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ABSTRACT

Due to the exponential growth of video in all our lives, the goal to understand details and
actions within videos has never been more important. When words and sentences are grounded
into images and videos, they become far more meaningful. Incorporating both Computer Vision
(CV) and Natural Language Processing (NLP), the task of temporal grounding aims to predict a
specific range of time that an event happens within a video. Specifically, temporal grounding
takes a natural language query and an untrimmed video as input. Tackling and ultimately
optimizing this task can open a wide range of applications both in NLP and CV. From detecting
actions and objects in a live video to creating unsupervised captions, temporal grounding has an
abundance of benefits. In this thesis, I first recap the innovations presented in EVOQUER, a
temporal grounding framework we created that incorporates an existing text-to-video grounding
model and a video-assisted query generation network. Afterwards, | present and analyze the
potential benefits of leveraging transformer models as well as our current attempts at replicating

previous performance statistics.
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Chapter 1

An Introduction

1.1 Background

Temporal grounding aims to find the time interval in an untrimmed video that expresses the same
meaning as a natural language query. It addresses the temporal, semantic alignment between language and
vision by locating the video content that corresponds to a query. These two inputs are visualized in Figure
1 below. From the corresponding query “Spread mayonnaise on bread,” the temporal grounding model
must understand the meaning of both the query and input video while ignoring irrelevant actions. The
correct time interval is oftentimes known as the ground truth and is labeled in orange. This process of
learning the meaning of a query falls under the scope of NLP, while the process of understanding the
video falls under CV. Thus, temporal grounding is a task that incorporates two ever-growing fields. It is
broadly applicable in many tasks such as visual storytelling [1,2], video caption generation [3], and video
machine translation [4]. In the real-world, optimizing temporal grounding can increase the safety of
homes and cars through action and object detection. It can also help visually impaired individuals
understand videos through generating captions without human assistance. With so many more potential
applications, temporal grounding is a critical step into merging language and vision.

In recent years, work on temporal grounding has achieved significant progress through a wide
range of approaches. Some methods emphasize mapping verbs and nouns to visual clues such as actions
and objects [5]. Others utilize RGB data from images as well as optical flow for actions [23]. For those
unfamiliar, optical flow is the movement of objects within a scene from a certain point of view. This
movement helps models understand the speed at which objects are moving. Despite this promising

progress, many methods are limited by only employing a one-directional, single-task learning flow. This



learning flow means that the predicted time intervals are not used to optimize learning. Furthermore, this
method can not only slow training, but also limits understanding. To strengthen learning, I looked to
explore the possibility of enhancing temporal grounding through these related works. With the recent
growth of transformer models and the state-of-the-art performance many frameworks with transformers

exhibit, leveraging transformer models could be the next step into enhancing temporal grounding.
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Query: Spread mayonnaise on bread
Figure 1. Time Interval in Video Example
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1.2 Related Work

Previous works on temporal grounding can be split into three categories: reinforcement learning,
weakly supervised, and strongly supervised. The most prominent example of a strongly supervised
approach is the LGI algorithm [5]. Utilized within the EVOQUER framework described later in this
thesis, LGI achieves state-of-the-art performance on both the Charades-STA and Activity Net datasets.
These datasets will be described in detail later in this work as well. In this context, the term strongly
supervised means that the input videos have previously been described by a ground truth. In contrast,
weakly supervised means that input videos are not trained using a ground truth. Thus, datasets for
strongly supervised approaches are typically very difficult to create, requiring volunteers to manually
record their actions. In the case of the LGI algorithm and many other strongly supervised approaches,
word-level and sentence-level attention is used to predict time intervals within a video. For clarity,
attention means the level of emphasis a model should put onto certain words and sentences. To this end,
the state-of-the-art LGI algorithm was utilized within the EVOQUER framework to create this sentence-
level attention. Instead of the model just knowing the relationship between words in a single query,
sentence-level attention allows the model to learn the ordering of multiple sentences. This is especially
important for long, complex sentences where a handful of examples can contain a wide range of unique
words that may not appear in other sentences within the dataset.

Another task similar to temporal grounding is text-to-video moment retrieval, which focuses on
the grounding between a query and video. Instead of the strongly supervised approaches described above,
weakly supervised approaches have been developed for text-to-video moment retrieval [20]. Both tasks
require grounding language into vision while analyzing the understanding of natural language. Similarly,
temporal grounding also has its roots in other tasks such as video captioning, which aims to generate a
description of text given a video. Having many related tasks, temporal grounding also shares the issues
related with captioning and retrieval. Since videos can sometimes consist of hundreds if not thousands of

frames, determining important frames can be a significant road-block. Despite the copious amount of



4
video data, many previous models suffered slow training times and inconsistent results. With the creation

of transformer models such as BERT [11], models that use end-to-end transformers for video-captioning
have been developed. Furthermore, due to these promising results, it is logical to think transformer
models could be leveraged to achieve better performance on related tasks, particularly temporal

grounding.

