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ABSTRACT 

 

Intense tropical cyclones (TCs) often form secondary eyewalls, triggering a process 

known as an eyewall replacement cycle (ERC). This can lead to short-term fluctuations in 

intensity and an increase in the size of the TC wind field. When occurring near landfall, the 

short-term variations can dramatically alter coastal watch, warning, and storm surge forecasts, 

potentially altering pre-storm preparation plans, including evacuations. However, documenting 

these events can be a time-consuming, subjective, and sometimes difficult task. Here, we use 89 

–92 GHz microwave imagery from the NOAA Cooperative Institute for Research in the 

Atmosphere’s Tropical Cyclone PRecipitation, Infrared, Microwave, and Environmental Dataset 

(TC PRIMED) to develop image-based variables to identify concentric structures related to deep 

convection.  The image-based variables are combined with various environmental and storm 

variables (e.g, deep-layer shear magnitude, current maximum wind speed, 24-h difference in 

radius of 5 kt (1 kt = 0.514 m s–1) winds, and 24-h difference in infrared brightness temperature), 

to create a probabilistic secondary eyewall classification scheme using a machine learning 

classifier (linear discriminant analysis). This classification scheme is trained and tested using 

subjectively created secondary eyewall labels (2016–2019) of storms from the North Atlantic, 

East Pacific, West Pacific, and Southern Hemisphere basins. We trained the classifier using 36 

storms and retained 16 storms for testing. From the classifier output, we calculate the probability 

of detection, false alarm ratios, skill scores, and bias ratio for various probability thresholds. 

Using the best default probability threshold (50%), the model produced a secondary eyewall 

probability of detection of about 64% with a false alarm ratio of 34% and a Peirce’s Skill Score 

of 0.52, indicating fair skill in the model. 
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Chapter 1  
 

Introduction 

Tropical cyclones (TCs) are the deadliest and costliest type of natural disaster. Of the 22 

billion-dollar United States disasters in 2020, seven were TCs, resulting in the death of 262 

people (NOAA 2022). The potential damage of a TC increases dramatically with increasing wind 

speed and wind field size, hence even small changes in these quantities can lead to vastly 

different outcomes (Nordhaus 2006; Powell and Reinhold 2007). While TC intensity forecasts 

are slowly improving (DeMaria et al. 2014), forecasts for intense TCs (max wind speed > 96 kt; 

1 kt = 0.514 m s–1) still need to be improved to minimize losses. One of the sources of 

uncertainty in the forecast of both intensity and the wind field for forecasting intense TCs is 

secondary eyewall formations (SEF), an organized semi-symmetric cluster of thunderstorms 

surrounding the inner thunderstorms associated with the TC eye. SEFs are part of a process 

known as an eyewall replacement cycle (ERC; Willoughby et al. 1982) and are not easily 

predicted because the physics for their cause is still uncertain. ERCs are a very important area of 

study because TC characteristics during this process can change in the following ways: (1) 

sudden fluctuations in maximum wind speed, (2) enlargement of wind swath (Sitkowski et al. 

2011), (3) increased storm surge generation (Irish et al. 2008), and (4) increases the area exposed 

to windborne risks, which would have major implications towards forecasts and public 

warnings.  

In the work of Sitkowski et al. (2011), an eyewall is defined as a wind maximum, 

composed of three specific phases using aircraft-retrieved wind profiles: (1) Intensification, (2) 
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weakening, and (3) reintensification. In the intensification phase, both an inner (i.e., primary) 

and outer (i.e., secondary) eyewall intensify and undergo contraction with respect to storm 

radius. However, the intensification rate of the inner eyewall decreases throughout the 

intensification phase, while the outer eyewall continues to intensify. When the intensification of 

the primary eyewall stops, the weakening phase begins and proceeds until the intensity of the 

secondary eyewall exceeds the intensity of the primary eyewall. At this point, the ERC is in the 

reintensification phase and occurs until the primary eyewall is no longer detectable.  

Kossin and Sitkowski (2009) have shown that cases of ERCs with no readily available 

aircraft data can be predicted with limited skill through environmental conditions and storm 

metrics such as (1) higher maximum potential intensities, (2) maximum wind speed, (3) weaker 

vertical wind shear, (4) weaker upper zonal-level winds, (5) a deep layer of warm water, (6) and 

higher middle- to upper-level relative humidity. These environmental conditions are also 

consistent with rapidly intensifying TCs (Merrill 1987; Lin et al. 2010; Kaplan and DeMaria 

2003), hence, discerning if and when an ERC occurs can be challenging.  

In addition to environmental conditions, ERCs can be observed using satellite passive 

microwave imagery, aircraft radar, and shore-based radar. 37 and 85–92 GHz passive microwave 

imagery has the ability to view the TC structure under the overlying canopy of high clouds 

(Hawkins and Helveston 2006), but cannot be captured by longwave infrared (IR) centered near 

11 μm imagery or visible imagery. ERCs can also be captured by land-based radars, but the TC 

must be close to land and within range of the radar. Aircraft radar (NOAA WP-3D) also has the 

ability to capture the internal structure of TCs and ERCs, however, with the exception of the 

North Atlantic (ATL) and certain TCs in the Eastern North Pacific (WPAC), flight-based data 

for TCs are unavailable, resulting in an Atlantic-centric perspective of ERCs in most prior 
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studies. Hawkins and Helveston (2006) found that between the basins of the ATL, eastern North 

Pacific (EPAC), WPAC, and the Southern Hemisphere Ocean (SHEM), double eyewalls exists 

in about eight TCs yearly, with occurrence being the most frequent in the EPAC and the ATL 

basins, respectively. However, given the lesser availability of satellite imagery at the time, these 

values are likely an undercount.  

A major gap in knowledge that needs to be addressed is the undercount of ERC 

occurrences globally. To understand TCs holistically, we must study ERCs over different basins, 

unfortunately, many ERCs occur undocumented without the availability of aircraft data. 

