
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

EFFICIENT SCHEDULING AND COMPILATION OF QUANTUM PROGRAMS

JAVIER MONTANER

SPRING 2022

A thesis

submitted in partial fulfillment

of the requirements

for baccalaureate degrees

in Physics and Computer Science

with honors in Computer Science

Reviewed and approved* by the following:

Dr. Swaroop Ghosh

Professor of Computer Science and Engineering

Thesis Supervisor

Dr. John Hannan

Associate Head of the Computer Science and Engineering Department

Honors Adviser

* Electronic approvals are on file.

i

ABSTRACT

In the decades since the conception of a quantum computer, significant progress has been

made toward making them a reality. Current implementations are severely limited; however, they

are a significant step in the development of the field and allow for the continuation and

expansion of research in the area. While much of the research is focused on improving the

robustness and scalability of the logical units as well as finding algorithms which fully utilize the

power available to the quantum system, there are other areas which require attention to develop a

fully functioning quantum computer. One such consideration, and the focus of this work, is the

efficient management of the execution of quantum programs on a device. Current work seeks to

find the factors which most directly influence the execution of programs and should therefore be

considered to perform efficient operation and scheduling. The work also seeks to maximize their

performance given the limitations of the current generation of quantum computers. Through

utilizing IBM’s quantum backends, multiple scheduling heuristics were tested to determine the

factors which contribute to the execution of programs and their relative importance. These

included the error rates of the hardware, the traffic level measured by the queue time for each

device, and the depth of the implemented quantum circuit. In this way this thesis is able to

explore the field of quantum compilation and understand the current state of its development.

ii

TABLE OF CONTENTS

LIST OF FIGURES .. iii

LIST OF TABLES ... iv

Chapter 1 Introduction ... 1

Chapter 2 Literature Review .. 8

Chapter 3 Methodology ... 13

Chapter 4 Results and Discussion .. 17

Chapter 5 Conclusion ... 21

iii

LIST OF FIGURES

Figure 1: ibmq_bogota Topology .. 11

Figure 2: ibmq_lima Topology .. 12

Figure 3: Depth Conscious Scheduling .. 18

file:///C:/Users/Javier%20Montaner/Documents/Thesis/Honors%20Thesis.docx%23_Toc99924793
file:///C:/Users/Javier%20Montaner/Documents/Thesis/Honors%20Thesis.docx%23_Toc99924794
file:///C:/Users/Javier%20Montaner/Documents/Thesis/Honors%20Thesis.docx%23_Toc99924795

iv

LIST OF TABLES

Table 1: Minimum Queue Scheduling ... 18

Table 2: Depth Conscious Scheduling ... 19

1

Chapter 1

Introduction

The field of quantum computation and information is newly emerging, rapidly

developing, and becoming one of the most exciting areas in current scientific research. The

strange quantum mechanical properties employed give these machines the possibility to vastly

outperform the classical computers currently in widespread use. The actualization of a full

quantum computer will require a wide range of research into each aspect of the system. While

the construction of the hardware and development of quantum algorithms face obstacles unique

to the field, other considerations are applicable to all computers and just require adoption to the

quantum case. One such example, and the focus of this paper, is resource allocation and the

scheduling of quantum programs. However, before getting into specifics, it is important to

understand the theoretical concepts behind how a quantum computer works.

As the classical bit (0 or 1) is the basis of a classical computer, the quantum bit, or qubit,

is the basis of a quantum computer. A qubit is a two-dimensional quantum system with basis

states defined as |0⟩ and |1⟩. The way this state can be manipulated is what gives quantum

computers their computational advantage over classical ones and are given from the following

quantum mechanical properties:

• Superposition – A quantum state can be in multiple basis states simultaneously.

While a classical bit can only be a 0 or a 1, a qubit can be in a superposition of 0 and 1,

interpreted as a linear combination of the basis states |0⟩ and |1⟩ and written as:

|𝛹⟩ = 𝑎0|0⟩ + 𝑎1|1⟩

2

This can be interpreted as the state being both a 0 and a 1.

• Measurement – Although a quantum state can be in multiple states at once, when

a measurement is performed, the state will ‘collapse’ to one of the basis states according

to its coefficient, which is a probability amplitude. By measuring the state |𝛹⟩ above, we

will get a 0 with probability |𝑎0|2 and a 1 with probability |𝑎1|2. Following the

measurement, |𝛹⟩ will be equal to the basis state corresponding to the result of the

measurement, destroying the superposition. This is typically interpreted as the

measurement ‘collapsing’ the superposition to the measured state.

• Entanglement – Two quantum states are considered entangled to one another

when the measurement of one qubit influences the measurement of the other. For

example, consider the following state containing two qubits:

|𝛹⟩ =
1

√2
(|00⟩ + |11⟩)

If you measure the first qubit, there is an equal probability of it being a 0 or 1. However,

because the second qubit was entangled with the first, if we measure it, it is guaranteed to

be the value measured by its entangled partner.