1.3 Metrics & Definitions

In this and previously referenced works, two main conventional metrics for temporal grounding
are adopted: 1) R@tloU which determines the recall at different thresholds (Specifically 0.3, 0.5, and
0.7); and 2) mloU which reports the average recall from all three threshold levels. For the former,
R@tloU stands for the mean intersection over union. Commonly used for semantic image segmentation
[21], R@tloU determines whether there is a certain percent overlap (30%, 50%, and 70%) between the
ground truth and predicted output. For the case of semantic image segmentation, images are split into
distinct classes. Since all frameworks described later in this work are strongly supervised, this metric is
the primary way we benchmark performance. This ratio is visualized for clarity in Figure 2. The red area
highlights the value for which the metric R@tloU measures.

One of the key novel ideas of the EVOQUER framework is query simplification. Due to the
usage of this intuition, there are additional metrics we utilize to determine performance as well.
Specifically, predicted queries are evaluated with two metrics: 1) Jaccard similarity; and 2) BLEU score.
Like R@tloU, Jaccard similarity measures intersection over union between words in ground truth and in
prediction. Since it does not penalize for duplicated words, Jaccard similarity gives a rough estimation for
the quality of the translated output. Despite being very similar to R@tloU, Jaccard similarity is pivotal
due to the increase in likelihood that words may be duplicated. Since query simplification decreases the

number of unique words by removing irrelevant adjectives and adverbs, nouns and verbs make up most of



the dictionary. Because there are less words to predict, it is intrinsically more likely that a model will
perform better since it is more likely that correct words will be predicted. Thus, Jaccard similarity takes
this into account, alleviating potential incorrect and misleading performance improvements. Lastly,
BLEU score is a standard evaluation metric for machine translation that measures n-gram word overlap.

Since the simplified queries are two words in length, BLEU score is reported in both unigram and bigram.

R@tloU =

Figure 2. Intersection over Union Visualization



Chapter 2

The EVOQUER Framework

2.1 Closed-Loop Framework

The EVOQUER Framework, standing for Enhancing Temporal Grounding with VideOPivoted
Back QUERy Generation, was a model developed by Yanjun Gao, Lulu Liu, myself, and Professor Zhang
to tackle temporal grounding. One of the key intuitions that EVOQUER incorporates is the idea of
feedback-error-learning from control theory [7,8]. In short, closed-loop learning allows for better training
by allowing the model to learn from its mistakes for efficiency. The control network in the EVOQUER
framework learns to correct its error from feedback and gains stronger supervision to increase learning. In
this context, the control network simply means the fixed loop that the inputs and outputs of the model are
pushed through. To obtain this feedback, EVOQUER uses a closed-loop framework for temporal
grounding that receives two important enhancements: 1) Supervision in predicting time intervals; and 2)
Feedback from the output video features extracted from the prediction. These inputs are represented as
arrows in Figure 3.

To achieve this, EVOQUER involves two components: 1) An existing temporal grounding
module; and 2) A translation module. First, the temporal grounding module predicts time intervals given
an untrimmed video and a query as described above. Afterwards, the translation module takes queries by
the predicted intervals as input and outputs a simplified query with only verbs and nouns. As shown by
Figure 3, both tasks receive the same inputs but output different results. To complete query simplification
as described above, EVOQUER uses the video machine translation framework VMT [9]. Standing for
Video-guided Machine Translation, VMT was originally used for language translation from English to
Chinese. In contrast to previous frameworks developed for translation tasks, VMT utilizes information

from videos. Specifically, 13D features from a 3D ConvNet are used to assist the framework in predicting
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more accurately. Since we already create 13D features for video representation in the temporal grounding

module, this was an intuitive addition to the closed-loop framework. In addition to ease of use,
EVOQUER also utilizes this framework due to its proven performance benefits in video-assisted bilingual
translation. Although we do not focus on language translation, VMT shares a similar Encoder-Decoder
framework that other temporal grounding models utilize as well.

Since the creation of EVOQUER, there have been many other improvements to video-guided
machine translation as well [22]. In the case of [22], positional encodings are utilized to achieve the

optimal BLEU score. A formal description of what position encodings are is included in Chapter 3 below.