Fortunately, satellite data (passive microwave imagery) can be used to observe ERCs where 

aircraft data are unavailable. A caveat to using satellite data to document ERC climatology is that 

an objective and automated method is needed to ensure both consistency and efficiency. To 

document ERCs globally, this study creates a subjectively labeled dataset of TC secondary 

eyewalls and primary eyewalls constructed from passive microwave imagery from storms 

occurring in the ATL, EPAC, WPAC, and SHEM basins. In addition, using the labeled dataset, 

we design a first-of-a-kind secondary eyewall detection algorithm trained with relevant 

environmental conditions. Chapter 2 describes the consolidated dataset of TC passive microwave 

imagery and environmental variables that we used. Chapter 3 describes secondary eyewalls 

determination in our subjective labeled dataset, the predictors chosen, and the machine learning 

classifier. Chapter 4 discusses the verification metrics of our model and Chapter 5 summarizes 

the model and future work. 
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Chapter 2  
 

Data 

In this chapter, we will discuss the passive microwave imagery dataset, and 

environmental variables used in our subjective labeled dataset and detection algorithm, including 

details about how the data were processed. First, to create a labeled dataset of tropical cyclone 

secondary eyewall events and a secondary eyewall detection algorithm, we used the Tropical 

Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED), a 

consolidated dataset of TC passive microwave imagery and environmental variables (Razin et al. 

2022). Second, our detection algorithm for the presence of secondary eyewalls will follow a 

similar outline to the Herndon et al. (2018) algorithm, which involves feeding the following data 

types into a machine learning classifier: (1) passive microwave imagery, (2) environmental data 

and storm maximum wind speed, and (3) subjectively determined labels of whether a secondary 

eyewall exists at the time of a satellite overpass. The predictors (1) and (2), are retrieved from 

TC PRIMED, while the secondary eyewall labels are created using the methods described below. 

2.1 Passive Microwave Imagery 

In this study, we use information from passive microwave imagery as predictors of our 

detection algorithm because frequencies between 85–92 GHz have the ability to view TC 

convective structure below the overlying canopy of cirrus clouds (Hawkins and Helveston 2006). 

The passive microwave imagery provided by the TC PRIMED dataset includes various 

frequencies between 85–92 GHz from 1998–2019. However, only imagers between 2016–2019 

were used since the labeled secondary eyewall dataset only consisted of storms from these years. 
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In addition, only horizontal and vertical (H & V) polarization imagers were selected to allow the 

use of polarization-corrected temperature (PCT; Cecil and Chronis 2018). PCT reduces the 

impact of low emissivity surface features, punctuating TC internal structure features such as 

eyewalls. Table 1 is a list of all the imagers used and their frequencies. 

Table 1. Microwave Imagers Used 

Passive microwave imagers used from 2016–2019 with frequencies varying from 89.0 GHz–91.665 GHz. 

 
 

In addition to the selection of passive microwave images, there are also two 

considerations regarding TC PRIMED: (1) centering of the grid on the TC center, an important 

aspect that will be explained in the discussion chapter, and (2) the polar grid. For imagery 

centers, the storm centers are based on the Automated Tropical Cyclone Forecast system 

database (ATCF; Sampson and Schrader 2000) best-track center. Unfortunately, a drawback to 

using these centers as a starting point is that they are based on low-level (near-surface) 

circulations estimated every 6-h, while the ice-scattering captured by passive microwave imagers 

are typically at the mid-levels. Often, the vortex can be slightly misaligned due to parallax error 

and shear, leading to a poorly-centered image (Asano 2008). Lastly, the 4 km in radius and 10 

degrees in azimuth polar analyses of the passive microwave imagery brightness temperature 

observations are created using a variational analysis technique (Mueller et al. 2006), reducing 

resolution discrepancy between imagers and sounders. The variational analysis technique has 
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half-power filter wavelengths of 32 km in radius and 90° in azimuth. Each of the above details 

can affect the quality and thus interpretation of the polar gridded passive microwave imagery. 

2.2 Storm Maximum Wind Speed and Environmental Data 

Similar to the Kossin and Sitkowski (2009) model, we also used estimates of the storm’s 

current maximum wind speed and environmental data to better assist the classifier in determining 

the presence of secondary eyewalls. Table 2 outlines the environmental variables and storm 

intensity variables that were obtained from the TC PRIMED dataset. 

Table 2. Environmental Variables and Storm Intensity 

Environmental variables and storm intensity obtained from the TC PRIMED dataset. 

 
 

The sources of the environmental dataset in TC PRIMED include ERA5 and ATCF 

(Razin 2022). The current maximum wind speed is obtained from ATCF post-season best track 

data. The maximum wind speed (intensity) is chosen as an initial predictor because Kossin and 

Sitkowski (2009) have shown that models using intensity produce some skill in identifying 

secondary eyewalls. The radius of 5 kt winds at 850 hPa (R5) is calculated from longwave 

infrared imagery— a scaling factor that represents the general size of a TC (Knaff et al. 2014). 

R5 was chosen because Sitkowski et al. 2011 showed that ERCs often result in an expanded 

wind field. IR brightness temperatures (IR TB) are obtained from geostationary satellites with 
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central wavelengths near 11 μm and are a measure of cloud top brightness temperature. IR TB 

was chosen because we observed a slight warming of TC cloud top temperatures before and 

during ERCs. The storm-centered 800–250 hPa deep layer shear magnitude within a 500 km 

circular area is calculated using the ECMWF fifth-generational atmospheric reanalysis product 

(ERA5; Hersbach et al. 2020) based on centering procedures discussed in Slocum et al. (2022). 

This is chosen as a predictor because the secondary eyewall identifier in Kossin and Sitkowski 

(2009) associated SEFs with weaker wind shear. 
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Chapter 3  
 

Methods 

3.1 Labeled Dataset 

In this chapter, we will discuss our methods in creating a labeled dataset of secondary 

eyewalls. The labeled dataset is a subjective dataset created using our own definitions for a TC 

eyewall and secondary eyewall for storms in the ATL, EPAC, WPAC, and SHEM basins. These 

labels are fed into our detection algorithm and are created using passive microwave imagery 

from TC PRIMED. Due to the subjective nature of this dataset, an analyst's confidence level is 

also estimated for each label. From TC PRIMED, we use 85–92 GHz passive microwave PCT 

imagery because the minimum in the brightness temperature values denotes strong scattering 

signals in convection associated with ice concentration and size. We define an eyewall as a ring 

of minimum brightness temperature (ice scattering) around the TC center in an 85–92 GHz PCT 

microwave image, and a secondary eyewall as a region of minimum brightness temperature 

outside the eyewall that extends more than 180° azimuthally. However, the secondary eyewall 

definition is subjected to spiral rainband determination, which is a convective band that meets 

this definition but is not a secondary eyewall due to its non-concentric characteristic. Figure 1 

(left) shows an example from Typhoon Maria on 10:25 UTC 7 July 2018 with a spiral rainband, 

which involves an outer minimum in PCT that meets the definition of a secondary eyewall, but is 

a cold ring that radially crosses more than 150 km. In contrast, Fig. 1 (right) is an example of 

concentric eyewalls from Typhoon Maria on 10:13 UTC 9 July 2018, which has an outer 

minimum in PCT that is completely separated from the inner minimum in PCT and does not 
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spiral inwards towards the storm center. Concentric eyewalls are mature secondary eyewalls that 

completely surround the primary (inner) eyewall and result in an analyst’s confidence level > 3.  

