

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Leveraging Transformer Models to Enhance Temporal Grounding

JASON WANG

SPRING 2022

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Computer Science

with honors in Computer Science

Reviewed and approved* by the following:

Rui Zhang

Assistant Professor in Computer Science and Engineering

Thesis Supervisor

John Hannan

Associate Department Head and Associate Professor of Computer Science and Engineering

Honors Adviser

* Electronic approvals are on file.

i

ABSTRACT

 Due to the exponential growth of video in all our lives, the goal to understand details and

actions within videos has never been more important. When words and sentences are grounded

into images and videos, they become far more meaningful. Incorporating both Computer Vision

(CV) and Natural Language Processing (NLP), the task of temporal grounding aims to predict a

specific range of time that an event happens within a video. Specifically, temporal grounding

takes a natural language query and an untrimmed video as input. Tackling and ultimately

optimizing this task can open a wide range of applications both in NLP and CV. From detecting

actions and objects in a live video to creating unsupervised captions, temporal grounding has an

abundance of benefits. In this thesis, I first recap the innovations presented in EVOQUER, a

temporal grounding framework we created that incorporates an existing text-to-video grounding

model and a video-assisted query generation network. Afterwards, I present and analyze the

potential benefits of leveraging transformer models as well as our current attempts at replicating

previous performance statistics.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 An Introduction ... 1

1.1 Background .. 1
1.2 Related Work.. 3
1.3 Metrics & Definitions ... 4

Chapter 2 The EVOQUER Framework ... 6

2.1 Closed-Loop Framework .. 6
2.2 Pipeline Overview .. 8
2.3 Benchmark Datasets ... 10
2.4 Results & Analysis ... 12

Chapter 3 Leveraging Transformers for Temporal Grounding 14

3.1 Why Transformer Models .. 14
3.2 Previous Work .. 15
3.3 Attempts at Replication .. 16

Appendixes .. 19

Appendix A Data Loader Code .. 19
Appendix B Activity Net Hyperparameters ... 22
Appendix C Activity Net NN Trainer File ... 24

iii

LIST OF FIGURES

Figure 1. Time Interval in Video Example .. 2

Figure 2. Intersection over Union Visualization .. 5

Figure 3. Closed-Loop Framework .. 7

Figure 4. EVOQUER Pipeline Overview .. 9

Figure 5. Data Loader Input Example .. 11

Figure 6. Joint (Both Text & Video) Loss vs Iterations During Training 18

Figure 7. Joint Loss vs Every 500 Iterations .. 18

iv

LIST OF TABLES

Table 1. Statistics on Benchmark Datasets .. 11

Table 2. Results of EVOQUER Framework vs LGI .. 13

Table 3. Charades-STA vs Activity Net Sample Distribution ... 13

v

ACKNOWLEDGEMENTS

I want to thank Professor Rui Zhang and Dr. Yanjun Gao for their continued mentorship

and guidance throughout my research journey. I would also like to thank my teammates Michael

Chan and Lulu Liu for their continued work on this project. Lastly, I want to thank my friends

and family for their constant support in my education and endeavors.

1

Chapter 1

An Introduction

1.1 Background

Temporal grounding aims to find the time interval in an untrimmed video that expresses the same

meaning as a natural language query. It addresses the temporal, semantic alignment between language and

vision by locating the video content that corresponds to a query. These two inputs are visualized in Figure

1 below. From the corresponding query “Spread mayonnaise on bread,” the temporal grounding model

must understand the meaning of both the query and input video while ignoring irrelevant actions. The

correct time interval is oftentimes known as the ground truth and is labeled in orange. This process of

learning the meaning of a query falls under the scope of NLP, while the process of understanding the

video falls under CV. Thus, temporal grounding is a task that incorporates two ever-growing fields. It is

broadly applicable in many tasks such as visual storytelling [1,2], video caption generation [3], and video

machine translation [4]. In the real-world, optimizing temporal grounding can increase the safety of

homes and cars through action and object detection. It can also help visually impaired individuals

understand videos through generating captions without human assistance. With so many more potential

applications, temporal grounding is a critical step into merging language and vision.

In recent years, work on temporal grounding has achieved significant progress through a wide

range of approaches. Some methods emphasize mapping verbs and nouns to visual clues such as actions

and objects [5]. Others utilize RGB data from images as well as optical flow for actions [23]. For those

unfamiliar, optical flow is the movement of objects within a scene from a certain point of view. This

movement helps models understand the speed at which objects are moving. Despite this promising

progress, many methods are limited by only employing a one-directional, single-task learning flow. This

2

learning flow means that the predicted time intervals are not used to optimize learning. Furthermore, this

method can not only slow training, but also limits understanding. To strengthen learning, I looked to

explore the possibility of enhancing temporal grounding through these related works. With the recent

growth of transformer models and the state-of-the-art performance many frameworks with transformers

exhibit, leveraging transformer models could be the next step into enhancing temporal grounding.

Figure 1. Time Interval in Video Example

3

1.2 Related Work

 Previous works on temporal grounding can be split into three categories: reinforcement learning,

weakly supervised, and strongly supervised. The most prominent example of a strongly supervised

approach is the LGI algorithm [5]. Utilized within the EVOQUER framework described later in this

thesis, LGI achieves state-of-the-art performance on both the Charades-STA and Activity Net datasets.