• Unitary Evolution – Every operation on a quantum system is unitary. Therefore,

Unitary transformations mathematically describe quantum computation (Quantum

Compiling). This quality also guarantees that any quantum operation can be represented

by a unitary matrix if formulating the system’s evolution in terms of linear algebra.

3

Similar to classical computers, quantum computers perform computations by imposing a

series of logical gates on the system’s qubits. These gates are what make up quantum circuits: an

ordered sequence of quantum gates. However, unlike classical computation, quantum

computation is most easily understood through linear algebra. A state containing 𝑛 qubits can be

represented as a 2𝑛 dimensional vector and a quantum gate on 𝑛 qubits can be represented as a

2𝑛 × 2𝑛 dimensional matrix. In this way, applying a quantum gate is equivalent to performing

matrix multiplication. As mentioned by the unitary evolution of quantum systems, every gate is a

reversible process and can be represented by a unitary matrix. Due to this, it is common that the

term ‘unitary’ is interchangeable with ‘gate’. The following gates are the most important in

understanding how quantum computers are able to utilize quantum mechanical principles to their

advantage:

• NOT – This gate is equivalent to the classical NOT gate. It will flip a |0⟩ state to

a |1⟩ state and vice versa. This is a one-qubit gate and can therefore be represented by the

following matrix:

𝑋 = [
0 1
1 0

]

The operator is denoted as 𝑋 because it is equivalent to the Pauli-X matrix, 𝜎𝑋. Similarly,

the 𝑌 and 𝑍 unitaries are represented by the Pauli matrices 𝜎𝑌 and 𝜎𝑍 respectively,

however, their functionality is less intuitive.

• Hadamard – The Hadamard gate is a single qubit gate that puts the qubit into a

superposition. Acting on the basis states results in the following transformations:

𝐻|0⟩ =
1

√2
(|0⟩ + |1⟩)

4

𝐻|1⟩ =
1

√2
(|0⟩ − |1⟩)

It can then be seen that the Hadamard gate has the following matrix representation:

𝐻 =
1

√2
[
1 1
1 −1

]

• Controlled-NOT (CNOT) – The CNOT gate is a two-qubit gate and used to

create an entanglement. Of the two qubits, one is the control qubit and the other is the

target. If the control qubit is |0⟩, then nothing is done to the target qubit. However, if the

control qubit is |1⟩, then a NOT gate (described above) is applied to the target qubit. The

unitary has the following matrix representation:

𝐶𝑁𝑂𝑇 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

]

Although the gate may appear intuitive to understand, it can exhibit strange behavior. The

following example shows how CNOT can be used to create entanglement. This is

possible because the checking of whether the control qubit is |0⟩ or |1⟩ is not a

measurement and can be done while maintaining a superposition:

𝐶𝑁𝑂𝑇 (
1

√2
(|00⟩ + |10⟩)) =

1

√2
(|00⟩ + |11⟩)

This idea can also be generalized to create any arbitrary controlled n-qubit unitary by

expanding the number of target bits. If the control bit is |0⟩, then still nothing will be

done to the other qubits. However, if the control bit is |1⟩, then apply the desired unitary

on those n qubits.

5

• Phase Gates – The phase gate is a one-qubit gate that alters the phase of the

system according to the parameter 𝜑. These gates do not affect the measurement

probabilities of the system. The general form of these gates is:

𝑃(𝜑) = [
1 0
0 𝑒𝑖𝜑]

However, the most common of these gates given their own name as:

𝑇 = 𝑃 (
𝜋

4
) = [

1 0

0 𝑒𝑖
𝜋
4

]

𝑆 = 𝑃 (
𝜋

2
) = [

1 0

0 𝑒𝑖
𝜋
2

] = [
1 0
0 𝑖

]

The previously mentioned Z gate is also a phase gate as:

𝑍 = 𝜎𝑍 = [
1 0
0 −1

] = [
1 0
0 𝑒𝑖𝜋] = 𝑃(𝜋)

The CNOT gate, Hadamard gate, and S gate described above form the Clifford group —

the group of unitary operators that map the group of Pauli operators to itself under conjugation

[2]. These gates are important because the Clifford group and the T gate are a conventional form

of a universal set of quantum gates [13]. This universality inspires the Solovey-Kitaev Theorem:

any unitary operation can be represented as an ordered sequence of transformations acting on one

and two-qubit subsystems [1,10,13], or equivalently, any unitary on an arbitrary number of

qubits can be implemented as a circuit of the quantum gates described above.

In order to execute a computation, the quantum computer implements a quantum circuit:

a sequence of operations from the universal set of gates defined above. The quantum circuit is

the compiler’s main consideration when deciding how to most ideally schedule and implement a

given process. While information about things like the number of CNOTs and which qubits they

6

are between can help the compiler effectively map the circuit to hardware, a simple and useful

piece of information the compiler can find is the circuit depth. The circuit depth is the number of

layers of quantum operations stacked upon each other [15] and gives the compiler a general idea

of the time needed to perform the computation, which is useful when optimizing resource use.