Input full video, query Temporal Predict time interval
g Grounding
: 1 Fhilifér}ﬁ't'ﬁlri&é_a"“- Model
. Query: the
person take out
| their lapt ;
M if%_lf’__&}[:)__ﬂ_[f) _____ . - Query
Implncatuon
Simplificat - :
Predict Query (red fonts) Model Input video clip, query

Figure 3. Closed-Loop Framework



2.2 Pipeline Overview

An overview of the EVOQUER pipeline can be found in Figure 4 on the following page. As
shown by the box on the top left, the input to the framework is an untrimmed video and a set of English
queries. Following the framework in LGI [5], EVOQUER uses 13D frame-based features for video
representation. Since LGI shows state-of-the-art performance using these video features, we continue with
this approach. Given the video features and queries, LGI predicts intervals with the content corresponding
to a given query. With this output, we exit the temporal grounding module labeled in green.

Following the creation of these time intervals, frames are extracted from videos trimmed by the
predicted interval to represent the contents of the video clip. To maintain the continuity of the contents,
EVUOQUER extracts 32 frames per video clip such that that the contents of the trimmed videos are
evenly distributed across all 32 frames. This spacing lessens the likelihood that a set of actions happens
during a very short interval within the input video. Within the datasets we use, videos are captured at 24
frames per second. Thus, we found the 32-frame videos roughly to span 1.3 seconds.

Next, we enter the translation module within the EVOQUER framework. First, we feed the
extracted video features and input query into the translation module consisting of two bi-LSTM-based
encoders and an LSTM-based decoder. Following the output of the encoders, temporal and soft attention
are used for the input to the decoder. As the name implies, temporal attention puts emphasis on certain
time intervals with a video. Additionally, soft attention utilizes a differentiable function to determine
which words within a sentence should be emphasized. An important distinction is the use of hard vs soft
attention. Rather than the continuous weighted averages used in soft attention, hard attention utilizes
discrete values to determine whether a specific word or frame should be attended to. Since hard attention
can completely mask certain words, it is best to utilize soft attention in this context. Video hidden states
and text hidden states are sent individually to these two attention modules. This output is then
concatenated into a one-vector form and sent to the decoder as input. In the attention network, temporal

attention is learned through video features, and soft attention through query hidden states.



Instead of learning to decode the original query, EVOQUER tries to focus on verbs and nouns,

since that is what distinguishes the video content. In the Charades-STA dataset, annotators tend to use

various verb tenses when describing the video activities. For example, both “closing the window" and

“closes the window" are used on the same video content. Therefore, we lemmatize the words, label the

query with part-of-speech tags, and extract verbs and nouns as simplified versions of the queries. The

decoder then learns to predict simplified queries and computes a negative log-likelihood (NLL) loss at the

end of the decoding. Finally, EVOQUER combines the NLL loss from query simplification with the LGI

loss [5] from time interval prediction to train the networks jointly in an end-to-end fashion.
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Query 2: Person pours
some water into a glass.
Query 3: Person sitting 8
on the sofa eating out
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2.3 Benchmark Datasets

The two datasets used to evaluate the EVOQUER framework are Charades-STA and Activity
Net, two widely used benchmark datasets for temporal grounding. We follow the dataset settings in [5],
where both datasets are set with train/valid/test as 50%, 25%, and 25% respectively. The statistics of each
of these datasets are detailed in Table 1 below. As shown evidently from the table, the two datasets vary
greatly on most of the statistics. Compared to Charades-STA, Activity Net is a more challenging dataset
since it requires the decoder in EVOQUER to predict correct words from a much larger vocabulary. A
dictionary whose size is almost 10 times larger than Charades-STA.

Due to these stark differences, | created two distinct data loaders to prepare the data for training.
The code of the data loader for Activity Net can be found in the Appendix below. In the case of Charades-
STA, the given input format included a video id, time stamp, and query. An example of this input is
shown in Figure 5. To input this data into the neural network, I simplify the data into a list of video ids,
timestamps, duration, and query length. To compare the outputs of the model to the ground truth, | create
PyTorch tensors with data regarding the ground truth, including start position, end position, and the
number of video features. Each video id corresponds to a specific video, enabling the neural network to
differentiate each input while training. Lastly, | create two dictionaries to create a mapping from words to
ids and vice versa. In contrast to Charades-STA, Activity Net had a far larger dictionary, making the
dataset far harder to simplify. Specifically, | had to simplify how many inputs were provided in each
instance. In this context, an instance was a dictionary of all the inputs associated with one video id. One
method | utilized was to ignore inputs such as description length and description labels since these inputs
were unique to Charades-STA. Following the development of these two data loaders, EVOQUER was
tested on both.

In the experiments on Activity Net, EVOQUER was found to converge at a higher NLL loss than

Charades-STA, and failed to produce good quality simplified queries. We believe this was likely due to
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the harder decoding task. | later detail another dataset when transformers are introduced. Specifically, we

utilize the HowTo100M dataset and focus solely on a subset of cooking videos.