These datasets will be described in detail later in this work as well. In this context, the term strongly

supervised means that the input videos have previously been described by a ground truth. In contrast,

weakly supervised means that input videos are not trained using a ground truth. Thus, datasets for

strongly supervised approaches are typically very difficult to create, requiring volunteers to manually

record their actions. In the case of the LGI algorithm and many other strongly supervised approaches,

word-level and sentence-level attention is used to predict time intervals within a video. For clarity,

attention means the level of emphasis a model should put onto certain words and sentences. To this end,

the state-of-the-art LGI algorithm was utilized within the EVOQUER framework to create this sentence-

level attention. Instead of the model just knowing the relationship between words in a single query,

sentence-level attention allows the model to learn the ordering of multiple sentences. This is especially

important for long, complex sentences where a handful of examples can contain a wide range of unique

words that may not appear in other sentences within the dataset.

 Another task similar to temporal grounding is text-to-video moment retrieval, which focuses on

the grounding between a query and video. Instead of the strongly supervised approaches described above,

weakly supervised approaches have been developed for text-to-video moment retrieval [20]. Both tasks

require grounding language into vision while analyzing the understanding of natural language. Similarly,

temporal grounding also has its roots in other tasks such as video captioning, which aims to generate a

description of text given a video. Having many related tasks, temporal grounding also shares the issues

related with captioning and retrieval. Since videos can sometimes consist of hundreds if not thousands of

frames, determining important frames can be a significant road-block. Despite the copious amount of

4

video data, many previous models suffered slow training times and inconsistent results. With the creation

of transformer models such as BERT [11], models that use end-to-end transformers for video-captioning

have been developed. Furthermore, due to these promising results, it is logical to think transformer

models could be leveraged to achieve better performance on related tasks, particularly temporal

grounding.

1.3 Metrics & Definitions

In this and previously referenced works, two main conventional metrics for temporal grounding

are adopted: 1) R@tIoU which determines the recall at different thresholds (Specifically 0.3, 0.5, and

0.7); and 2) mIoU which reports the average recall from all three threshold levels. For the former,

R@tIoU stands for the mean intersection over union. Commonly used for semantic image segmentation

[21], R@tIoU determines whether there is a certain percent overlap (30%, 50%, and 70%) between the

ground truth and predicted output. For the case of semantic image segmentation, images are split into

distinct classes. Since all frameworks described later in this work are strongly supervised, this metric is

the primary way we benchmark performance. This ratio is visualized for clarity in Figure 2. The red area

highlights the value for which the metric R@tIoU measures.

One of the key novel ideas of the EVOQUER framework is query simplification. Due to the

usage of this intuition, there are additional metrics we utilize to determine performance as well.

Specifically, predicted queries are evaluated with two metrics: 1) Jaccard similarity; and 2) BLEU score.

Like R@tIoU, Jaccard similarity measures intersection over union between words in ground truth and in

prediction. Since it does not penalize for duplicated words, Jaccard similarity gives a rough estimation for

the quality of the translated output. Despite being very similar to R@tIoU, Jaccard similarity is pivotal

due to the increase in likelihood that words may be duplicated. Since query simplification decreases the

number of unique words by removing irrelevant adjectives and adverbs, nouns and verbs make up most of

5

the dictionary. Because there are less words to predict, it is intrinsically more likely that a model will

perform better since it is more likely that correct words will be predicted. Thus, Jaccard similarity takes

this into account, alleviating potential incorrect and misleading performance improvements. Lastly,

BLEU score is a standard evaluation metric for machine translation that measures n-gram word overlap.

Since the simplified queries are two words in length, BLEU score is reported in both unigram and bigram.

Figure 2. Intersection over Union Visualization

6

Chapter 2

The EVOQUER Framework

2.1 Closed-Loop Framework

 The EVOQUER Framework, standing for Enhancing Temporal Grounding with VideOPivoted

Back QUERy Generation, was a model developed by Yanjun Gao, Lulu Liu, myself, and Professor Zhang

to tackle temporal grounding. One of the key intuitions that EVOQUER incorporates is the idea of

feedback-error-learning from control theory [7,8]. In short, closed-loop learning allows for better training

by allowing the model to learn from its mistakes for efficiency. The control network in the EVOQUER

framework learns to correct its error from feedback and gains stronger supervision to increase learning. In

this context, the control network simply means the fixed loop that the inputs and outputs of the model are

pushed through. To obtain this feedback, EVOQUER uses a closed-loop framework for temporal

grounding that receives two important enhancements: 1) Supervision in predicting time intervals; and 2)

Feedback from the output video features extracted from the prediction. These inputs are represented as

arrows in Figure 3.

 To achieve this, EVOQUER involves two components: 1) An existing temporal grounding

module; and 2) A translation module. First, the temporal grounding module predicts time intervals given

an untrimmed video and a query as described above. Afterwards, the translation module takes queries by

the predicted intervals as input and outputs a simplified query with only verbs and nouns. As shown by

Figure 3, both tasks receive the same inputs but output different results. To complete query simplification

as described above, EVOQUER uses the video machine translation framework VMT [9]. Standing for

Video-guided Machine Translation, VMT was originally used for language translation from English to

Chinese. In contrast to previous frameworks developed for translation tasks, VMT utilizes information

from videos. Specifically, I3D features from a 3D ConvNet are used to assist the framework in predicting

7

more accurately. Since we already create I3D features for video representation in the temporal grounding

module, this was an intuitive addition to the closed-loop framework. In addition to ease of use,

EVOQUER also utilizes this framework due to its proven performance benefits in video-assisted bilingual

translation. Although we do not focus on language translation, VMT shares a similar Encoder-Decoder

framework that other temporal grounding models utilize as well.

