grounding framework we created that incorporates an existing text-to-video grounding 

model and a video-assisted query generation network. Afterwards, I present and analyze the 

potential benefits of leveraging transformer models as well as our current attempts at replicating 

previous performance statistics.  
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Chapter 1  

 

An Introduction  

1.1 Background 

Temporal grounding aims to find the time interval in an untrimmed video that expresses the same 

meaning as a natural language query. It addresses the temporal, semantic alignment between language and 

vision by locating the video content that corresponds to a query. These two inputs are visualized in Figure 

1 below. From the corresponding query “Spread mayonnaise on bread,” the temporal grounding model 

must understand the meaning of both the query and input video while ignoring irrelevant actions. The 

correct time interval is oftentimes known as the ground truth and is labeled in orange. This process of 

learning the meaning of a query falls under the scope of NLP, while the process of understanding the 

video falls under CV. Thus, temporal grounding is a task that incorporates two ever-growing fields. It is 

broadly applicable in many tasks such as visual storytelling [1,2], video caption generation [3], and video 

machine translation [4]. In the real-world, optimizing temporal grounding can increase the safety of 

homes and cars through action and object detection. It can also help visually impaired individuals 

understand videos through generating captions without human assistance. With so many more potential 

applications, temporal grounding is a critical step into merging language and vision. 

In recent years, work on temporal grounding has achieved significant progress through a wide 

range of approaches. Some methods emphasize mapping verbs and nouns to visual clues such as actions 

and objects [5]. Others utilize RGB data from images as well as optical flow for actions [23]. For those 

unfamiliar, optical flow is the movement of objects within a scene from a certain point of view. This 

movement helps models understand the speed at which objects are moving. Despite this promising 

progress, many methods are limited by only employing a one-directional, single-task learning flow. This 
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learning flow means that the predicted time intervals are not used to optimize learning. Furthermore, this 

method can not only slow training, but also limits understanding. To strengthen learning, I looked to 

explore the possibility of enhancing temporal grounding through these related works. With the recent 

growth of transformer models and the state-of-the-art performance many frameworks with transformers 

exhibit, leveraging transformer models could be the next step into enhancing temporal grounding.  

 

 

Figure 1. Time Interval in Video Example 
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1.2 Related Work 

 Previous works on temporal grounding can be split into three categories: reinforcement learning, 

weakly supervised, and strongly supervised. The most prominent example of a strongly supervised 

approach is the LGI algorithm [5]. Utilized within the EVOQUER framework described later in this 

thesis, LGI achieves state-of-the-art performance on both the Charades-STA and Activity Net datasets. 

These datasets will be described in detail later in this work as well. In this context, the term strongly 

supervised means that the input videos have previously been described by a ground truth. In contrast, 

weakly supervised means that input videos are not trained using a ground truth. Thus, datasets for 

strongly supervised approaches are typically very difficult to create, requiring volunteers to manually 

record their actions. In the case of the LGI algorithm and many other strongly supervised approaches, 

word-level and sentence-level attention is used to predict time intervals within a video. For clarity, 

attention means the level of emphasis a model should put onto certain words and sentences. To this end, 

the state-of-the-art LGI algorithm was utilized within the EVOQUER framework to create this sentence-

level attention. Instead of the model just knowing the relationship between words in a single query, 

sentence-level attention allows the model to learn the ordering of multiple sentences. This is especially 

important for long, complex sentences where a handful of examples can contain a wide range of unique 

words that may not appear in other sentences within the dataset.  

 Another task similar to temporal grounding is text-to-video moment retrieval, which focuses on 

the grounding between a query and video. Instead of the strongly supervised approaches described above, 

weakly supervised approaches have been developed for text-to-video moment retrieval [20]. Both tasks 

require grounding language into vision while analyzing the understanding of natural language. Similarly, 

temporal grounding also has its roots in other tasks such as video captioning, which aims to generate a 

description of text given a video. Having many related tasks, temporal grounding also shares the issues 

related with captioning and retrieval. Since videos can sometimes consist of hundreds if not thousands of 

frames, determining important frames can be a significant road-block. Despite the copious amount of 
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video data, many previous models suffered slow training times and inconsistent results. With the creation 

of transformer models such as BERT [11], models that use end-to-end transformers for video-captioning 

have been developed. Furthermore, due to these promising results, it is logical to think transformer 

models could be leveraged to achieve better performance on related tasks, particularly temporal 

grounding. 

1.3 Metrics & Definitions 

In this and previously referenced works, two main conventional metrics for temporal grounding 

are adopted: 1) R@tIoU which determines the recall at different thresholds (Specifically 0.3, 0.5, and 

0.7); and 2) mIoU which reports the average recall from all three threshold levels. For the former, 

R@tIoU stands for the mean intersection over union. Commonly used for semantic image segmentation 

[21], R@tIoU determines whether there is a certain percent overlap (30%, 50%, and 70%) between the 

ground truth and predicted output. For the case of semantic image segmentation, images are split into 

distinct classes. Since all frameworks described later in this work are strongly supervised, this metric is 

the primary way we benchmark performance. This ratio is visualized for clarity in Figure 2. The red area 

highlights the value for which the metric R@tIoU measures.  