Dataset Charades-STA  ActivityNet
Num Queries 27.847 71,957
Num Videos 9,848 20,000
Avg Video Len (Sec) ~30 ~120
Input Query VI 1,140 11,125
Simpl. Query VI 560 5,946
Simpl. #Tks per Query 2.31 4.12

Table 1. Statistics on Benchmark Datasets

39.3 45.0##person put a notebook in a bag.

18.3 31.o##person all of a sudden they start sneezing.
27.0 32.0##person opening a door.

15.1 23.8##person they put on their shoes.

15.1 23.8##person puts on shoes.

19.2 28.2##person they take a mobile phone.

15.1 23.8##person put some shoes on.

6.2 12.6##a person tidying a wardrobe in an entryway is smiling.
19.1 29.0##a person cooking on the stove.
19.1 29.0##a person is cooking something on a stove.
21.5 28.0##the person puts the coffee on the table.
HWYTN 0.0 4.0##another person runs out the room.
HWYTN 0.0 4.0##another man running past.
HWYTN 0.0 4.0##another person is running in shoes.

Figure 5. Data Loader Input Example
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2.4 Results & Analysis

Table 2 presents results on the Charades-STA and Activity Net from two models: 1) The
EVOQUER model; and 2) A retrained LGI model. Compared to the LGI framework, EVOQUER showed
improvement on R@0.7 and mloU, the hardest thresholds for temporal interval overlap. Table 3 divides
the samples into four categories according to their recall: 1) When EVOQUER ranked in a higher
threshold than the LGI; 2) When EVOQUER ranked lower than the LGI; 3) When both had the same
recalls that were at least R@0.3; and 4) When both scores ranked below R@0.3. In contrast to the 441
samples on Charades-STA, Activity Net had 4,268 samples above R@0.3, with 79 and 1,144 samples of
absolute improvement. These statistics can be found in further detail in Table 3. Despite a stark increase
in samples between the two datasets, the ratio between samples above and below R@0.3 remained the
same. Thus, this continued performance showed that EVOQUER had promising results on a wide range
of potential benchmark datasets. In addition to mean intersection over union, EVOQUER achieved 51.98
on Jaccard Similarity, 53.04 on BLEU unigram, and 42.47 on BLEU bigram. Compared to the state-of-
the-art model of LGI, EVOQUER performed very similarly. In general, EVOQUER showed incremental
improvement in these metrics, despite incorporating query simplification on Charades-STA.

Through a case study, EVOQUER demonstrated the power of query simplification when used.
Utilizing query simplification on Activity Net, we experienced some challenges. Specifically, we found
performance improvements from query simplification to be less noticeable on Activity Net than
Charades-STA. We accredited these shortcomings to two main reasons: 1) he decoder vocabulary on
Activity Net was much larger than Charades-STA, making sentence simplification less consistent; and 2)
The design of translation module was too simple to handle longer predicted time intervals. As shown
from Table 1, the videos of Activity Net proved to be far longer than Charades-STA. Rather than the 30
seconds videos of Charades-STA, Activity Net could include videos of upwards of multiple minutes. This

increase in video length, coupled with the large vocabulary, likely made the model struggle with


mailto:R@0.3

13
predicting the ground truth. Nonetheless, the results on Charades-STA indicated the contributions of the

EVOQUER framework.
Data  Model R@0.3 R@0.5 R@0.7 mloU
char LGI 71.54 58.08 34.68 50.28
EVOQUER 71.57 57.81 35.73 50.48
anet LGI 57.76 40.38 22.60 40.65
EVOQUER 59.21 42.02 2391 4l.61

Table 2. Results of EVOQUER Framework vs LGI

Both >= R@0.3 Both

EVOQUER 1T EVOQUER| Same <R@0.3

char 441 362 1,347 777
anet 4,268 3,124 8,074 10,538

Table 3. Charades-STA vs Activity Net Sample Distribution
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Chapter 3

Leveraging Transformers for Temporal Grounding

3.1 Why Transformer Models

First introduced in 2017 [10], transformers rose in popularity due to being easy to train and
efficient in tasks previously dominated by Long Short-term Memory Networks (LSTMSs). Since LSTMs
had to read inputs sequentially, they were not only difficult to train on large datasets but were also
ineffective for long streams of sequential data. In the case of transformers, substantial amounts of
sequential data, such as frames that make up a video, can be trained in parallel. Due to this ability to
parallelize data, transformers were also able to align with modern GPU architectures as well.