 Since the creation of EVOQUER, there have been many other improvements to video-guided

machine translation as well [22]. In the case of [22], positional encodings are utilized to achieve the

optimal BLEU score. A formal description of what position encodings are is included in Chapter 3 below.

Figure 3. Closed-Loop Framework

8

2.2 Pipeline Overview

An overview of the EVOQUER pipeline can be found in Figure 4 on the following page. As

shown by the box on the top left, the input to the framework is an untrimmed video and a set of English

queries. Following the framework in LGI [5], EVOQUER uses I3D frame-based features for video

representation. Since LGI shows state-of-the-art performance using these video features, we continue with

this approach. Given the video features and queries, LGI predicts intervals with the content corresponding

to a given query. With this output, we exit the temporal grounding module labeled in green.

Following the creation of these time intervals, frames are extracted from videos trimmed by the

predicted interval to represent the contents of the video clip. To maintain the continuity of the contents,

EVUOQUER extracts 32 frames per video clip such that that the contents of the trimmed videos are

evenly distributed across all 32 frames. This spacing lessens the likelihood that a set of actions happens

during a very short interval within the input video. Within the datasets we use, videos are captured at 24

frames per second. Thus, we found the 32-frame videos roughly to span 1.3 seconds.

Next, we enter the translation module within the EVOQUER framework. First, we feed the

extracted video features and input query into the translation module consisting of two bi-LSTM-based

encoders and an LSTM-based decoder. Following the output of the encoders, temporal and soft attention

are used for the input to the decoder. As the name implies, temporal attention puts emphasis on certain

time intervals with a video. Additionally, soft attention utilizes a differentiable function to determine

which words within a sentence should be emphasized. An important distinction is the use of hard vs soft

attention. Rather than the continuous weighted averages used in soft attention, hard attention utilizes

discrete values to determine whether a specific word or frame should be attended to. Since hard attention

can completely mask certain words, it is best to utilize soft attention in this context. Video hidden states

and text hidden states are sent individually to these two attention modules. This output is then

concatenated into a one-vector form and sent to the decoder as input. In the attention network, temporal

attention is learned through video features, and soft attention through query hidden states.

9

Instead of learning to decode the original query, EVOQUER tries to focus on verbs and nouns,

since that is what distinguishes the video content. In the Charades-STA dataset, annotators tend to use

various verb tenses when describing the video activities. For example, both “closing the window" and

“closes the window" are used on the same video content. Therefore, we lemmatize the words, label the

query with part-of-speech tags, and extract verbs and nouns as simplified versions of the queries. The

decoder then learns to predict simplified queries and computes a negative log-likelihood (NLL) loss at the

end of the decoding. Finally, EVOQUER combines the NLL loss from query simplification with the LGI

loss [5] from time interval prediction to train the networks jointly in an end-to-end fashion.

Figure 4. EVOQUER Pipeline Overview

10

2.3 Benchmark Datasets

The two datasets used to evaluate the EVOQUER framework are Charades-STA and Activity

Net, two widely used benchmark datasets for temporal grounding. We follow the dataset settings in [5],

where both datasets are set with train/valid/test as 50%, 25%, and 25% respectively. The statistics of each

of these datasets are detailed in Table 1 below. As shown evidently from the table, the two datasets vary

greatly on most of the statistics. Compared to Charades-STA, Activity Net is a more challenging dataset

since it requires the decoder in EVOQUER to predict correct words from a much larger vocabulary. A

dictionary whose size is almost 10 times larger than Charades-STA.

Due to these stark differences, I created two distinct data loaders to prepare the data for training.

The code of the data loader for Activity Net can be found in the Appendix below. In the case of Charades-

STA, the given input format included a video id, time stamp, and query. An example of this input is

shown in Figure 5. To input this data into the neural network, I simplify the data into a list of video ids,

timestamps, duration, and query length. To compare the outputs of the model to the ground truth, I create

PyTorch tensors with data regarding the ground truth, including start position, end position, and the

number of video features. Each video id corresponds to a specific video, enabling the neural network to

differentiate each input while training. Lastly, I create two dictionaries to create a mapping from words to

ids and vice versa. In contrast to Charades-STA, Activity Net had a far larger dictionary, making the

dataset far harder to simplify. Specifically, I had to simplify how many inputs were provided in each

instance. In this context, an instance was a dictionary of all the inputs associated with one video id. One

method I utilized was to ignore inputs such as description length and description labels since these inputs

were unique to Charades-STA. Following the development of these two data loaders, EVOQUER was

tested on both.

In the experiments on Activity Net, EVOQUER was found to converge at a higher NLL loss than

Charades-STA, and failed to produce good quality simplified queries. We believe this was likely due to

11

the harder decoding task. I later detail another dataset when transformers are introduced. Specifically, we

utilize the HowTo100M dataset and focus solely on a subset of cooking videos.