 

Figure 1. Spiral Rainband vs. Concentric Eyewall 

An 89 GHz PCT microwave image depicting a spiral rainband (left) versus a concentric eyewall, a mature secondary 

eyewall (right) of Typhoon Maria (2018) at Typhoon Maria on 10:25 UTC 7 July 2018 and 10:13 UTC 9 July 2018, 

respectively. Red colors represent lower temperatures [K] and yellow colors represent higher temperatures [K]. The 

convective bands in the TC internal structure are represented by the blue and red colors due to ice scattering. 
 

For analyst’s confidences levels, values from 1 to 5 were assigned to each label, from 

least confidence to most confidence. These confidences applied to both ‘yes’ and ‘no’ labels for 

the presence of a primary (inner) eyewall and of a secondary eyewall. For example, if a 

secondary eyewall label is ‘yes,’ the confidence level indicates how confident the analysts are 

that a secondary eyewall is present. However, if the secondary eyewall label is ‘no,’ then the 

confidence level represents the confidence that a secondary eyewall is not present. Confidence 

labels allow for more thorough interpretation of model performance as will be discussed in 

Chapter 4. 
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Figure 2. Secondary Eyewall Labeling and Confidences 

Same image type as in Figure 1. Cases of high (5) and low (1) confidences associated with both ‘yes’ and ‘no labels 

for creating the labeled dataset. (a) Involves a low confidence ‘yes’ label. (b) Involves a high confidence ‘yes' label. 

(c) Involves a low confidence ‘no’ label. (d) Involves a high confidence ‘no’ label. 
 

In Fig. 2a, a ‘yes’ label for secondary eyewall was assigned because there appears to be a 

pronounced moat between an outer and inner minimum, however, there is low confidence in this 

label due to the spiraling nature of the outer minimum and a slight connection between the two 

minima at 225°. For Fig. 2b, an outer concentric minimum with a prominent presence of a moat 

between the two minima resulted in a high confidence ‘yes’ label. For Fig. 2c, a ‘no’ label for 

secondary eyewall was assigned because an outer minimum spirals inwards towards the inner 
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minimum, with a more ambiguous moat between the two minima than in the low confidence 

‘yes’ label. However, a moat is present at 225°–315° with the outer minimum showing a segment 

of concentricity with the primary (inner) eyewall, hence, this label was low confidence. Lastly, 

for Fig. 2d, a prominent inner minimum is present, with no prominent outer minimum features, 

hence a high confidence ‘yes’ label for secondary eyewall was assigned. The results of the 

labeled dataset will be discussed more in detail in Chapter 3.3. 

3.2 Generating Microwave Image Variables (predictors) 

Now that we have discussed the sources of data for the three parts of our detection 

algorithm: (1) microwave imagery, (2) environmental and storm maximum wind speed, and (3) 

secondary eyewall labeled dataset, we will now detail how the first two datasets were used to 

generate predictors. The microwave image variables involved many detailed steps, beginning 

with filtering the image using a Gaussian filter (Appendix A; Virtanen et al. 2020). After 

generating the filter, we found the difference between the PCT image and the filter and denoted 

this as the signal image. The parameters chosen in the filter were fine-tuned to allow this signal 

image to depict the features of the internal structure of the TC convective bands and moats as 

negative and positive signals, respectively. Next, we also normalized all the images to fractional 

R5 (fR5), which is the satellite R5 (see Chapter 2.2) value divided by the climatological R5 value 

as a function of intensity (Knaff et al. 2017). This normalization allows us to compare the 

locations of internal TC features of storms of varying sizes since large storms can have 

convective bands at a greater radius than smaller storms (Knaff et al. 2014). While fR5 

normalizes the storm radii, we also normalized storm motions, since we observed in microwave 
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imagery that rainbands typically wrap around the storms relative to the storm motion. To do this, 

we rotated all the microwave imagery using the best-track storm direction. Figure 3 depicts the 

motion of a typical convective band after the storm-relative motion adjustment. 

 

Figure 3. Convective Band Progression 

A typical progression of a convective band in a Northern Hemisphere TC. This diagram depicts the flow in a storm-

relative framework. Typical convective bands develop in Q2, then begin to wrap around the remaining quadrants 

cyclonically (Counter-clockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere). 

 

After adjusting for the size and direction of motion, we divided the TC into 16 equal 

azimuthal sectors and calculated the radial signal means for each sector. Several different 

quantities of sectors were tested, however, we determined that using more sectors was better 

because it provided greater spatial resolution of the image. Fewer sectors resulted in larger 

azimuths, hence, small-scale details are more likely to be missed. Unfortunately, a disadvantage 

to using more sectors is the potential for more noise in the data. To mitigate this, each sector 

mean was weighted using two neighboring sector means (25% for each neighboring sector and 

50% for the sector being evaluated). We defined these data as the ‘shared’ signal mean. Next, we 

located the minima in each of the ‘shared’ signal mean curves using a fourth order argument 
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relative extrema method for identifying peaks in signals (using SciPy). A rolling window of 4 

data points (16 km radius) on each side of the curve was considered for finding each minimum. 

However, the minima found from this tool were generally generally noisy and sometimes 

included points that did not represent convective bands. To filter out features that were unlikely 

to be associated with secondary eyewalls, we only accounted for minima that had a signal < −8 

K, which indicates deep vigorous convection, and within a 300 km radius, a conservative outer 

limit for a secondary eyewall. This –8 K threshold was determined subjectively after examining 

many thresholds ranging from –4 K to –15 K and the resulting minima counts vs. the features 

seen in the corresponding 2D image. With the locations of the minima as a function of storm 

radius, we now have derived useful information regarding where potential convective bands are 

located. 

In order to interpret the minima locations, we used a windowing technique that counts the 

number of minima in 8−64 km (interval of 4 km) radius windows and averaged all windows. 