The two biggest innovations provided by transformers are self-attention and positional encodings,
two aspects that can benefit temporal grounding. Originally used for sentence translation, such as
translation from English to French, transformers must find different ways to encode the position of
different words within a sentence since transformers do not take inputs sequentially like LSTMs.
Furthermore, the order of words is lost when inputting the data into the model. The importance of the
order of words can be shown easily through the following example: 1) I genuinely need to finish this
interview; and 2) | need to finish this interview genuinely. Despite both sentences containing the same
words, the placement of words such as genuinely change the meaning of the sentence completely. Prior to
inputting embeddings into an encoder and decoder framework, transformers encode a sin and cos function
into the embeddings depending on a word’s position in a sentence. This process of positional encodings
was also utilized in other tasks such as the video-guided machine translation described earlier as well.

In addition to positional embeddings, transformers utilize self-attention. In short, self-attention is
used to obtain context by finding associations between different words in the same input. In contrast to

simple attention which uses emphasis learned from external inputs. Moving forward, | talk about previous
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applications of transformer models: first in the context of NLP and then in the context of temporal

grounding.

3.2  Previous Work

As a variation of the Encoder-Decoder framework used in the original paper [10], BERT [11],
also known as a Bidirectional Encoder Representation from Transformers, was created. BERT
differentiates itself by stacking the encoder modules in [10] to broaden the application of the initial
framework. To pretrain the model, BERT utilizes two main problems to allow the model to understand
language: 1) Masked LM (MLM); and 2) Next Sentence Prediction (NSP). For the former, roughly 15
percent of the inputs are randomly replaced by masked tokens, and the model is required to predict the
missing word. For the latter, two sentences are provided as input, and BERT makes a prediction on
whether one sentence follows another. These tasks for pretraining help BERT associate not only
sentences, but also the relationship between words in two directions. By changing the input and output
layers before and after the model, BERT can be modified for a very wide range of NLP tasks [12,13,14].

Following the work of BERT, VideoBERT[12] was developed to extend the power of
transformers on vision-related tasks. Instead of masked sentences, VideoBERT is inputted a concatenated
sentence with visual words. These novel visual words are created with features which capture the visual
frames most representative of the video. Similar to the NSP task utilized to pretrain BERT, VideoBERT
utilizes a linguistic-visual alignment task that predicts if the sentence corresponds with the visual words
described above. Due to the versatility of BERT on a wide range of NLP tasks, VideoBERT has similarly
been used for a wide range of vision and language tasks [15, 16]. By changing the output layers of
VideoBERT, leveraging transformer models to predict time intervals instead of videos can enhance
temporal grounding. With these potential benefits, we investigate adding additional layers and/or utilizing

previous works to increase performance.
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3.3 Attempts at Replication

Since we do not have access to a pretrained VideoBERT model, replicating the VideoBERT
framework has been our ongoing task. Of the available options, we use a subset of the HowTo100M
dataset [18] to align with the original YouCook Il dataset. Specifically, we focus on roughly 16,000
cooking-related videos to narrow the focus of our model to a subset of tasks. Downloaded from Youtube,
the HowTo100M dataset emphasizes instructional videos as well, allowing each video to have a specific
number of intended actions. Thus, rather than videos with sporadic actions scattered across the video,
datasets such as HowTo100M and YouCook Il contain videos best for training the neural network.

To replicate the performance of VideoBERT, we first created 13D features [19] of each video.
Standing for Inflated 3D ConvNet, 13D features obtain the spatio-temporal understanding of each video.
For much of this replication, we treat 13D as a black box. Compared to the S3D features [17] utilized
within VideoBERT, the 13D framework creates features with dimensions 20 by 600. In this context, we
interpreted this dimensionality as each of the 20 frames having 600 specific features. Within [12],
VideoBERT utilizes S3D features with 1024 features per frame. Since this difference in dimensionality
has not caused any issues during training, we moved on to create corresponding centroids for each video
feature. On average, we found that each video we focused on in the HowTo100M dataset was caught at
25 frames per second. Thus, each video had an average of 260 frames. This large number of frames
relates more closely with Activity Net rather than Charades-STA.

Using these feature files, we utilized mini-batch k-means to create centroids for each video.
Specifically, we utilize hierarchical k-means clustering from sklearn, a built-in machine learning library
for Python. By default, each centroid had dimensionality 12 by 600 where 12 represented the number of
frames, and 600 represented the number of features per frame. One of the key roadblocks we faced was
this difference in dimensionality between the created 13D features and centroids. To solve this issue, we
created two potential solutions: 1) Adjust the parameters to the hkmeans script from sklearn to try to

modify the outputted dimensionality; and 2) Adjust the centroids to 1 by 600 by taking the average of
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each of the 12 frames. This solution removes the possibility of dimension-errors moving forward. Using

the second solution, we take the average of each centroid and continue with the pipeline.