Table 1. Statistics on Benchmark Datasets

Figure 5. Data Loader Input Example

12

2.4 Results & Analysis

Table 2 presents results on the Charades-STA and Activity Net from two models: 1) The

EVOQUER model; and 2) A retrained LGI model. Compared to the LGI framework, EVOQUER showed

improvement on R@0.7 and mIoU, the hardest thresholds for temporal interval overlap. Table 3 divides

the samples into four categories according to their recall: 1) When EVOQUER ranked in a higher

threshold than the LGI; 2) When EVOQUER ranked lower than the LGI; 3) When both had the same

recalls that were at least R@0.3; and 4) When both scores ranked below R@0.3. In contrast to the 441

samples on Charades-STA, Activity Net had 4,268 samples above R@0.3, with 79 and 1,144 samples of

absolute improvement. These statistics can be found in further detail in Table 3. Despite a stark increase

in samples between the two datasets, the ratio between samples above and below R@0.3 remained the

same. Thus, this continued performance showed that EVOQUER had promising results on a wide range

of potential benchmark datasets. In addition to mean intersection over union, EVOQUER achieved 51.98

on Jaccard Similarity, 53.04 on BLEU unigram, and 42.47 on BLEU bigram. Compared to the state-of-

the-art model of LGI, EVOQUER performed very similarly. In general, EVOQUER showed incremental

improvement in these metrics, despite incorporating query simplification on Charades-STA.

Through a case study, EVOQUER demonstrated the power of query simplification when used.

Utilizing query simplification on Activity Net, we experienced some challenges. Specifically, we found

performance improvements from query simplification to be less noticeable on Activity Net than

Charades-STA. We accredited these shortcomings to two main reasons: 1) he decoder vocabulary on

Activity Net was much larger than Charades-STA, making sentence simplification less consistent; and 2)

The design of translation module was too simple to handle longer predicted time intervals. As shown

from Table 1, the videos of Activity Net proved to be far longer than Charades-STA. Rather than the 30

seconds videos of Charades-STA, Activity Net could include videos of upwards of multiple minutes. This

increase in video length, coupled with the large vocabulary, likely made the model struggle with

mailto:R@0.3

13

predicting the ground truth. Nonetheless, the results on Charades-STA indicated the contributions of the

EVOQUER framework.

Table 2. Results of EVOQUER Framework vs LGI

Table 3. Charades-STA vs Activity Net Sample Distribution

14

Chapter 3

Leveraging Transformers for Temporal Grounding

3.1 Why Transformer Models

 First introduced in 2017 [10], transformers rose in popularity due to being easy to train and

efficient in tasks previously dominated by Long Short-term Memory Networks (LSTMs). Since LSTMs

had to read inputs sequentially, they were not only difficult to train on large datasets but were also

ineffective for long streams of sequential data. In the case of transformers, substantial amounts of

sequential data, such as frames that make up a video, can be trained in parallel. Due to this ability to

parallelize data, transformers were also able to align with modern GPU architectures as well.

 The two biggest innovations provided by transformers are self-attention and positional encodings,

two aspects that can benefit temporal grounding. Originally used for sentence translation, such as

translation from English to French, transformers must find different ways to encode the position of

different words within a sentence since transformers do not take inputs sequentially like LSTMs.

Furthermore, the order of words is lost when inputting the data into the model. The importance of the

order of words can be shown easily through the following example: 1) I genuinely need to finish this

interview; and 2) I need to finish this interview genuinely. Despite both sentences containing the same

words, the placement of words such as genuinely change the meaning of the sentence completely. Prior to

inputting embeddings into an encoder and decoder framework, transformers encode a sin and cos function

into the embeddings depending on a word’s position in a sentence. This process of positional encodings

was also utilized in other tasks such as the video-guided machine translation described earlier as well.

 In addition to positional embeddings, transformers utilize self-attention. In short, self-attention is

used to obtain context by finding associations between different words in the same input. In contrast to

simple attention which uses emphasis learned from external inputs. Moving forward, I talk about previous

15

applications of transformer models: first in the context of NLP and then in the context of temporal

grounding.

3.2 Previous Work

As a variation of the Encoder-Decoder framework used in the original paper [10], BERT [11],

also known as a Bidirectional Encoder Representation from Transformers, was created. BERT

differentiates itself by stacking the encoder modules in [10] to broaden the application of the initial

framework. To pretrain the model, BERT utilizes two main problems to allow the model to understand

language: 1) Masked LM (MLM); and 2) Next Sentence Prediction (NSP). For the former, roughly 15

percent of the inputs are randomly replaced by masked tokens, and the model is required to predict the

missing word. For the latter, two sentences are provided as input, and BERT makes a prediction on

whether one sentence follows another. These tasks for pretraining help BERT associate not only

sentences, but also the relationship between words in two directions. By changing the input and output

layers before and after the model, BERT can be modified for a very wide range of NLP tasks [12,13,14].

Following the work of BERT, VideoBERT[12] was developed to extend the power of

transformers on vision-related tasks. Instead of masked sentences, VideoBERT is inputted a concatenated

sentence with visual words. These novel visual words are created with features which capture the visual

frames most representative of the video. Similar to the NSP task utilized to pretrain BERT, VideoBERT

utilizes a linguistic-visual alignment task that predicts if the sentence corresponds with the visual words

described above. Due to the versatility of BERT on a wide range of NLP tasks, VideoBERT has similarly

been used for a wide range of vision and language tasks [15, 16]. By changing the output layers of

VideoBERT, leveraging transformer models to predict time intervals instead of videos can enhance

temporal grounding. With these potential benefits, we investigate adding additional layers and/or utilizing

previous works to increase performance.