One of the key novel ideas of the EVOQUER framework is query simplification. Due to the 

usage of this intuition, there are additional metrics we utilize to determine performance as well. 

Specifically, predicted queries are evaluated with two metrics: 1) Jaccard similarity; and 2) BLEU score. 

Like R@tIoU, Jaccard similarity measures intersection over union between words in ground truth and in 

prediction. Since it does not penalize for duplicated words, Jaccard similarity gives a rough estimation for 

the quality of the translated output. Despite being very similar to R@tIoU, Jaccard similarity is pivotal 

due to the increase in likelihood that words may be duplicated. Since query simplification decreases the 

number of unique words by removing irrelevant adjectives and adverbs, nouns and verbs make up most of 
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the dictionary. Because there are less words to predict, it is intrinsically more likely that a model will 

perform better since it is more likely that correct words will be predicted. Thus, Jaccard similarity takes 

this into account, alleviating potential incorrect and misleading performance improvements. Lastly, 

BLEU score is a standard evaluation metric for machine translation that measures n-gram word overlap. 

Since the simplified queries are two words in length, BLEU score is reported in both unigram and bigram.  

 

 

Figure 2. Intersection over Union Visualization 
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Chapter 2  

 

The EVOQUER Framework 

2.1 Closed-Loop Framework 

 The EVOQUER Framework, standing for Enhancing Temporal Grounding with VideOPivoted 

Back QUERy Generation, was a model developed by Yanjun Gao, Lulu Liu, myself, and Professor Zhang 

to tackle temporal grounding. One of the key intuitions that EVOQUER incorporates is the idea of 

feedback-error-learning from control theory [7,8]. In short, closed-loop learning allows for better training 

by allowing the model to learn from its mistakes for efficiency. The control network in the EVOQUER 

framework learns to correct its error from feedback and gains stronger supervision to increase learning. In 

this context, the control network simply means the fixed loop that the inputs and outputs of the model are 

pushed through. To obtain this feedback, EVOQUER uses a closed-loop framework for temporal 

grounding that receives two important enhancements: 1) Supervision in predicting time intervals; and 2) 

Feedback from the output video features extracted from the prediction. These inputs are represented as 

arrows in Figure 3.  

 To achieve this, EVOQUER involves two components: 1) An existing temporal grounding 

module; and 2) A translation module. First, the temporal grounding module predicts time intervals given 

an untrimmed video and a query as described above. Afterwards, the translation module takes queries by 

the predicted intervals as input and outputs a simplified query with only verbs and nouns. As shown by 

Figure 3, both tasks receive the same inputs but output different results. To complete query simplification 

as described above, EVOQUER uses the video machine translation framework VMT [9]. Standing for 

Video-guided Machine Translation, VMT was originally used for language translation from English to 

Chinese. In contrast to previous frameworks developed for translation tasks, VMT utilizes information 

from videos. Specifically, I3D features from a 3D ConvNet are used to assist the framework in predicting 
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more accurately. Since we already create I3D features for video representation in the temporal grounding 

module, this was an intuitive addition to the closed-loop framework. In addition to ease of use, 

EVOQUER also utilizes this framework due to its proven performance benefits in video-assisted bilingual 

translation. Although we do not focus on language translation, VMT shares a similar Encoder-Decoder 

framework that other temporal grounding models utilize as well. 

 Since the creation of EVOQUER, there have been many other improvements to video-guided 

machine translation as well [22]. In the case of [22], positional encodings are utilized to achieve the 

optimal BLEU score. A formal description of what position encodings are is included in Chapter 3 below.  

 

 

Figure 3. Closed-Loop Framework 
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2.2 Pipeline Overview 

An overview of the EVOQUER pipeline can be found in Figure 4 on the following page. As 

shown by the box on the top left, the input to the framework is an untrimmed video and a set of English 

queries. Following the framework in LGI [5], EVOQUER uses I3D frame-based features for video 

representation. Since LGI shows state-of-the-art performance using these video features, we continue with 

this approach. Given the video features and queries, LGI predicts intervals with the content corresponding 

to a given query. With this output, we exit the temporal grounding module labeled in green.  

Following the creation of these time intervals, frames are extracted from videos trimmed by the 

predicted interval to represent the contents of the video clip. To maintain the continuity of the contents, 

EVUOQUER extracts 32 frames per video clip such that that the contents of the trimmed videos are 

evenly distributed across all 32 frames. This spacing lessens the likelihood that a set of actions happens 

during a very short interval within the input video. Within the datasets we use, videos are captured at 24 

frames per second. Thus, we found the 32-frame videos roughly to span 1.3 seconds.  