This range of windows was chosen because the smaller windows can detect finer small-scale 

details (more noise), while the larger windows can detect smoother large-scale details (less 

noise). The average of all the windows in this range reduces noise while also allowing the small-

scale details to still be detected. The result of this windowing technique is a single curve that 

represents the number of minima with respect to storm radius (Fig. 4). The top row in Fig. 4 

shows a concentric eyewall case for Typhoon Maria on 10:13 UTC 9 July 2018 where the peaks 

for each eyewall are located at 30 and 135 km, respectively. The bottom row in Fig. 5 shows a 

spiral rainband case for Typhoon Maria on 15:55 UTC 6 July 2018 where a single peak 

represents a single eyewall at 60 km. Note that in the spiral rainband case, the curve decreases 

much more gradually than the concentric eyewall case. 
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Figure 4. Signal Microwave Imagery and Resulting Total Number of Minima Plot 

Resulting total number of minima curves (after windowing technique) as a function of TC radius from microwave 

signal images of Typhoon Maria (2018). The top row (concentric eyewall present) curve indicates two peaks (blue 

scatter points) that represent an inner and an outer eyewall. The bottom row (spiral rainband present) curve depicts 

only one peak and an elongated inner peak descent beyond 70 km radius. 
 

In addition to the curves in Fig. 4, the detected peaks (blue scatter points) are very 

important because they provide information regarding the location(s) of potential inner and outer 

eyewall(s). These peaks are found by detecting the following characteristics of each maximum in 

the curve: (1) height of the peak, (2) minimum distance between maxima, (3) prominence of 

each maximum peak, and (4) width of each maximum peak (Appendix B). The height parameter 

removes peaks that do not encompass enough storm sectors and the distance parameter ensures 

that the same peak does not result in two detected peaks. The prominence parameter requires that 

only peaks that are distinguished from the rest of the curve are chosen. Lastly, the width 
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parameter requires that the peak (or convective band) must span across at least a 3-km radius. 

The resulting plot is a curve that typically has multiple peaks in the presence of multiple 

eyewalls and a single peak for a single eyewall. 

With the information from the total number of minima curve and its detected peaks, 

image variables can now be extracted as predictors. The three image variables that we chose in 

this study include: (1) the number of minima peaks, (2) the magnitude of the second peak, and 

(3) the distance between the first and second peaks. Image variable (1) is the total number of 

peaks detected by our peak detector. Image variable (2) is the number of minima of the second-

innermost peak, given that there is an inner peak as well. Image variable (3) is the radial distance 

in km between the innermost and second-innermost peaks. If less than two peaks are detected, 

then image variables (2) and (3) are equal to zero. Based on observations of the curve plots from 

various storms, we found that, (1), a greater number of minima peaks, (2), a larger magnitude of 

the second peak, and (3), a smaller distance between the first and second peak are associated 

with the presence of secondary eyewalls. We will further discuss the choice of these variables 

with their associated coefficient values in the results chapter. 

3.3 Generating Environmental and Storm Metrics Variables (Predictors) 

In addition to image variables derived from the passive microwave imagery, we will 

discuss in this chapter section how we incorporated environmental and storm metrics variables 

outlined in Table 3 as predictors. First, the current maximum wind speeds were obtained directly 

from the TC PRIMED because the times were already linearly interpolated to each passive 

microwave image time. For the remaining variables, a cubic univariate spline was fitted (using 
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SciPy) to model the temporal evolution of each variable, allowing us to produce values at the 

time of each available microwave image. Our hypothesis for the variables R5 and IR TB was that 

the 24-hour differences (wind field expansion/contraction and cloud top temperature changes) 

were more associated with secondary eyewalls than single-time values, hence, 24-h differences 

were applied to the existing splines (also in a cubic spline). In terms of wind shear, we 

hypothesized that ERCs generally occur at lower magnitudes (<8 ms−1), hence, no differencing 

was needed. To substantiate these relationships, we compared Tables 4 and 5. Table 4 details the 

number of cases within each confidence level, the standard deviation, and the average for all 

variables (current maximum wind speed, 24-h Difference in Radius of 5 kt Winds at 850 hPa, 

24-h Difference in IR Brightness temperature, and 800–250 hPa Deep Layer Shear Magnitude) 

for all ‘yes’ secondary eyewall (SE) labels. Table 5 is the same as Table 4, but for all ‘no’ SE 

labels. 

 
Table 3. Environmental Variables and Storm Intensity Predictors 

Environmental variables and storm intensity predictors. 
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Table 4. Labeled Dataset Statistics ('yes' labels) 

Storm intensity and environmental variables of SE ‘yes’ labels (>33 m s−1) by confidence levels. Average 

and standard deviations were calculated for Vmax, shear, 24-h difference in IR TB, and 24-h difference in 

R5 at each confidence level. The cases represent the number of ‘yes’ labels at each confidence level. 

 

 

Using the information regarding Vmax in Tables 4 and 5, we found that the average Vmax in 

the ‘yes’ labels were significantly larger than the ‘no’ case, especially in the higher confidence 

cases (4 and 5) and is consistent with our hypothesis to use Vmax as a predictor. Note that only 

labels >33 m s−1 were considered in both Tables 4 and 5. Next, we observe that the average wind 

shear of varying confidences for the ‘yes’ labels was in the range of 4.90−5.69 m s−1, while the 

‘no’ labels ranged from 6.00−9.68 m s−1.  For the average 24-h IR TB, we found that the different 

confidence ‘yes’ labels ranged from 0.62−6.68 K, while the ‘no’ labels ranged from 2.22−25.69 

K. Lastly, for the average 24-h R5, the different confidence ‘yes’ labels varied from 

20.17−176.31 km, while the ‘no’ labels ranged from −70.00−33.87 km. In summary, the ‘yes’ 

and ‘no’ labels produce clearly distinguishable differences of average values for the chosen 

variables at varying confidence labels, hence, we expect favorable incorporation of these 

variables into a machine learning classifier. 
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Table 5. Labeled Dataset Statistics ('no' labels) 

 

Same as Table 4 but for ‘no’ labels. 

 

3.4 Machine Learning (Classifier) 

The machine learning classifier that we used is a linear discriminant analysis (LDA) since 

we generally visualized the correlation between each of the predictors with the existence of 

secondary eyewalls as a linear relationship (Virtanen et al. 2020). In terms of providing the 

predictors, all values provided were based on times of available passive microwave imagery. 

Thirty-six storms from various basins were used to fit (train) the classifier and 16 storms were 

used for testing. Appendix C lists the storms used for each dataset. An additional independent 

validation dataset of 18 storms also exists, but those results will be discussed in future work. In 

total, 70 storms were randomly distributed by basin and season from the labeled dataset among 

the training, testing, and validation datasets. Lastly, these analyses were only applied to storms 

with maximum wind speeds > 33 m s−1, or as or more intense than a category 1 hurricane 

according to the Saffir-Simpson Wind Scale. 
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Chapter 4  
 

Results 

In this chapter, we will detail the results of our secondary eyewall detection algorithm 

using various validation metrics. First, in our LDA classification, the probability of a secondary 

eyewall presence (P) in % is calculated at the time of every available passive microwave image. 