Utilizing these centroids, we concatenate them for ease of use. Next, we utilize this large centroid
to label and punctuate the data prior to training. Currently, we are in the process of training the model
with some initial success. Figures 6 and 7 below show a consistent decrease in joint loss as training
continues. Since VideoBERT is trained on text-only, video-only, and joint text and video, we graph joint
loss to show an aggregate metric of progress. Despite this decreasing trend, we find that the loss starts to
stagnate at roughly iteration 600. Since this is still early in the training process, it is difficult to pinpoint
the exact cause of this stagnation. We hope to train our model on at least 10 epochs to achieve better
performance.

Following a fully trained VideoBERT model on the HowT0100M dataset, we plan to edit the
output layers of VideoBERT to leverage its performance on temporal grounding. Similar to EVOQUER,
testing the performance of this novel framework on benchmark datasets such as Charades-STA and
Activity Net is the true tell of whether a transformer architecture can benefit this task. Due to previous
success in extending VideoBERT to tasks such as predicting video sequences, leveraging transformers

could be the next significant move towards enhancing temporal grounding.
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Appendixes

Appendix A Data Loader Code

_ future  import absolute import
___future  import division
_ future  import print function

import os

import h5py

import string
import numpy as np
import string
import torch
import json

import time

import torch
import torch.utils.data as data

from
from
from
from
from

collections import defaultdict, OrderedDict

tgdm import tqgdm

abc import abstractmethod
src.dataset.abstract dataset import AbstractDataset
src.utils import utils,io utils

def create_loaders(split, loader_ configs, num_workers):

dsets, L = {}, {}
for di,dt in enumerate(split):

shuffle = True if dt == "train" else False
drop last = True if dt == "train" else False
dsets[dt] = ActivityNetCaptionsDataset (loader configs([di])
L[dt] = data.DatalLoader (
dsets[dt],
batch size = loader configs[di] ["batch size"],
num workers = num workers,

shuffle = shuffle, # shuffle
collate fn = dsets[dt].collate fn,
drop last= drop_ last #drop last

)

return dsets, L

def _ getitem (self, idx):

# get query id and corresponding video id

gid = str(self.qgids[idx])

vid = self.anns[qid] ["video id"]

timestamp = self.anns[gid] ["timestamps"]

duration = self.anns[gid] ["duration"]

gry=self.anns[gid] ["query"]

# Descriptions

#d label lsts = self.descriploader.encoded description(vid,
#description length, description labels =

d label 1lsts['descrip lengths'], d label lsts['descrip labels']

# get query labels
if self.in memory:
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self.wtoi)
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q_label = self.query labels[qgid]
else:
query labels = hbpy.File(self.paths["query labels"], "r")
g _label = query labels[gid][:]
q_leng = self.query lengths[qgid]

# get grounding label
if self.in memory:
start pos = self.s pos[qid]
end pos = self.e pos[gid]
else:
grd info = hbpy.File(self.paths["grounding info"],"r")
start pos = grd_info["start_pos/"+qid][()]
end pos = grd info["end pos/"+qid] [ ()]

# get video features
if self.in memory:
vid feat all

self.feats[vid]
else:
vid feat all = io utils.load hdf5(self.feat hdf5,
verbose=False) [vid] ["c3d features"]
vid feat, nfeats, start index, end index = self.get fixed length feat(
vid feat all, self.S, start pos, end pos)

# get video masks
vid mask = np.zeros((self.S, 1))
vid mask[:nfeats] =1
# get attention mask
if self.in memory:
att mask = self.att mask[qgid]

else:
att mask = grd_info["att_mask/"+qid][ﬂ
instance = {
"vids": vid,
"gids": gid,
"timestamps": timestamp, # GT location [s, e] (seconds)

"duration": duration, # video span (seconds)

#"description length": description length,

#"description labels": description labels,

"query lengths": g leng,

# "query":qry,

"query labels": torch.LongTensor (q label) .unsqueeze (0),
"query masks": (torch.FloatTensor(q_label)>0).unsqueeze(O), #

"grounding start pos": torch.FloatTensor ([start pos]), # [1];

"grounding end pos": torch.FloatTensor ([end pos]), # [171;
"grounding att masks": torch.FloatTensor (att mask), # [L v]
"nfeats": torch.FloatTensor ([nfeats]),

"video feats": torch.FloatTensor(vid feat), # [L v,D v]

[L_
"video masks": torch.ByteTensor (vid mask), # [L_v,D-v]