Next, we enter the translation module within the EVOQUER framework. First, we feed the 

extracted video features and input query into the translation module consisting of two bi-LSTM-based 

encoders and an LSTM-based decoder. Following the output of the encoders, temporal and soft attention 

are used for the input to the decoder. As the name implies, temporal attention puts emphasis on certain 

time intervals with a video. Additionally, soft attention utilizes a differentiable function to determine 

which words within a sentence should be emphasized. An important distinction is the use of hard vs soft 

attention. Rather than the continuous weighted averages used in soft attention, hard attention utilizes 

discrete values to determine whether a specific word or frame should be attended to. Since hard attention 

can completely mask certain words, it is best to utilize soft attention in this context. Video hidden states 

and text hidden states are sent individually to these two attention modules. This output is then 

concatenated into a one-vector form and sent to the decoder as input. In the attention network, temporal 

attention is learned through video features, and soft attention through query hidden states.  
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Instead of learning to decode the original query, EVOQUER tries to focus on verbs and nouns, 

since that is what distinguishes the video content. In the Charades-STA dataset, annotators tend to use 

various verb tenses when describing the video activities. For example, both “closing the window" and 

“closes the window" are used on the same video content. Therefore, we lemmatize the words, label the 

query with part-of-speech tags, and extract verbs and nouns as simplified versions of the queries. The 

decoder then learns to predict simplified queries and computes a negative log-likelihood (NLL) loss at the 

end of the decoding. Finally, EVOQUER combines the NLL loss from query simplification with the LGI 

loss [5] from time interval prediction to train the networks jointly in an end-to-end fashion. 

 

Figure 4. EVOQUER Pipeline Overview 
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2.3 Benchmark Datasets 

The two datasets used to evaluate the EVOQUER framework are Charades-STA and Activity 

Net, two widely used benchmark datasets for temporal grounding. We follow the dataset settings in [5], 

where both datasets are set with train/valid/test as 50%, 25%, and 25% respectively. The statistics of each 

of these datasets are detailed in Table 1 below. As shown evidently from the table, the two datasets vary 

greatly on most of the statistics. Compared to Charades-STA, Activity Net is a more challenging dataset 

since it requires the decoder in EVOQUER to predict correct words from a much larger vocabulary. A 

dictionary whose size is almost 10 times larger than Charades-STA.  

Due to these stark differences, I created two distinct data loaders to prepare the data for training. 

The code of the data loader for Activity Net can be found in the Appendix below. In the case of Charades-

STA, the given input format included a video id, time stamp, and query. An example of this input is 

shown in Figure 5. To input this data into the neural network, I simplify the data into a list of video ids, 

timestamps, duration, and query length. To compare the outputs of the model to the ground truth, I create 

PyTorch tensors with data regarding the ground truth, including start position, end position, and the 

number of video features. Each video id corresponds to a specific video, enabling the neural network to 

differentiate each input while training. Lastly, I create two dictionaries to create a mapping from words to 

ids and vice versa. In contrast to Charades-STA, Activity Net had a far larger dictionary, making the 

dataset far harder to simplify. Specifically, I had to simplify how many inputs were provided in each 

instance. In this context, an instance was a dictionary of all the inputs associated with one video id. One 

method I utilized was to ignore inputs such as description length and description labels since these inputs 

were unique to Charades-STA. Following the development of these two data loaders, EVOQUER was 

tested on both.  

In the experiments on Activity Net, EVOQUER was found to converge at a higher NLL loss than 

Charades-STA, and failed to produce good quality simplified queries. We believe this was likely due to 
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the harder decoding task. I later detail another dataset when transformers are introduced. Specifically, we 

utilize the HowTo100M dataset and focus solely on a subset of cooking videos. 

 

 

Table 1. Statistics on Benchmark Datasets 

 

 

 

 

Figure 5. Data Loader Input Example 
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2.4 Results & Analysis 

Table 2 presents results on the Charades-STA and Activity Net from two models: 1) The 

EVOQUER model; and 2) A retrained LGI model. Compared to the LGI framework, EVOQUER showed 

improvement on R@0.7 and mIoU, the hardest thresholds for temporal interval overlap. Table 3 divides 

the samples into four categories according to their recall: 1) When EVOQUER ranked in a higher 

threshold than the LGI; 2) When EVOQUER ranked lower than the LGI; 3) When both had the same 

recalls that were at least R@0.3; and 4) When both scores ranked below R@0.3. In contrast to the 441 

samples on Charades-STA, Activity Net had 4,268 samples above R@0.3, with 79 and 1,144 samples of 

absolute improvement. These statistics can be found in further detail in Table 3. Despite a stark increase 

in samples between the two datasets, the ratio between samples above and below R@0.3 remained the 

same. Thus, this continued performance showed that EVOQUER had promising results on a wide range 

of potential benchmark datasets. In addition to mean intersection over union, EVOQUER achieved 51.98 

on Jaccard Similarity, 53.04 on BLEU unigram, and 42.47 on BLEU bigram. Compared to the state-of-

the-art model of LGI, EVOQUER performed very similarly. In general, EVOQUER showed incremental 

improvement in these metrics, despite incorporating query simplification on Charades-STA.  