The model is fitted from the 36 storms in the training dataset and tested on the 16 storms in the 

testing dataset. The standardized correlation coefficients associated with our model fitted using 

the training dataset are given in Table 6.  

Table 6. Standardized Coefficients for Fitted Model 

Standardized correlation coefficients for each of the variables (predictors) in the model fitted with the training 

dataset. Generally, a larger coefficient value would indicate greater importance in the classifier. 

 
 

In Table 6, we observe that the largest correlation coefficient value in our model is the 

second peak magnitude, which indicates that the model heavily relies on this imagery-based 

variable. A positive value is expected because a greater second peak magnitude is associated 

with an outer convective band that encompasses more azimuthal sectors at a smaller range of 
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storm radii. The next most important variable is the current maximum wind speed, which has a 

correlation coefficient because intense TCs (>96 kt) are much more likely to form secondary 

eyewalls (Hawkins and Helveston 2006; Kossin and Sitkowski 2009), while storms weaker than 

70 kt are often disorganized and lack a clear primary eyewall. Note that we use the 6-hourly best-

track intensity, and this does not capture storm intensity fluctuations that are associated with 

quick ERCs that occur on timescales less than 6-h. Thirdly, the 24-h difference in R5 and the 

number of minima peaks are similar in terms of importance and are both positive values. These 

variables are also consistent with our hypothesis since a TCs wind field is expected to expand 

during the ERC process. In terms of the number of minima peaks, it may seem counterintuitive 

that the number of minima peaks can exceed 2 or 3 peaks (double or triple eyewalls), as this 

variable is intended to detect the number of eyewalls, the algorithm is imperfect and can 

misinterpret pixelated microwave images and spiral rainbands as peaks. As a result, more 

minima peaks correlate with a greater probability that a detected peak is a secondary eyewall. 

The remaining three variables (800–250 hPa Deep Layer Shear Magnitude, 24-h Difference in 

Infrared Brightness Temperature, and Distance between Peaks 1 and 2 have negative correlation 

values and are also consistent with our hypotheses. Consistent with our correlation coefficient for 

shear, Kossin and Sitkowski (2009) also found that ERCs are more likely to occur in low-shear 

environments. In terms of the 24-h difference in IR brightness temperatures, we also expected 

that cloud top temperatures typically cool during ERCs during the reintensification phase. Lastly, 

the correlation value for the distance between peaks 1 and 2 in the microwave imagery is also 

negative. Theoretically, peaks 1 and 2 are our innermost and second-innermost eyewalls, 

however as discussed before, spiral rainbands and pixelated images are sometimes misinterpreted 

as peaks. As a result, we expect the distance between peaks 1 and 2 to decrease as the secondary 
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eyewall intensifies and contracts due to angular momentum conservation. In summary, the 

correlation coefficients associated with each variable were consistent with our expected 

likelihood of secondary eyewall formations. 

Next, we will present the accuracy of the testing dataset using four metrics: (1) 

probability of detection (POD), (2) false alarm ratio (FAR), (3) critical success index (CSI), (4) 

Peirce's skill score (PSS), and (5) bias ratio. Note that the default assumption in our model for 

‘true’ label and ‘false labels are when P ≥ 50% and P < 50%, respectively. We define POD as 

the ratio of hits (true positive) and the sum of hits and misses (false negatives). In contrast, the 

FAR is the ratio of the number of false alarms (false positives) and the sum of false alarms and 

hits. Ideally, a high POD and a low FAR would indicate that a model has good skill in detecting 

an event without many false alarms. Next, CSI, also known as the threat score, is the ratio of hits 

and the sum of hits, misses, and false alarms. CSI tells us about the performance of the model 

with respect to both false alarms and hits. PSS tells us how well ‘true’ and ‘false’ labels are 

separated by our model (Roebber 2009). Lastly, the bias ratio measures how well the forecasted 

‘yes’ events compare to the observed frequency of ‘yes’ events. Table 7 details the results of our 

model using these metrics. 
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Table 7. Model Results of Testing Dataset (50% Threshold) 

Results of our model (testing dataset) using a default P threshold of 50% for a true label. A higher POD indicates the 

model's ability in detecting secondary eyewalls events (true positives) and a lower FAR indicates the model’s skill at 

reducing false alarms (false positives). The CSI and PSS indicate a model’s ability based on the combination of 

POD and FAR and ranges from 0 (no skill) to 1 (perfect). The bias ratio represents the tendency of this model’s 

forecasts. 

 
 

Table 7 indicates that the model has some moderate skill (POD > 0.50 and FAR < 0.35) 

in detecting secondary eyewall events while limiting the number of false alarms using a P = 50% 

threshold. In addition, CSI and PSS scores, which range from 0 (no skill) to 1 (perfect), also 

indicate that the model was moderately skillful (≈0.50). We can also evaluate whether the model 

skill was consistent with the confidence levels of our labels by plotting bar charts of each of the 

four possible outcomes (true positive, true negative, false positive, and false negative) with 

respect to various label confidences (Figs. 5a–d). For Fig. 5a, we found that there was a lower 

frequency of true positives for label confidence of 1 and the greatest frequency being a 

confidence level of 3. Note that in our labeling, the confidences were not evenly distributed and 

the requirement to be categorized as a confidence level of 5 was a very well-defined concentric 

eyewall, hence label frequencies of 2–4 were much more common than 5 (Table 4). In Fig. 5b, 

true negative forecasts for a confidence level of 5 were the most common, followed by a 

sequential decrease to 1. In Fig. 5c, a confidence level of 3 was the most common for a false 

positive forecast followed by a confidence level of 2. However, these two levels had the highest 

frequencies by far, 12 and 9, respectively, while the third-highest frequency was only 3. Lastly, 

for Fig. 5d, the confidence level of 2 had the greatest frequency for the false-negative label, 
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followed by a confidence level of 1. Ideally, the true positive and negative labels should have the 

greatest frequencies at the highest confidence levels and the false positive and negative labels 

should have the greatest frequencies at the lowest confidence levels, which is reflected only in 

the true negative bar plot (Fig. 5b). The other bar plots generally show this but do not have a 

persistent trend. 
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Figure 5. Histograms of Model Verification by Label Confidence 