16

3.3 Attempts at Replication

Since we do not have access to a pretrained VideoBERT model, replicating the VideoBERT

framework has been our ongoing task. Of the available options, we use a subset of the HowTo100M

dataset [18] to align with the original YouCook II dataset. Specifically, we focus on roughly 16,000

cooking-related videos to narrow the focus of our model to a subset of tasks. Downloaded from Youtube,

the HowTo100M dataset emphasizes instructional videos as well, allowing each video to have a specific

number of intended actions. Thus, rather than videos with sporadic actions scattered across the video,

datasets such as HowTo100M and YouCook II contain videos best for training the neural network.

To replicate the performance of VideoBERT, we first created I3D features [19] of each video.

Standing for Inflated 3D ConvNet, I3D features obtain the spatio-temporal understanding of each video.

For much of this replication, we treat I3D as a black box. Compared to the S3D features [17] utilized

within VideoBERT, the I3D framework creates features with dimensions 20 by 600. In this context, we

interpreted this dimensionality as each of the 20 frames having 600 specific features. Within [12],

VideoBERT utilizes S3D features with 1024 features per frame. Since this difference in dimensionality

has not caused any issues during training, we moved on to create corresponding centroids for each video

feature. On average, we found that each video we focused on in the HowTo100M dataset was caught at

25 frames per second. Thus, each video had an average of 260 frames. This large number of frames

relates more closely with Activity Net rather than Charades-STA.

Using these feature files, we utilized mini-batch k-means to create centroids for each video.

Specifically, we utilize hierarchical k-means clustering from sklearn, a built-in machine learning library

for Python. By default, each centroid had dimensionality 12 by 600 where 12 represented the number of

frames, and 600 represented the number of features per frame. One of the key roadblocks we faced was

this difference in dimensionality between the created I3D features and centroids. To solve this issue, we

created two potential solutions: 1) Adjust the parameters to the hkmeans script from sklearn to try to

modify the outputted dimensionality; and 2) Adjust the centroids to 1 by 600 by taking the average of

17

each of the 12 frames. This solution removes the possibility of dimension-errors moving forward. Using

the second solution, we take the average of each centroid and continue with the pipeline.

Utilizing these centroids, we concatenate them for ease of use. Next, we utilize this large centroid

to label and punctuate the data prior to training. Currently, we are in the process of training the model

with some initial success. Figures 6 and 7 below show a consistent decrease in joint loss as training

continues. Since VideoBERT is trained on text-only, video-only, and joint text and video, we graph joint

loss to show an aggregate metric of progress. Despite this decreasing trend, we find that the loss starts to

stagnate at roughly iteration 600. Since this is still early in the training process, it is difficult to pinpoint

the exact cause of this stagnation. We hope to train our model on at least 10 epochs to achieve better

performance.

Following a fully trained VideoBERT model on the HowTo100M dataset, we plan to edit the

output layers of VideoBERT to leverage its performance on temporal grounding. Similar to EVOQUER,

testing the performance of this novel framework on benchmark datasets such as Charades-STA and

Activity Net is the true tell of whether a transformer architecture can benefit this task. Due to previous

success in extending VideoBERT to tasks such as predicting video sequences, leveraging transformers

could be the next significant move towards enhancing temporal grounding.

18

Figure 6. Joint (Both Text & Video) Loss vs Iterations During Training

Figure 7. Joint Loss vs Every 500 Iterations

19

Appendixes

Appendix A Data Loader Code

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import os

import h5py

import string

import numpy as np

import string

import torch

import json

import time

import torch

import torch.utils.data as data

from collections import defaultdict, OrderedDict

from tqdm import tqdm

from abc import abstractmethod

from src.dataset.abstract_dataset import AbstractDataset

from src.utils import utils,io_utils

def create_loaders(split, loader_configs, num_workers):

 dsets, L = {}, {}

 for di,dt in enumerate(split):

 shuffle = True if dt == "train" else False

 drop_last = True if dt == "train" else False

 dsets[dt] = ActivityNetCaptionsDataset(loader_configs[di])

 L[dt] = data.DataLoader(

 dsets[dt],

 batch_size = loader_configs[di]["batch_size"],

 num_workers = num_workers,

 shuffle = shuffle, # shuffle

 collate_fn = dsets[dt].collate_fn,

 drop_last= drop_last #drop_last

)

 return dsets, L

def __getitem__(self, idx):

 # get query id and corresponding video id

 qid = str(self.qids[idx])

 vid = self.anns[qid]["video_id"]

 timestamp = self.anns[qid]["timestamps"]

 duration = self.anns[qid]["duration"]

 qry=self.anns[qid]["query"]

 # Descriptions

 #d_label_lsts = self.descriploader.encoded_description(vid, self.wtoi)

 #description_length, description_labels =

d_label_lsts['descrip_lengths'], d_label_lsts['descrip_labels']

 # get query labels

 if self.in_memory:

20
 q_label = self.query_labels[qid]

 else:

 query_labels = h5py.File(self.paths["query_labels"], "r")

 q_label = query_labels[qid][:]

 q_leng = self.query_lengths[qid]

 # get grounding label

 if self.in_memory:

 start_pos = self.s_pos[qid]

 end_pos = self.e_pos[qid]

 else:

 grd_info = h5py.File(self.paths["grounding_info"],"r")

 start_pos = grd_info["start_pos/"+qid][()]

 end_pos = grd_info["end_pos/"+qid][()]