Through a case study, EVOQUER demonstrated the power of query simplification when used. 

Utilizing query simplification on Activity Net, we experienced some challenges. Specifically, we found 

performance improvements from query simplification to be less noticeable on Activity Net than 

Charades-STA. We accredited these shortcomings to two main reasons: 1) he decoder vocabulary on 

Activity Net was much larger than Charades-STA, making sentence simplification less consistent; and 2) 

The design of translation module was too simple to handle longer predicted time intervals. As shown 

from Table 1, the videos of Activity Net proved to be far longer than Charades-STA. Rather than the 30 

seconds videos of Charades-STA, Activity Net could include videos of upwards of multiple minutes. This 

increase in video length, coupled with the large vocabulary, likely made the model struggle with 

mailto:R@0.3
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predicting the ground truth. Nonetheless, the results on Charades-STA indicated the contributions of the 

EVOQUER framework. 

 

 

Table 2. Results of EVOQUER Framework vs LGI 

 

 

 

Table 3. Charades-STA vs Activity Net Sample Distribution 
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Chapter 3  

 

Leveraging Transformers for Temporal Grounding 

3.1 Why Transformer Models 

 First introduced in 2017 [10], transformers rose in popularity due to being easy to train and 

efficient in tasks previously dominated by Long Short-term Memory Networks (LSTMs). Since LSTMs 

had to read inputs sequentially, they were not only difficult to train on large datasets but were also 

ineffective for long streams of sequential data. In the case of transformers, substantial amounts of 

sequential data, such as frames that make up a video, can be trained in parallel. Due to this ability to 

parallelize data, transformers were also able to align with modern GPU architectures as well.  

 The two biggest innovations provided by transformers are self-attention and positional encodings, 

two aspects that can benefit temporal grounding. Originally used for sentence translation, such as 

translation from English to French, transformers must find different ways to encode the position of 

different words within a sentence since transformers do not take inputs sequentially like LSTMs. 

Furthermore, the order of words is lost when inputting the data into the model. The importance of the 

order of words can be shown easily through the following example: 1) I genuinely need to finish this 

interview; and 2) I need to finish this interview genuinely. Despite both sentences containing the same 

words, the placement of words such as genuinely change the meaning of the sentence completely. Prior to 

inputting embeddings into an encoder and decoder framework, transformers encode a sin and cos function 

into the embeddings depending on a word’s position in a sentence. This process of positional encodings 

was also utilized in other tasks such as the video-guided machine translation described earlier as well. 

 In addition to positional embeddings, transformers utilize self-attention. In short, self-attention is 

used to obtain context by finding associations between different words in the same input. In contrast to 

simple attention which uses emphasis learned from external inputs. Moving forward, I talk about previous 
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applications of transformer models: first in the context of NLP and then in the context of temporal 

grounding. 

3.2 Previous Work 

As a variation of the Encoder-Decoder framework used in the original paper [10], BERT [11], 

also known as a Bidirectional Encoder Representation from Transformers, was created. BERT 

differentiates itself by stacking the encoder modules in [10] to broaden the application of the initial 

framework. To pretrain the model, BERT utilizes two main problems to allow the model to understand 

language: 1) Masked LM (MLM); and 2) Next Sentence Prediction (NSP). For the former, roughly 15 

percent of the inputs are randomly replaced by masked tokens, and the model is required to predict the 

missing word. For the latter, two sentences are provided as input, and BERT makes a prediction on 

whether one sentence follows another. These tasks for pretraining help BERT associate not only 

sentences, but also the relationship between words in two directions. By changing the input and output 

layers before and after the model, BERT can be modified for a very wide range of NLP tasks [12,13,14].  

Following the work of BERT, VideoBERT[12] was developed to extend the power of 

transformers on vision-related tasks. Instead of masked sentences, VideoBERT is inputted a concatenated 

sentence with visual words. These novel visual words are created with features which capture the visual 

frames most representative of the video. Similar to the NSP task utilized to pretrain BERT, VideoBERT 

utilizes a linguistic-visual alignment task that predicts if the sentence corresponds with the visual words 

described above. Due to the versatility of BERT on a wide range of NLP tasks, VideoBERT has similarly 

been used for a wide range of vision and language tasks [15, 16]. By changing the output layers of 

VideoBERT, leveraging transformer models to predict time intervals instead of videos can enhance 

temporal grounding. With these potential benefits, we investigate adding additional layers and/or utilizing 

previous works to increase performance.  
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3.3 Attempts at Replication 

Since we do not have access to a pretrained VideoBERT model, replicating the VideoBERT 

framework has been our ongoing task. Of the available options, we use a subset of the HowTo100M 

dataset [18] to align with the original YouCook II dataset. Specifically, we focus on roughly 16,000 

cooking-related videos to narrow the focus of our model to a subset of tasks. Downloaded from Youtube, 

the HowTo100M dataset emphasizes instructional videos as well, allowing each video to have a specific 

number of intended actions. Thus, rather than videos with sporadic actions scattered across the video, 

datasets such as HowTo100M and YouCook II contain videos best for training the neural network. 