Histogram of label confidences with respect to model (a) true positives, (b) true negatives, (c) false positives, and (d) 

false negatives. 
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The data in Fig. 5 were not normalized and do not portray an accurate depiction of the 

confidence with respect to our model. Figure 6 bins P into intervals of 14.29% and calculates the 

mean label confidence level for each respective bin. We expect a minimum in the mean 

confidence label where the model P approaches 50% since this would indicate consistency 

between low confidence labels and low model confidence. In Fig. 6, we observed that the highest 

mean label confidence level is located at the lowest P bin and the third-highest mean label 

confidence is at the highest P bin. In contrast, the lowest mean label confidence level is binned in 

29% < P < 43%. The mean label confidences levels between all the P bins only varied 

moderately, from 2.67–3.76, which indicates that the model experienced similar difficulties with 

labeling as the human-created labels, but also has some room for improvement. In summary, a 

larger range would indicate better consistency between the two labels, since a low confidence 

label should also result in a lower P. 
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Figure 6. Bar Plot of Mean Label Confidence and Model Probability 

Bar plot of mean label confidences for various bins of P (testing dataset). The value inside the parenthesis above 

each bar represents the sample size of each bin. 
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In addition to using a default P threshold that we discussed earlier, we can also optimize 

the scores in Table 7 by choosing a P that maximizes the threat score (CSI) or a bias ratio closest 

to 1 (Wilks 2019). Figure 7 represents the bias ratio and threat score as a function of P for the 

testing dataset. We found that while the threat score was generally flat, the maximum was 

located at P = 28%. Table 8 details the verification scores using this threshold. 

 
Figure 7. Threat Score and Bias Ratio as a Function of Threshold Probability 

Threat score (blue line) and bias score (orange line) as a function of varying P thresholds for the testing dataset. The 

blue point represents the threshold P that generates the maximum threat score. The orange point represents the 

threshold P that results in a bias ratio nearest 1. 
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Table 8. Model Results of Testing Dataset (Threat Score Optimized Threshold) 

Same as Table 7 but using a threshold that maximizes the threat score (CSI). 

 
 

We observe in Table 8 that while the threat score is maximized, the CSI is only 0.01 

higher than the default assumption (Table 7). However, the POD increases dramatically from 

0.64 (default assumption) to 0.84, while the FAR increases modestly from 0.34 (default 

assumption) to 0.46. In addition, the PSS also increases from 0.52 to 0.73, which indicates that 

the model does a better job of separating true and false labels. While these results show a 

significant improvement, the bias ratio is also much higher (0.98 → 1.53) in favor of a ‘yes’ 

label. Hence, another method that we can optimize our scores is using a threshold that results in 

the least bias (bias ratio → 1). Table 9 represents this assumption. 

Table 9. Model Results of Testing Dataset (Bias Ratio Optimized Threshold) 

Same as Tables 7 and 8, but using a threshold based on where the bias ratio is nearest to 1. 

 
 

The most notable observation in Table 9 is that the bias ratio-based threshold (49%) is 

very near our default assumption of 50%. This is not surprising because the default assumption 
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already had a bias ratio very near 1 (0.97). As a result, the POD and FAR only increased by 0.01 

and the CSI remained the same from the default assumption. The PSS decreased by only 0.01 as 

well. In summary, both the threat score and default assumptions for the P threshold provide 

similar POD, FAR, and CSI values with minimal model bias. 

 Next, we will discuss a false alarm case to address potential contributors to the FAR. 

Figure 8 is an example from Tropical Cyclone Gita on 03:52 UTC February 14, 2018. A primary 

eyewall with a spiral rainband is depicted by a signal microwave image in Fig. 8a with the 

resulting plot of total number minima and detected peaks in Fig. 8b. We observe in Fig. 8b 

that  two separate peaks are depicted, indicative of a double eyewall. However, our labeled 

dataset determined that there is only one eyewall and a spiral rainband, so we would have 

expected a gradual decline similar to a spiral rainband demonstrated in Fig. 4, rather than two 

peaks. In Fig. 8a, we see that the center of the inner eyewall from the ice scattering is displaced 

towards 45°. An ill-centered storm is problematic because our algorithm takes the azimuthal 

average of 16 storm sectors and creates a minima plot as a function of storm radius, hence, our 

model would distribute the same eyewall over a wide range of radii. 
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Figure 8. A False Alarm Case (Bad centering) 

A false alarm case: (a) A primary eyewall and spiral rainband of Tropical Cyclone Gita on 03:52 UTC February 14, 

2018, depicted by a signal microwave image. (b) The resulting total number of minima plot (blue curve) and the 

detected peaks (blue scatter points).  
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Chapter 5  
 

Discussion and Conclusion 

In this study, we designed a secondary eyewall detection algorithm using satellite passive 

microwave imagery, IR imagery, storm metrics, and environmental conditions. This is the first 

secondary eyewall detection algorithm that is trained using labels from multiple basins (refer to 

Chapter 3.1). One of the earliest methods of a secondary eyewall detection algorithm is described 

in Kossin and Sitkowski (2009).  Their method used environmental and geostationary satellite 

features to detect secondary eyewalls. Without the same availability of passive microwave 

imagery at the time, their model produced less robust PODs (0.30) and PSSs (0.28) than our 

model (Tables 7–9), which includes information from the 89–92 GHz microwave imagery. A 

related effort was a forecasting algorithm known as the Microwave Probability of Eyewall 

Replacement (M-PERC; Kossin and DeMaria 2016) model. M-PERC uses information from 85–

92 GHz microwave imagery, however, this model is only trained using storms from the ATL 

basin and is trained to forecast the timing of ERCs. In addition, M-PERC is more forecasting-

centric and its POD is measured as the completion of an ERC within 24-h of an ERC (Wimmers 

2018) onset according to the phases outlined in Sitkowski et al. (2011), which our labeled dataset 

found as too idealized. In other words, we found that when secondary eyewalls form, they do not 

always complete or abide by the exact evolution of intensification, weakening, and 

reintensification. In addition, some ERCs can occur so quickly (<12-h), that very few or no 

image of the process is captured by passive microwave imagery. In fact, the labeled dataset 

discussed in Chapter 3.1, which uses passive microwave imagery, found that at least 12.8% of 

named storms in 2016, 12.6% of named storms in 2017, 24.3% of named storms in 2018, and 

19.6% of named storms in 2019 had at least one secondary eyewall, which is much more 
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frequent than found in Hawkins and Helveston (2006) when passive microwave imagery 

availability was more limited. Hence, our model is designed to determine the existence of a 

secondary eyewall at the time of an available passive microwave image. Overall, we found our 

model was able to detect (CSI = 0.48) and discriminate secondary eyewalls (PSS = 0.52) with 

relatively few false alarm events and low bias. This model's ability enables discrimination of 

candidate secondary eyewalls in the TC PRIMED dataset, creating a climatological dataset of 

ERCs globally. Such a global dataset would be instrumental in future research of ERCs and will 

expand our understanding of the dynamics of this process beyond the ATL basin. 