 # get video features

 if self.in_memory:

 vid_feat_all = self.feats[vid]

 else:

 vid_feat_all = io_utils.load_hdf5(self.feat_hdf5,

verbose=False)[vid]["c3d_features"]

 vid_feat, nfeats, start_index, end_index = self.get_fixed_length_feat(

 vid_feat_all, self.S, start_pos, end_pos)

 # get video masks

 vid_mask = np.zeros((self.S, 1))

 vid_mask[:nfeats] = 1

 # get attention mask

 if self.in_memory:

 att_mask = self.att_mask[qid]

 else:

 att_mask = grd_info["att_mask/"+qid][:]

 instance = {

 "vids": vid,

 "qids": qid,

 "timestamps": timestamp, # GT location [s, e] (seconds)

 "duration": duration, # video span (seconds)

 #"description_length": description_length,

 #"description_labels": description_labels,

 "query_lengths": q_leng,

 # "query":qry,

 "query_labels": torch.LongTensor(q_label).unsqueeze(0),

 "query_masks": (torch.FloatTensor(q_label)>0).unsqueeze(0), #

[1,L_q_max]

 "grounding_start_pos": torch.FloatTensor([start_pos]), # [1];

normalized

 "grounding_end_pos": torch.FloatTensor([end_pos]), # [1];

normalized

 "grounding_att_masks": torch.FloatTensor(att_mask), # [L_v]

 "nfeats": torch.FloatTensor([nfeats]),

 "video_feats": torch.FloatTensor(vid_feat), # [L_v,D_v]

 "video_masks": torch.ByteTensor(vid_mask), # [L_v,D-v]

 }

 return instance

def collate_fn(self,data):

 seq_items=["video_feats","video_masks","grounding_att_masks"]

tensor_items=["query_labels","query_masks","nfeats","grounding_start_pos","grounding_e

nd_pos",]

21
 batch={k:[d[k] for d in data] for k in data[0].keys()}

 if len(data)==1:

 for k,v in batch.items():

 if k in tensor_items:

 batch[k]=torch.cat(batch[k],0)

 elif k in seq_items:

 batch[k]=torch.nn.utils.rnn.pad_sequence(batch[k],

batch_first=True)

 else:

 batch[k]=batch[k][0]

 else:

 for k in tensor_items:

 batch[k]=torch.cat(batch[k],0)

 for k in seq_items:

 batch[k]=torch.nn.utils.rnn.pad_sequence(batch[k],

batch_first=True)

 return batch

def _preprocessing(self,path,new_anns,vids,qstart):

 with open(path,"r") as rf:

 anns=json.load(rf)

 qid=qstart

 translator = str.maketrans("", "", string.punctuation)

 for vid in anns.keys():

 ann=anns[vid]

 duration=ann["duration"]

 descrip=" ".join(ann["sentences"])

 for ts,q in zip(ann["timestamps"], ann["sentences"]):

 file1 = open("simple_query.txt","a")

 file1.write(str(qid)+"##"+q+"\n")

 #with open("simple_query.json","w") as f:

 # json.dump({qid:q},f)

new_anns[str(qid)]={"timestamps":ts,"query":q,"descriptions":descrip,"tokens":utils.to

kenize(q.lower(),translator),"duration":duration,"video_id":vid}

 qid += 1

 vids.extend(list(anns.keys()))

 return new_anns, qid, list(set(vids))

22

Appendix B Activity Net Hyperparameters

evaluation:

 evaluate_after: -1

 every_eval: 1

 print_every: 100

logging:

 print_level: DEBUG

 write_level: INFO

misc:

 dataset: anet

 debug: false

 exp_prefix: anet/tgn_lgi/LGI

 method_type: tgn_lgi

 num_workers: 4

 print_every: 100

 result_dir: results/anet/tgn_lgi/LGI

 tensorboard_dir: tensorboard/anet/tgn_lgi/LGI

 vis_every: 1

model:

 checkpoint_path: ''

 dqa_lambda: 0.2

 dqa_weight: 1.0

 glove_path: ''