To replicate the performance of VideoBERT, we first created I3D features [19] of each video. 

Standing for Inflated 3D ConvNet, I3D features obtain the spatio-temporal understanding of each video. 

For much of this replication, we treat I3D as a black box. Compared to the S3D features [17] utilized 

within VideoBERT, the I3D framework creates features with dimensions 20 by 600. In this context, we 

interpreted this dimensionality as each of the 20 frames having 600 specific features. Within [12], 

VideoBERT utilizes S3D features with 1024 features per frame. Since this difference in dimensionality 

has not caused any issues during training, we moved on to create corresponding centroids for each video 

feature. On average, we found that each video we focused on in the HowTo100M dataset was caught at 

25 frames per second. Thus, each video had an average of 260 frames. This large number of frames 

relates more closely with Activity Net rather than Charades-STA.  

Using these feature files, we utilized mini-batch k-means to create centroids for each video. 

Specifically, we utilize hierarchical k-means clustering from sklearn, a built-in machine learning library 

for Python. By default, each centroid had dimensionality 12 by 600 where 12 represented the number of 

frames, and 600 represented the number of features per frame. One of the key roadblocks we faced was 

this difference in dimensionality between the created I3D features and centroids. To solve this issue, we 

created two potential solutions: 1) Adjust the parameters to the hkmeans script from sklearn to try to 

modify the outputted dimensionality; and 2) Adjust the centroids to 1 by 600 by taking the average of 
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each of the 12 frames. This solution removes the possibility of dimension-errors moving forward. Using 

the second solution, we take the average of each centroid and continue with the pipeline.  

Utilizing these centroids, we concatenate them for ease of use. Next, we utilize this large centroid 

to label and punctuate the data prior to training. Currently, we are in the process of training the model 

with some initial success. Figures 6 and 7 below show a consistent decrease in joint loss as training 

continues. Since VideoBERT is trained on text-only, video-only, and joint text and video, we graph joint 

loss to show an aggregate metric of progress. Despite this decreasing trend, we find that the loss starts to 

stagnate at roughly iteration 600. Since this is still early in the training process, it is difficult to pinpoint 

the exact cause of this stagnation. We hope to train our model on at least 10 epochs to achieve better 

performance. 

Following a fully trained VideoBERT model on the HowTo100M dataset, we plan to edit the 

output layers of VideoBERT to leverage its performance on temporal grounding. Similar to EVOQUER, 

testing the performance of this novel framework on benchmark datasets such as Charades-STA and 

Activity Net is the true tell of whether a transformer architecture can benefit this task. Due to previous 

success in extending VideoBERT to tasks such as predicting video sequences, leveraging transformers 

could be the next significant move towards enhancing temporal grounding.  
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Figure 6. Joint (Both Text & Video) Loss vs Iterations During Training 

 

 

Figure 7. Joint Loss vs Every 500 Iterations 
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Appendixes 

Appendix A Data Loader Code 

from __future__ import absolute_import 

from __future__ import division 

from __future__ import print_function 

 

import os 

import h5py 

import string 

import numpy as np 

import string 

import torch 

import json 

import time 

 

import torch 

import torch.utils.data as data 

 

from collections import defaultdict, OrderedDict 

from tqdm import tqdm 

from abc import abstractmethod 

from src.dataset.abstract_dataset import AbstractDataset 

from src.utils import utils,io_utils 

 

def create_loaders(split, loader_configs, num_workers): 

        dsets, L = {}, {} 

        for di,dt in enumerate(split): 

                shuffle = True if dt == "train" else False 

                drop_last = True if dt == "train" else False 

                dsets[dt] = ActivityNetCaptionsDataset(loader_configs[di]) 

                L[dt] = data.DataLoader( 

                        dsets[dt], 

                        batch_size = loader_configs[di]["batch_size"], 

                        num_workers = num_workers, 

                        shuffle = shuffle, # shuffle 

                        collate_fn = dsets[dt].collate_fn, 

                        drop_last= drop_last #drop_last 

                ) 

        return dsets, L 

 

def __getitem__(self, idx): 

                # get query id and corresponding video id 

                qid = str(self.qids[idx]) 

                vid = self.anns[qid]["video_id"] 

                timestamp = self.anns[qid]["timestamps"] 

                duration = self.anns[qid]["duration"] 

                qry=self.anns[qid]["query"] 