 Although the results of this model are promising, there are three aspects that still need to 

be improved in future work: (1) detection algorithm, (2) labeled dataset, and (3) machine 

learning methods. In terms of the detection algorithm, we found in Fig. 8 that our model is 

vulnerable to false alarms in storms with long spiraling rainbands due to the poor centering of 

some passive microwave images. Better-centering accounting may drastically improve our 

predictors by producing more consistent total number of minima plots. Another area of 

improvement that is needed in the detection algorithm involves the use of environmental 

variables. An example of such is the 24-h IR TB in the labeled dataset statistics (Tables 4 and 5). 

Both the ‘yes’ and ‘no’ labels indicated cloud top warming, but the ‘no’ labels warmed 

significantly less than the ‘yes’ labels, which indicates that the ‘no’ labels only warmed 

significantly because they were likely in the presence of an environment that was unfavorable for 

future TC development. Such findings suggest that this variable lacks importance (low 

correlation coefficient value in Table 6) and may need to be used differently. Lastly, a sensitivity 

analysis for the Gaussian filter and find peak functions (detailed in Appendices A and B) need to 

be performed to optimize the performance of the model. 
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The next aspect of future work includes expanding the labeled dataset to include more 

seasons and cases located in the North Indian Ocean basin. This is important to reduce 

confirmation bias and inconsistent techniques during the labeling process. The last aspect of 

future work is to test machine learning methods other than LDA, such as a quadratic discriminant 

analysis (QDA) or a random forest classification. For example, we suspect that the relationship 

between the number of minima peaks (predictor), and the predictand is likely to lie somewhere 

between linear and quadratic, since sometimes disorganized TCs feature many convective bands, 

causing many detected peaks, while, organized TCs often only have one or two detected peaks. 

This research has already begun and will be continued through the support of the NOAA Lapenta 

Internship. 
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Appendix A 

 

SciPy Functions Parameters 

 Table A1 represents the parameters used in the gaussian_filter function in SciPy. The 

standard deviations for the azimuth axis (1) and radial axis (13) for the Gaussian kernel are 

adjusted and chosen to create signals in passive microwave images that would emphasize 

eyewalls and convective bands. The modes, azimuth, and radial, provide the function 

information on how to account for an overlapping border with the filter. Table A2 represents the 

parameters used in the find_peak function in SciPy. This function is used to determine peaks in 

the total number of minima plots (see Chapter 3.2). The minimum peak height (3.5) was 

determined qualitatively and adjusted until most detected peaks represent eyewalls. The 

minimum peak separation (10 km) is also adjusted to filter out any individual peaks that may be 

falsely determined as two peaks. The minimum peak prominence (km) was adjusted until most 

secondary eyewalls were detected as peaks. Lastly, the minimum peak width (km) is also 

adjusted to represent an eyewall that is at least 3 km wide, a very conservative standard. 

Table A1. Parameters used for the Gaussian filter in SciPy. 

 
 
Table A2. Parameters used for the function to find peaks in the total number of minima plot in SciPy. 
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Appendix B 

 

Storms in Labeled Dataset 

Table B represents the TC distributions in the training, testing, and independent 

validation dataset. 36, 16, and 18 storms were randomly selected for training, testing, and 

independent validation datasets, respectively. The random selection was performed by first 

sorting all the labeled dataset storms by year and basin. Next, storms were randomly selected for 

each dataset, while maintaining an approximate ratio between the datasets of 2:1:1 by both year 

and basin. The storms below are listed using ATCF identifiers unique to each storm. The first 

two letters represent the basin (WP = Western Pacific, EP = Eastern Pacific, AL = North 

Atlantic, SH = Southern Hemisphere Basins), the first four numbers represent the season, and the 

last two numbers represent the ATCF storm number. 

Table B. Storms used in the training, testing, and independent validation dataset. The first two letters represent the 

basin identifier. WP = Western Pacific, EP = Eastern Pacific, AL = North Atlantic, SH = Southern Hemisphere 

Basins. The next four numbers represent the season. The last two numbers are the ATCF storm number. 

Training Dataset Testing Dataset Independent Validation 

AL201614 AL201607 AL201715 

AL201711 AL201712 AL201816 

AL201714 AL201814 AL201905 

AL201808 AL201913 EP201620 

AL201806 EP201705 EP201810 

AL201909 EP201817 EP201816 

EP201613 SH201809 EP201911 

EP201706 SH201907 SH201619 

EP201802 SH201922 SH201815 

EP201820 WP201630 SH201918 

EP201803 WP201714 SH201912 
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Training Dataset Testing Dataset Independent Validation 

EP201814 WP201822 WP201602 

EP201807 WP201823 WP201616 

EP201821 WP201910 WP201725 

EP201913 WP201926 WP201810 

EP201902 WP201902 WP201825 

SH201611  WP201922 

SH201718  WP201929 

SH201807   

SH201811   

SH201913   

SH201906   

SH201920   

WP201621   

WP201625   

WP201612   

WP201707   

WP201720   

WP201831   

WP201826   

WP201828   

WP201830   

WP201911   

WP201924   

WP201920   

WP201915   
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Objective 
My goal is to gain a better understanding of the dynamical processes of the atmosphere, 
especially tropical cyclones, to improve numerical weather prediction. 
 

Skills 
➢ Coding Skills: MATLAB, Python 
➢ Teaching skills useful in a group setting: Teaching Assistant, Tutor 
➢ Multilingual: English, German (Goethe Certification B1), and Cantonese 

 

Work History 
Earth System Science REU at Colorado State University Intern, 05/2021 to 08/2021 

➢ Under the mentorship of Drs. John Knaff and Chris Slocum, designed a secondary 
eyewall detection algorithm using machine learning. 

 
National Weather Service State College WFO Volunteer Intern, 01/2021 to current 

➢ Defined areas of radar utility in detecting snow squalls at varying ranges by combining 
NEXRAD-AWS radar data and PennDOT crash reports. 

 
PA Climate Office Intern, 01/2020 to 05/2020; 01/2021 to 05/2021 

➢ Designed a quality control algorithm for ingesting data in the new PA Mesonet. 
➢ QC’d CoCoRaHS observations, authored climate highlights for the PA Climate 

Newsletter, and created interesting weather Tweets using SC-ACIS. 
 