 grounding_att_cand_dim: 512

 grounding_att_drop_prob: 0.0

 grounding_att_hdim: 256

 grounding_att_key_dim: 512

 grounding_hdim: 512

 grounding_idim: 512

 lgi_fusion_method: mul

 lgi_global_nl_drop_prob: 0.0

 lgi_global_nl_idim: 512

 lgi_global_nl_nheads: 1

 lgi_global_nl_odim: 512

 lgi_global_nl_use_bias: true

 lgi_global_nl_use_local_mask: false

 lgi_global_num_nl_block: 1

 lgi_global_satt_att_cand_dim: 512

 lgi_global_satt_att_edim: 512

 lgi_global_satt_att_hdim: 256

 lgi_global_satt_att_n: 1

 lgi_global_satt_att_use_embedding: true

 lgi_global_type: nl

 lgi_hp_hdim: 512

 lgi_hp_idim_1: 512

 lgi_hp_idim_2: 512

 lgi_local_do_downsample: false

 lgi_local_num_res_blocks: 1

 lgi_local_res_block_1d_hdim: 256

 lgi_local_res_block_1d_idim: 512

 lgi_local_res_block_1d_ksize: 15

 lgi_local_res_block_1d_odim: 512

 lgi_local_type: res_block

 loc_word_emb_vocab_size: 11125

 model_type: LGI

 num_semantic_entity: 5

 query_enc_emb_idim: 11125

 query_enc_emb_odim: 300

 query_enc_rnn_bidirectional: true

23
 query_enc_rnn_dropout: 0.5

 query_enc_rnn_hdim: 256

 query_enc_rnn_idim: 300

 query_enc_rnn_nlayer: 2

 query_enc_rnn_type: LSTM

 resume: false

 sqan_att_cand_dim: 512

 sqan_att_drop_prob: 0.0

 sqan_att_hdim: 256

 sqan_att_key_dim: 512

 sqan_qdim: 512

 tag_weight: 1.0

 use_distinct_query_attention_loss: true

 use_gpu: false

 use_temporal_attention_guidance_loss: true

 use_video_encoder: false

 video_enc_pemb_idim: 128

 video_enc_pemb_odim: 512

 video_enc_use_position: true

 video_enc_vemb_idim: 500

 video_enc_vemb_odim: 512

optimize:

 decay_factor: 0.5

 decay_step: -1

 init_lr: 0.00004

 num_step: 500

 optimizer_type: Adam

 scheduler_type: ''

test_loader:

 annotation_path:

 - /home/jjw6188/vpmt-master/data/anet/captions/val_1.json

 - /home/jjw6188/vpmt-master/data/anet/captions/val_2.json

 batch_size: 100

 data_dir: data/anet

 dataset: anet

 feature_type: C3D

 in_memory: true

 max_length: 25

 num_segment: 128

 split: val

 video_feature_path: /home/jjw6188/vpmt-master/data/anet/feats/sub_activitynet_v1-

3.c3d.hdf5

 word_frequency_threshold: 1

train_loader:

 annotation_path: /home/jjw6188/vpmt-master/data/anet/captions/train.json

 batch_size: 100

 data_dir: /home/jjw6188/vpmt-master/data/anet

 dataset: anet

 feature_type: C3D

 in_memory: true

 max_length: 25

 num_segment: 128

 split: train

 video_feature_path: /home/jjw6188/vpmt-master/data/anet/feats/sub_activitynet_v1-

3.c3d.hdf5

word_frequency_threshold: 1

24

Appendix C Activity Net NN Trainer File

from src.utils import utils, io_utils

#from src.model.LGI import LGI

import seq2seq

from neweric_mt import Encoder, Decoder

from pipeline_utils import *

from seq2seq.loss import NLLLoss

base_vocab = ['<PAD>', '<UNK>', '<SOS>', '<EOS>']

padding_idx = base_vocab.index('<PAD>')

sos_idx =4960

eos_idx =4961

class VPMT(nn.Module):

 """Pipeline, including models, optimizer, forward functions, update

 """

 def __init__(self, arg, dataset, optim_params_type="All"):

 super(VPMT, self).__init__()

 self.dataset = dataset # datset name

 self.args = arg

 self.optim_params_type = optim_params_type

 self.vocab_size = 11125

 self.arg = arg.lgi_arg # LGI model uses its own parameters

 #self.LGI_model = LGI(arg)

 #self.init_LGI()

 self.weight_loss = False # if using weighted loss

 self.encoder = Encoder(self.vocab_size, arg.word_dim,

arg.text_embed_size)

 #if self.arg.tie_weights: # Use same embedding layer for LGI and VSE

 # self.encoder.src_embed =

self.LGI_model.query_enc.embedding

 self.use_attn = self.args.use_attn

 """ Advanced setting, if the translation is simplified version """

 self.simplified_trans = True

 """ using descriptions or not"""

 self.no_desp = True

 #self.device=torch.device("cuda:3" if torch.cuda.is_available() else

"cpu")

 self.device=torch.device("cpu")

 if self.simplified_trans:

 if self.dataset == "anet":

 self.train_ids, self.test_ids, self.idx_vocab,

self.vocab_idx = init_trans("data/anet")

 dec_vocab_size = len(self.idx_vocab)

 else:

 self.train_ids, self.test_ids, self.idx_vocab,

self.vocab_idx = init_trans("")

 dec_vocab_size = len(self.idx_vocab)

 self.itow = itow = {int(k): v for k,v in

self.idx_vocab.items()}

 else:

25
 dec_vocab_size = self.vocab_size

 #self.itow = {v:k for k,v in test_D.wtoi.items()}

 self.decoder = Decoder(1000, hidden_size=arg.text_embed_size,

vocab_size=dec_vocab_size)

 #if self.args.cuda:

 # self.encoder.cuda()

 # self.decoder.cuda()

 #self.loss_fn = ComplexLoss()

 self.get_parameters()

 self.nllloss = NLLLoss()

 self.dec_criterion =

nn.CrossEntropyLoss(ignore_index=padding_idx).cuda()

 #self.vseloss = ContrastiveLoss()

 def forward(self, net_inps,

gts_queries,init_hidden,src_out,batch_size,target_len, prefix="", mode="Train"):

 # Encode

 #src_out, init_hidden = self.forward_vse_emb(net_inps['query_labels'])

 # Decode*******change to the Youtube version****** need to confirm

batch size and target_len********

 print("batch_size",batch_size)

 print("target_len",target_len)

 print("net_inps:",net_inps)

 #print("*****batch size is ",batch_size)