}

return instance

def collate_fn(self,data):

seq items=["video feats","video masks","grounding att masks"]

tensor items=["query labels","query masks","nfeats","grounding start pos","grounding e

nd pos", ]
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batch={k:[d[k] for d in data] for k in data[0].keys ()}
if len(data)==1:
for k,v in batch.items () :
if k in tensor items:
batch[k]=torch.cat (batch[k],0)
elif k in seqg items:
batch[k]:torch.nn.utils.rnn.pad_sequence(batch[k},
batch first=True)
else:
batch[k]=batch[k] [0]
else:
for k in tensor items:
batch[k]=torch.cat (batch[k],0)
for k in seq items:
batch[k]:torch.nn.utils.rnn.pad_sequence(batch[k},
batch first=True)
return batch

def preprocessing(self,path,new_anns,vids,gstart):
with open (path,"r") as rf:
anns=json.load(rf)
gid=gstart
translator = str.maketrans("", "", string.punctuation)
for vid in anns.keys{():
ann=anns [vid]
duration=ann["duration"]

descrip=" ".join(ann["sentences"])
for ts,qg in zip(ann["timestamps"], ann["sentences"]):
filel = open("simple query.txt","a")

filel.write (str(gid)+"##"+gq+"\n")

#with open("simple query.json","w") as f:
# json.dump ({gid:q}, f)

new anns[str(gid)]={"timestamps":ts,"query":q,"descriptions":descrip, "tokens":utils.to
kenize (g.lower (), translator),"duration":duration,"video id":vid}
gid +=1

vids.extend (list (anns.keys()))
return new_anns, gid, list (set (vids))



Appendix B Activity Net Hyperparameters

evaluation:
evaluate after: -1
every eval: 1
print every: 100

logging:
print level: DEBUG
write level: INFO

misc:
dataset: anet
debug: false
exp prefix: anet/tgn 1gi/LGI
method type: tgn 1lgi
num workers: 4
print every: 100
result dir: results/anet/tgn 1gi/LGI
tensorboard dir: tensorboard/anet/tgn 1gi/LGI
vis every: 1

model:
checkpoint path: ''
dga lambda: 0.2
dga weight: 1.0
glove path: ''
grounding att cand dim: 512
grounding att drop prob: 0.0
grounding att hdim: 256
grounding att key dim: 512
grounding hdim: 512
grounding idim: 512
lgi fusion method: mul
lgi global nl drop prob: 0.0
lgi global nl idim: 512
lgi global nl nheads: 1
lgi global nl odim: 512
lgi global nl use bias: true
lgi global nl use local mask: false
lgi global num nl block: 1
lgi global satt att cand dim: 512
lgi global satt att edim: 512
lgi global satt att hdim: 256
lgi global satt att n: 1
lgi global satt att use embedding: true
lgi global type: nl
lgi hp hdim: 512
lgi hp idim 1: 512
lgi hp idim 2: 512
lgi local do_downsample: false
lgi local num res blocks: 1
lgi local res block 1d hdim: 256
lgi local res block 1d idim: 512
lgi local res block 1d ksize: 15
lgi local res block 1d odim: 512
lgi local type: res block
loc_word emb vocab size: 11125
model type: LGI
num_ semantic_entity: 5
query enc_emb idim: 11125
query enc_emb odim: 300
query enc_rnn bidirectional: true



query enc_rnn _dropout: 0.5
query enc_rnn_hdim: 256
query enc_rnn _idim: 300
query enc rnn nlayer: 2
query enc rnn_ type: LSTM
resume: false
sgan_att cand dim: 512
sgan_att drop prob: 0.0
sgan_att hdim: 256
sgan_att key dim: 512
sgan_qgdim: 512
tag weight: 1.0
use distinct query attention loss: true
use gpu: false
use temporal attention guidance loss: true
use video encoder: false
video enc pemb idim: 128
video enc pemb odim: 512
video enc use position: true
video enc vemb idim: 500
video enc vemb odim: 512
optimize:
decay factor: 0.5
decay step: -1
init 1r: 0.00004
num_step: 500
optimizer type: Adam
scheduler type: ''
test loader:
annotation path:
- /home/jjw6188/vpmt-master/data/anet/captions/val 1.Jjson
- /home/jjw6188/vpmt-master/data/anet/captions/val 2.Jjson
batch size: 100
data_dir: data/anet
dataset: anet
feature type: C3D
in memory: true
max length: 25
num_ segment: 128
split: val
video feature path: /home/jjw6188/vpmt-master/data/anet/feats/sub_activitynet vl-
3.c3d.hdf5b
word frequency threshold: 1
train loader:
annotation path: /home/jjw6188/vpmt-master/data/anet/captions/train.json
batch size: 100
data dir: /home/jjw6188/vpmt-master/data/anet
dataset: anet
feature type: C3D
in memory: true
max length: 25
num_segment: 128
split: train
video feature path: /home/jjw6188/vpmt-master/data/anet/feats/sub_activitynet vl-
3.c3d.hdfb
word frequency threshold: 1