Introduction to Programming Techniques for Meteorology Teaching Assistant (METEO 273), 
01/2021 to 05/2021 

➢ Teaching introductory coding students proper coding etiquette and debugging support. 
➢ Developing teaching and leadership skills in an academic setting. 

 
Straube Foundation Education Blog Manager, 01/2016 to 08/2016; 05/2018 to 09/2019 

➢ Three posts monthly to promote low-cost/cost-free technologies for education 
➢ Goal is to help economically disadvantaged students acquire an affordable education 

 
PSU Multicultural Resource Center Tutor, 09/2019 to current 

➢ Provided a free tutoring service (Mainly Chemistry) to students in ethnic minorities and 
those that are underrepresented in STEM. 
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Education 
Pennsylvania State University Schreyer Honors Scholar                 
Major: Meteorology and Atmospheric Science (Department Marshal) 
 
Staffelsee Gymnasium- Murnau am Staffelsee, Germany 82418 
Full-Year German American Partnership Program Exchange (2017-2018) 

➢ Year-long exchange to a secondary school in Bavaria, Germany to learn German and 
German culture. 

 

Involvement 
PSU Weather Data Science Club (president), 08/2020 to 05/2022 

➢ Coordinating an effort to upgrade and maintain the PSU Electronic Map Wall 
➢ Creating a professional environment for students to develop practical coding skills for 

both operational meteorology and academia 
 

Cellist at Penn State Campus Orchestra 
 

Projects 
1. Detecting Tropical Cyclone Secondary Eyewalls using a Microwave-Based Scheme 

(Undergraduate Honors Thesis) (Presented at CSU REU Symposium as oral presentation 
and at AMS student conference as a Poster Session; Will present at AMS Tropical 
Meteorology Conference) 

2. The Radius of Utility for Detecting Snow Squalls with Radar (Presented at NWA 
Conference (2nd place undergraduate poster) and at AMS as oral presentation) 

3. An Evaluation of an Alternative Intensity Scale and the Extratropical Transition of 
Hurricane Sandy 

4. Comparing Microphysical Properties of WRF Ensemble Data to Flight-Level 
Observations 

5. PA Mesonet Quality Control Algorithm 
 

Awards 
➢ Meteorology and Atmospheric Science Department Marshal 
➢ University of Maryland Flagship Graduate Fellowship 
➢ American Meteorological Society Senior Scholarship (Naval Weather Service 

Association) 
➢ Penn State Weather Information Technology Award 

○ Recognizes students who have contributed to the use of advanced technology in 
improved utilization of weather observations or numerical guidance for 
specialized forecast applications. 

➢ National Weather Association Conference (2021) 2nd Place Undergraduate Poster 
Presentation 



 

○ Quantifying Areas of Radar Utility for Snow Squall Detection in the NWS State 
College, PA County Warning Area 

 

Description of Research Experience 
 

REU Project at CSU/CIRA: Detecting Tropical Cyclone Secondary Eyewalls using a Microwave-
Based Scheme (Undergraduate Honors Thesis) (Presented at CSU REU Symposium as oral 
presentation; Presented at AMS student conference: Poster Session; Will present at AMS 
Tropical Meteorology Conference as Oral Presentation) 
 
 Intense tropical cyclones (TCs) often develop secondary eyewalls that can initiate a 
process known as an eyewall replacement cycle (ERCs). Eyewall replacement cycles can 
suddenly impact the intensity of TCs, as well as the internal structure and wind field. Currently, 
most of the scientific community’s understanding of ERCs are based on research centered 
around the North Atlantic basin, due to the lack of aircraft reconnaissance data and an 
extensive climatology of ERCs in other basins globally. The REU portion of this project uses 
machine learning to recognize secondary eyewalls in TCs by combining a variety of 
environmental variables and satellite microwave imagery. In the undergraduate honors thesis 
portion, I am currently working on improving the reliability of this algorithm so that we can 
create an extensive ERC climatology that covers all basins around the globe. 
 
National Weather Service Internship: Quantifying Areas of Radar Utility for Snow Squall 
Detection in the NWS State College, PA County Warning Area (Presented at NWA Conference; 
Presented at AMS Conference as oral presentation) 
 
 Snow squalls can often be characterized as shallow precipitation or lacking in vertical 
extent. As a result, when far from the radar, often, overshooting of the radar beam could 
underestimate or fail to detect such events. During my internship at the National Weather 
Service, I combined PennDOT crash data with NEXRAD-AWS radar archives to quantify ranges 
from the radar with various detection rates of impactful snow squalls. This project is slated to 
be implemented into the NWS Advanced Weather and Interactive Processing System this 
upcoming winter to help operational meteorologists while forecasting snow squalls. We are 
pursuing an NWS Eastern Region publication. 
 
An Evaluation of an Alternative Intensity Scale and the Extratropical Transition of Hurricane 
Sandy 
 
 As part of an honors option with Dr. Steven Greybush, I authored a case study regarding 
the extratropical transition of Hurricane Sandy. In this project, I proposed an alternative 
integrated kinetic energy metric and compared it to Weather Research and Forecasting (WRF) 
model data during the transition. In this project, I learned how to properly write scientific 
papers and gained research skills for computer programming. 
 



 

Comparing Microphysical Properties of WRF Ensemble Data to Flight-Level Observations 
 
 As part of an honors option with Dr. Steven Greybush and Dr. Matthew Kumjian, I 
authored a case study regarding the 5-8 February 2020 winter storm. In this project, I compared 
microphysical properties of NASA IMPACTS flight level data to WRF ensemble data to better 
identify the microphysical conditions of certain initial conditions that lead to better forecasts. 
 

Description of Work Experience 
 
PA State Climate Office Intern: PA Mesonet Quality Control Algorithm 
 
 As an intern with the Pennsylvania state climatologist, I quality controlled CoCoRaHS 
observations, authored climate highlights for the PA Climate Newsletter, and posted interesting 
weather tweets using SC-ACIS. In addition, I also developed a quality control algorithm that 
combines climatological norms and model output data to ingest data in the new PA Mesonet.  
 
Introduction to Programming Techniques for Meteorology Teaching Assistant (METEO 273) 
 
 As a teaching assistant for Dr. Ying Pan, I helped students debug and learn proper coding 
etiquette and skills in MATLAB. This was an extremely rewarding experience because debugging 
other students’ code provided me with valuable practice with reading code. 
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