                # Descriptions 

                #d_label_lsts = self.descriploader.encoded_description(vid, self.wtoi) 

                #description_length, description_labels = 

d_label_lsts['descrip_lengths'], d_label_lsts['descrip_labels'] 

 

                # get query labels 

                if self.in_memory: 
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                        q_label = self.query_labels[qid] 

                else: 

                        query_labels = h5py.File(self.paths["query_labels"], "r") 

                        q_label = query_labels[qid][:] 

                q_leng = self.query_lengths[qid] 

 

                # get grounding label 

                if self.in_memory: 

                        start_pos = self.s_pos[qid] 

                        end_pos = self.e_pos[qid] 

                else: 

                        grd_info = h5py.File(self.paths["grounding_info"],"r") 

                        start_pos = grd_info["start_pos/"+qid][()] 

                        end_pos = grd_info["end_pos/"+qid][()] 

 

                # get video features 

                if self.in_memory: 

                        vid_feat_all = self.feats[vid] 

                else: 

    vid_feat_all = io_utils.load_hdf5(self.feat_hdf5, 

verbose=False)[vid]["c3d_features"] 

                vid_feat, nfeats, start_index, end_index = self.get_fixed_length_feat( 

                                vid_feat_all, self.S, start_pos, end_pos) 

 

                # get video masks 

                vid_mask = np.zeros((self.S, 1)) 

                vid_mask[:nfeats] = 1 

 

                # get attention mask 

                if self.in_memory: 

                        att_mask = self.att_mask[qid] 

                else: 

                        att_mask = grd_info["att_mask/"+qid][:] 

                instance = { 

                        "vids": vid, 

                        "qids": qid, 

                        "timestamps": timestamp, # GT location [s, e] (seconds) 

                        "duration": duration, # video span (seconds) 

                        #"description_length": description_length, 

                        #"description_labels": description_labels, 

                        "query_lengths": q_leng, 

                        # "query":qry, 

                        "query_labels": torch.LongTensor(q_label).unsqueeze(0), 

                        "query_masks": (torch.FloatTensor(q_label)>0).unsqueeze(0), # 

[1,L_q_max] 

                        "grounding_start_pos": torch.FloatTensor([start_pos]), # [1]; 

normalized 

                        "grounding_end_pos": torch.FloatTensor([end_pos]),     # [1]; 

normalized 

                        "grounding_att_masks": torch.FloatTensor(att_mask),  # [L_v] 

                        "nfeats": torch.FloatTensor([nfeats]), 

                        "video_feats": torch.FloatTensor(vid_feat), # [L_v,D_v] 

                        "video_masks": torch.ByteTensor(vid_mask), # [L_v,D-v] 

                } 

 

                return instance 

 

def collate_fn(self,data): 

            seq_items=["video_feats","video_masks","grounding_att_masks"] 

            

tensor_items=["query_labels","query_masks","nfeats","grounding_start_pos","grounding_e

nd_pos",] 
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            batch={k:[d[k] for d in data] for k in data[0].keys()} 

            if len(data)==1: 

                for k,v in batch.items(): 

                    if k in tensor_items: 

                        batch[k]=torch.cat(batch[k],0) 

                    elif k in seq_items: 

                        batch[k]=torch.nn.utils.rnn.pad_sequence(batch[k], 

batch_first=True) 

                    else: 

                        batch[k]=batch[k][0] 

            else: 

                for k in tensor_items: 

                    batch[k]=torch.cat(batch[k],0) 

                for k in seq_items: 

                    batch[k]=torch.nn.utils.rnn.pad_sequence(batch[k], 

batch_first=True) 

            return batch 

 

def _preprocessing(self,path,new_anns,vids,qstart): 

                with open(path,"r") as rf: 

                        anns=json.load(rf) 

                qid=qstart 

                translator = str.maketrans("", "", string.punctuation) 

                for vid in anns.keys(): 

                        ann=anns[vid] 

                        duration=ann["duration"] 

                        descrip=" ".join(ann["sentences"]) 

                        for ts,q in zip(ann["timestamps"], ann["sentences"]): 

                            file1 = open("simple_query.txt","a") 

                            file1.write(str(qid)+"##"+q+"\n") 

 

                            #with open("simple_query.json","w") as f: 

                            #    json.dump({qid:q},f) 

                            

new_anns[str(qid)]={"timestamps":ts,"query":q,"descriptions":descrip,"tokens":utils.to

kenize(q.lower(),translator),"duration":duration,"video_id":vid} 

                            qid += 1 

 