Appendix C Activity Net NN Trainer File

from src.utils import utils, io utils

#from src.model.LGI import LGI

import seg2seq

from neweric mt import Encoder, Decoder
from pipeline utils import *

from seg2seqg.loss import NLLLoss

base vocab = ['<PAD>', '<UNK>', '<sS0S>', '<EO0S>']
padding idx = base vocab.index ('<PAD>"')

sos_idx =4960

eos_idx =496l

class VPMT (nn.Module) :
"""Pipeline, including models, optimizer, forward functions,

wnn

def init (self, arg, dataset, optim params type="All"):

super (VPMT, self). init ()

self.dataset = dataset # datset name
self.args = arg

self.optim params type = optim params_ type

self.vocab size = 11125

24

update

self.arg = arg.lgi _arg # LGI model uses its own parameters

#self.LGI model = LGI (arg)
#self.init LGI()
self.weight loss = False # if using weighted loss

self.encoder = Encoder (self.vocab size, arg.word dim,
arg.text embed size)

#if self.arg.tie weights: # Use same embedding layer
# self.encoder.src_embed =

self.LGI model.query enc.embedding

self.use attn = self.args.use attn

for LGI and VSE

""" Advanced setting, if the translation is simplified version """

self.simplified trans = True

""" using descriptions or not"""
self.no desp = True

#self.device=torch.device ("cuda:3" if torch.cuda.is available() else

"cpu')
self.device=torch.device ("cpu")
if self.simplified trans:
if self.dataset == "anet":
self.train ids, self.test ids, self.idx vocab,
self.vocab idx = init trans("data/anet")
dec vocab size = len(self.idx vocab)
else:
self.train ids, self.test ids, self.idx vocab,
self.vocab idx = init trans("")
dec _vocab size = len(self.idx vocab)
self.itow = itow = {int(k): v for k,v in

self.idx vocab.items () }
else:
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dec vocab size = self.vocab size
#self.itow = {v:k for k,v in test D.wtoi.items()}
self.decoder = Decoder (1000, hidden size=arg.text embed size,

vocab size=dec vocab size)

#if self.args.cuda:
# self.encoder.cuda ()
# self.decoder.cuda ()

#self.loss fn = ComplexLoss ()

self.get parameters ()

self.nllloss = NLLLoss ()

self.dec criterion =
nn.CrossEntropyLoss (ignore index=padding idx) .cuda ()

#self.vseloss = ContrastiveLoss ()

def forward(self, net inps,

gts queries,init hidden, src_out,batch size,target len, prefix="", mode="Train"):
# Encode
#src _out, init hidden = self.forward vse emb(net inps['query labels'])

# Decode*******change to the Youtube version****** need to confirm
batch size and target len*****xxkx

print ("batch size",batch size)
print ("target len",target len)
print ("net inps:",net inps)
#print ("*****batch size is ",batch size)
#print ("*****target len is ",target len
#gts queries = translate gts(gts['gids'], self.train ids,
self.test ids, self.args.max len)
x=gts queries[0]
#outputs=torch.zeros (batch size,target len,self.vocab_size) .to(device)
outputs=torch.zeros (batch size,target len,self.vocab size)

for t in range(l,target len):
output, last hidden=self.decoder (x,init hidden)
outputs[t]=output
best guess=output.argmax (1)
x=best quess

return outputs
''"'"if self.simplified trans:

gts queries = translate gts(gts['gids'], self.train ids,
self.test ids, self.args.max len)
self.scores = self.decoder (net inps['query labels'].long(),

gts _queries.long(), init hidden, src out, 10, teacher forcing ratio=0.2)
self.compute loss nll(self.scores, gts queries.long())

else:
self.scores = self.decoder (net inps['query labels'],
gts['query labels'], init hidden, src_out, 10, teacher forcing ratio=0.2)

self.compute loss nll(scores, gts['query labels'])
return self.nllloss

def update (self):
#If weare using both decoder and encoder parameters
if self.optim params_ type == "All":
if self.optimizer == None:



self.create optimizer ()
self.optimizer.zero grad()

#Perform back propogation on loss and train neural network
self.nllloss.backward()
self.optimizer.step()
#Zero out all tensors for next cycle
self.optimizer.zero grad()
else:
#If no optimizer, create an optimizer and zero out tensors
if self.optimizer == None:
self.create optimizer ()
self.enc optimizer.zero grad()
self.dec optimizer.zero grad()

self.nllloss.backward()

self.enc optimizer.step ()
self.dec optimizer.step ()

self.enc optimizer.zero grad()
self.dec optimizer.zero grad()
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