 #print("*****target len is ",target_len)

 #gts_queries = translate_gts(gts['qids'], self.train_ids,

self.test_ids, self.args.max_len)

 x=gts_queries[0]

 #outputs=torch.zeros(batch_size,target_len,self.vocab_size).to(device)

 outputs=torch.zeros(batch_size,target_len,self.vocab_size)

 for t in range(1,target_len):

 output,last_hidden=self.decoder(x,init_hidden)

 outputs[t]=output

 best_guess=output.argmax(1)

 x=best_quess

 return outputs

 '''if self.simplified_trans:

 gts_queries = translate_gts(gts['qids'], self.train_ids,

self.test_ids, self.args.max_len)

 self.scores = self.decoder(net_inps['query_labels'].long(),

gts_queries.long(), init_hidden, src_out, 10, teacher_forcing_ratio=0.2)

 self.compute_loss_nll(self.scores, gts_queries.long())

 else:

 self.scores = self.decoder(net_inps['query_labels'],

gts['query_labels'], init_hidden, src_out, 10, teacher_forcing_ratio=0.2)

 self.compute_loss_nll(scores, gts['query_labels'])

 return self.nllloss

'''

 def update(self):

 #If weare using both decoder and encoder parameters

 if self.optim_params_type == "All":

 if self.optimizer == None:

26
 self.create_optimizer()

 self.optimizer.zero_grad()

 #Perform back propogation on loss and train neural network

 self.nllloss.backward()

 self.optimizer.step()

 #Zero out all tensors for next cycle

 self.optimizer.zero_grad()

 else:

 #If no optimizer, create an optimizer and zero out tensors

 if self.optimizer == None:

 self.create_optimizer()

 self.enc_optimizer.zero_grad()

 self.dec_optimizer.zero_grad()

 self.nllloss.backward()

 self.enc_optimizer.step()

 self.dec_optimizer.step()

 self.enc_optimizer.zero_grad()

 self.dec_optimizer.zero_grad()

27

BIBLIOGRAPHY

[1] Lukin, S.M., Hobbs, R. and Voss, C.R., 2018. A pipeline for creative visual storytelling. arXiv

preprint arXiv:1807.08077.

[2] Knight, K., Nenkova, A. and Rambow, O., 2016, June. Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies. In Proceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies.

[3] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. 2017. Dense-

captioning events in videos. In International Conference on Computer Vision (ICCV).

[4] Rodriguez, C., Marrese-Taylor, E., Saleh, F.S., Li, H. and Gould, S., 2020. Proposal-free temporal

moment localization of a natural-language query in video using guided attention. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 2464-2473).

[5] Jonghwan Mun, Minsu Cho, and Bohyung Han. 2020. Local-global video-text interactions for

temporal grounding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10810–10819.

[7] Kawato, M., 1990. Feedback-error-learning neural network for supervised motor learning.

In Advanced neural computers (pp. 365-372). North-Holland.

[8] Gomi, H. and Kawato, M., 1993. Neural network control for a closed-loop system using feedback-

error-learning. Neural Networks, 6(7), pp.933-946.

[9] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, YuanFang Wang, and William Yang Wang. 2019b.

Vatex: A large-scale, high-quality multilingual dataset for video-and-language research. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 4581–4591.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information

Processing Systems, pages 6000–6010.

28

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language understanding. In North American Association for

Computational Linguistics (NAACL).

[12] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. 2019. Videobert: A

joint model for video and language representation learning. arXiv preprint arXiv:1904.01766.

[13] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le.

2019. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint

arXiv:1906.08237.

[14] Nils Reimers and Iryna Gurevych. 2019. SentenceBERT: Sentence Embeddings using Siamese

BERTNetworks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

[15] Lu, J., Batra, D., Parikh, D. and Lee, S., 2019. Vilbert: Pretraining task-agnostic visiolinguistic

representations for vision-and-language tasks. Advances in neural information processing systems, 32.

[16] Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J. and Chang, K.W., 2019. Visualbert: A simple and

performant baseline for vision and language. arXiv preprint arXiv:1908.03557.

[17] Xie, S., Sun, C., Huang, J., Tu, Z. and Murphy, K., 2018. Rethinking spatiotemporal feature learning:

Speed-accuracy trade-offs in video classification. In Proceedings of the European conference on

computer vision (ECCV) (pp. 305-321).

[18] Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I. and Sivic, J., 2019. Howto100m:

Learning a text-video embedding by watching hundred million narrated video clips. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (pp. 2630-2640).

[19] Carreira, J. and Zisserman, A., 2017. Quo vadis, action recognition? a new model and the kinetics

dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6299-

6308).

29

[20] Mithun, N.C., Paul, S. and Roy-Chowdhury, A.K., 2019. Weakly supervised video moment retrieval

from text queries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp. 11592-11601).

[21] Liu, X., Deng, Z. and Yang, Y., 2019. Recent progress in semantic image segmentation. Artificial

Intelligence Review, 52(2), pp.1089-1106.

[22] Hirasawa, T., Yang, Z., Komachi, M. and Okazaki, N., 2020. Keyframe segmentation and positional

encoding for video-guided machine translation challenge 2020. arXiv preprint arXiv:2006.12799.

[23] Chen, Y.W., Tsai, Y.H. and Yang, M.H., 2021. End-to-end multi-modal video temporal

grounding. Advances in Neural Information Processing Systems, 34.

30