                        vids.extend(list(anns.keys())) 

                return new_anns, qid,  list(set(vids)) 
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Appendix B Activity Net Hyperparameters 

evaluation: 

  evaluate_after: -1 

  every_eval: 1 

  print_every: 100 

logging: 

  print_level: DEBUG 

  write_level: INFO 

misc: 

  dataset: anet 

  debug: false 

  exp_prefix: anet/tgn_lgi/LGI 

  method_type: tgn_lgi 

  num_workers: 4 

  print_every: 100 

  result_dir: results/anet/tgn_lgi/LGI 

  tensorboard_dir: tensorboard/anet/tgn_lgi/LGI 

  vis_every: 1 

model: 

  checkpoint_path: '' 

  dqa_lambda: 0.2 

  dqa_weight: 1.0 

  glove_path: '' 

  grounding_att_cand_dim: 512 

  grounding_att_drop_prob: 0.0 

  grounding_att_hdim: 256 

  grounding_att_key_dim: 512 

  grounding_hdim: 512 

  grounding_idim: 512 

  lgi_fusion_method: mul 

  lgi_global_nl_drop_prob: 0.0 

  lgi_global_nl_idim: 512 

  lgi_global_nl_nheads: 1 

  lgi_global_nl_odim: 512 

  lgi_global_nl_use_bias: true 

  lgi_global_nl_use_local_mask: false 

  lgi_global_num_nl_block: 1 

  lgi_global_satt_att_cand_dim: 512 

  lgi_global_satt_att_edim: 512 

  lgi_global_satt_att_hdim: 256 

  lgi_global_satt_att_n: 1 

  lgi_global_satt_att_use_embedding: true 

  lgi_global_type: nl 

  lgi_hp_hdim: 512 

  lgi_hp_idim_1: 512 

  lgi_hp_idim_2: 512 

  lgi_local_do_downsample: false 

  lgi_local_num_res_blocks: 1 

  lgi_local_res_block_1d_hdim: 256 

  lgi_local_res_block_1d_idim: 512 

  lgi_local_res_block_1d_ksize: 15 

  lgi_local_res_block_1d_odim: 512 

  lgi_local_type: res_block 

  loc_word_emb_vocab_size: 11125 

  model_type: LGI 

  num_semantic_entity: 5 

  query_enc_emb_idim: 11125 

  query_enc_emb_odim: 300 

  query_enc_rnn_bidirectional: true 
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  query_enc_rnn_dropout: 0.5 

  query_enc_rnn_hdim: 256 

  query_enc_rnn_idim: 300 

  query_enc_rnn_nlayer: 2 

  query_enc_rnn_type: LSTM 

  resume: false 

  sqan_att_cand_dim: 512 

  sqan_att_drop_prob: 0.0 

  sqan_att_hdim: 256 

  sqan_att_key_dim: 512 

  sqan_qdim: 512 

  tag_weight: 1.0 

  use_distinct_query_attention_loss: true 

  use_gpu: false 

  use_temporal_attention_guidance_loss: true 

  use_video_encoder: false 

  video_enc_pemb_idim: 128 

  video_enc_pemb_odim: 512 

  video_enc_use_position: true 

  video_enc_vemb_idim: 500 

  video_enc_vemb_odim: 512 

optimize: 

  decay_factor: 0.5 

  decay_step: -1 

  init_lr: 0.00004 

  num_step: 500 

  optimizer_type: Adam 

  scheduler_type: '' 

test_loader: 

  annotation_path: 

  -  /home/jjw6188/vpmt-master/data/anet/captions/val_1.json 

  -  /home/jjw6188/vpmt-master/data/anet/captions/val_2.json 

  batch_size: 100 

  data_dir: data/anet 

  dataset: anet 

  feature_type: C3D 

  in_memory: true 

  max_length: 25 

  num_segment: 128 

  split: val 

  video_feature_path:  /home/jjw6188/vpmt-master/data/anet/feats/sub_activitynet_v1-

3.c3d.hdf5 

  word_frequency_threshold: 1 

train_loader: 

  annotation_path:  /home/jjw6188/vpmt-master/data/anet/captions/train.json 

  batch_size: 100 

  data_dir:  /home/jjw6188/vpmt-master/data/anet 

  dataset: anet 

  feature_type: C3D 

  in_memory: true 

  max_length: 25 

  num_segment: 128 

  split: train 

  video_feature_path:  /home/jjw6188/vpmt-master/data/anet/feats/sub_activitynet_v1-

3.c3d.hdf5 

word_frequency_threshold: 1 
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Appendix C Activity Net NN Trainer File 

from src.utils import utils, io_utils 

 

#from src.model.LGI import LGI 

import seq2seq 

from neweric_mt import Encoder, Decoder 

from pipeline_utils import * 

 

from seq2seq.loss import NLLLoss 

base_vocab = ['<PAD>', '<UNK>', '<SOS>', '<EOS>'] 

padding_idx = base_vocab.index('<PAD>') 

sos_idx =4960 

eos_idx =4961 

 

class VPMT(nn.Module): 

        """Pipeline, including models, optimizer, forward functions, update 

        """ 

        def __init__(self, arg, dataset, optim_params_type="All"): 

                super(VPMT, self).__init__() 

                self.dataset = dataset # datset name 

                self.args = arg 

                self.optim_params_type = optim_params_type 

                self.vocab_size = 11125 

                self.arg = arg.lgi_arg # LGI model uses its own parameters 

                #self.LGI_model = LGI(arg) 

                #self.init_LGI() 

                self.weight_loss = False # if using weighted loss 

 

                self.encoder = Encoder(self.vocab_size, arg.word_dim, 

arg.text_embed_size) 

 

                #if self.arg.tie_weights: # Use same embedding layer for LGI and VSE 

                #           self.encoder.src_embed = 

self.LGI_model.query_enc.embedding 

 

                self.use_attn = self.args.use_attn 

 

                """ Advanced setting, if the translation is simplified version """ 

                self.simplified_trans = True 

 

                """ using descriptions or not""" 

                self.no_desp = True 

                #self.device=torch.device("cuda:3" if torch.cuda.is_available() else 

"cpu") 

 

                self.device=torch.device("cpu") 

 

                if self.simplified_trans: 

                        if self.dataset == "anet": 

                                self.train_ids, self.test_ids, self.idx_vocab, 

self.vocab_idx  = init_trans("data/anet") 

                                dec_vocab_size = len(self.idx_vocab) 

                        else: 

                                self.train_ids, self.test_ids, self.idx_vocab, 

self.vocab_idx  = init_trans("") 

                                dec_vocab_size = len(self.idx_vocab) 

                        self.itow = itow = {int(k): v for k,v in 

self.idx_vocab.items()} 

                else: 
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                        dec_vocab_size = self.vocab_size 

                        #self.itow = {v:k for k,v in test_D.wtoi.items()} 

                self.decoder = Decoder(1000, hidden_size=arg.text_embed_size, 

vocab_size=dec_vocab_size) 

 

                #if self.args.cuda: 

                 #       self.encoder.cuda() 

                 #       self.decoder.cuda() 

 

                #self.loss_fn = ComplexLoss() 

                self.get_parameters() 

                self.nllloss = NLLLoss() 

                self.dec_criterion = 

nn.CrossEntropyLoss(ignore_index=padding_idx).cuda() 

                #self.vseloss = ContrastiveLoss() 

 

 

        def forward(self, net_inps, 

gts_queries,init_hidden,src_out,batch_size,target_len, prefix="", mode="Train"): 

                # Encode 

                #src_out, init_hidden = self.forward_vse_emb(net_inps['query_labels']) 

 

                # Decode*******change to the Youtube version****** need to confirm 

batch size and target_len******** 

 

                print("batch_size",batch_size) 

                print("target_len",target_len) 

                print("net_inps:",net_inps) 

                #print("*****batch size is ",batch_size) 

                #print("*****target len is ",target_len) 

                #gts_queries = translate_gts(gts['qids'], self.train_ids, 

self.test_ids, self.args.max_len) 

                x=gts_queries[0] 

                #outputs=torch.zeros(batch_size,target_len,self.vocab_size).to(device) 

                outputs=torch.zeros(batch_size,target_len,self.vocab_size) 

 

                for t in range(1,target_len): 

                    output,last_hidden=self.decoder(x,init_hidden) 

                    outputs[t]=output 

                    best_guess=output.argmax(1) 

                    x=best_quess 

 

                return outputs 

                '''if self.simplified_trans: 

                        gts_queries = translate_gts(gts['qids'], self.train_ids, 

self.test_ids, self.args.max_len) 

                        self.scores = self.decoder(net_inps['query_labels'].long(), 

gts_queries.long(), init_hidden, src_out, 10, teacher_forcing_ratio=0.2) 

                        self.compute_loss_nll(self.scores, gts_queries.long()) 

 

                else: 

                        self.scores = self.decoder(net_inps['query_labels'], 

gts['query_labels'], init_hidden, src_out, 10, teacher_forcing_ratio=0.2) 

 

                self.compute_loss_nll(scores, gts['query_labels']) 

                return self.nllloss 

''' 

 

        def update(self): 

                #If weare using both decoder and encoder parameters 

                if self.optim_params_type == "All": 

                        if self.optimizer == None: 
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                                self.create_optimizer() 

                                self.optimizer.zero_grad() 

 

                        #Perform back propogation on loss and train neural network 

                        self.nllloss.backward() 

                        self.optimizer.step() 

                        #Zero out all tensors for next cycle 

                        self.optimizer.zero_grad() 

                else: 

                        #If no optimizer, create an optimizer and zero out tensors 

                        if self.optimizer == None: 

                                self.create_optimizer() 

                                self.enc_optimizer.zero_grad() 

                                self.dec_optimizer.zero_grad() 

 

                        self.nllloss.backward() 

 

                        self.enc_optimizer.step() 

                        self.dec_optimizer.step() 

 

                        self.enc_optimizer.zero_grad() 

                        self.dec_optimizer.zero_grad() 
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