An understanding of relevant quantum mechanical principles and the standard gates

which construct quantum circuits is important in quantum computing, however, similarly

important is the history of the field as well as its current state of development. The idea of a

computer able to utilize quantum mechanical properties to perform more difficult computations

was first conceptualized in the 1980s. However, it was the publication of Peter Shor’s factoring

algorithm in 1994 that many attribute to the inception of the field of quantum computing. This

algorithm exhibits an exponential speedup over the best-known classical factoring algorithm and

gave the first glimpses at the power of a quantum computer. Since then, research in developing

the hardware necessary to actualize a full quantum computer as well as research in quantum

algorithms and the theoretical bounds on a quantum computer’s power have made large strides.

If successful, there are numerous potential applications and many still to be found. The most

intuitive application is the simulation of quantum systems. This would contribute to fields like

quantum chemistry as even the evolution of simple molecules is difficult to simulate classically

[3].

Despite this progress, we are still a ways away from a quantum computer large and fault-

tolerant enough to implement the quantum algorithms that give it a decisive computational

advantage over classical computers. The machines in the current epoch of quantum computers

are referred to as Noisy Intermediate-Scale Quantum (NISQ) Computers. These are characterized

as containing around 10-100 qubits and relatively high rates of gate error and state decoherence.

7

Although imperfect, these NISQ devices have significantly expanded access to quantum

technologies, however limited they may be. Developers such as IBM offer up their quantum

computers to run any program you would want. This expanded access has hastened research as

more people can get involved. Also, with some working hardware, it opened new areas of

research that were not possible before, including the focus of this paper: scheduling and resource

allocation.

8

Chapter 2

Literature Review

The ultimate goal of a quantum compiler is to provide robust control of the computation

and map the quantum computation into ordered sequences of gates implementable on real

quantum hardware [10]. While the quantum nature of the computations requires many necessary

considerations, at a high level, quantum compilation has the same functionality as a compiler on

a classical computer: implementing a process on the available hardware. Current quantum

compilers must also be cognizant of the limited functionality of NISQ machines. This includes

considerations of the limited availability of qubits, high error rates, and state decoherence.

Therefore, much of the research in quantum compilation seeks to mitigate the effects of the

error-prone, unstable hardware on the result of the computation through efficient compilation

and scheduling algorithms.

Despite their differences, there are several concepts from classical compilation that are

universal to process management and can therefore be applied to the quantum case. One example

is being aware of operation dependencies while scheduling a program to be executed. The

compiler must be conscious of the order in which operations should be performed to preserve the

integrity of the computation. One such way is to produce a Directed Acyclic Graph (DAG) to

describe the dependencies of each operation. This DAG would also inform the compiler of which

processes are independent and can be run simultaneously, thus maximizing parallelism [18].

Another example is an understanding of the resources and time needed to perform the

computation. The high implementation cost of qubits and operations emphasizes the importance

of a compiler which can quickly estimate what resources will be consumed [7].

9

While the universal set of quantum gates described in the Introduction can be used to

implement any arbitrary unitary, it is not guaranteed to be able to implement it exactly. In some

cases, the quantum compiler may receive a quantum circuit expressed with high-level, multi-

qubit unitaries, that it then must approximate as a sequence of low-level operations native to the

processor [5,10]. However, it is suggested that this process accounts for error as the abstraction

of high-level unitaries can perturb the evolution of the underlying quantum states, leading to a

less reliable outcome [17]. A good framework to understand this issue is to consider the

computation as the evolution of the system’s Hamiltonian. On 𝑛 qubits, the system’s

Hamiltonian will have dimension 2𝑛 × 2𝑛. However, by formulating the evolution as a series of

low-level gates, we are representing the Hamiltonian as a sum of sub-system interactions [13].

The entire Hamiltonian has no guarantee that it can be perfectly represented in this way which is

the source of the error. A suggested solution to this issue is to aggregate the operations by

creating a custom control pulse optimized to enact the high-level transformation. This allows the

compiler to consider the evolution of a larger number of qubits, rather than just its decomposition

into one and two-qubit gates [17]. Another proposed solution is to train a deep-learning

algorithm to generalize how to convert any unitary into a sequence of elementary gates [11].

While this implementation will still be imperfect due to the approximation, the program can

learn techniques to produce the most optimal approximation.

Another problem the compiler must consider that is unique to quantum computation is

dealing with qubits which have been entangled. Temporary values are common in programming

and while a classical compiler can reassign the resources storing these values with little

consideration, a quantum compiler must be aware if any of these temporary values are entangled

with a qubit which will be used later in the computation. These qubits which store temporary

10

values which aid in the computation are referred to as ancilla qubits. If an ancilla qubit will not

be used for the remainder of a computation, the compiler may want to reassign it to another

program’s exeution where it can be used. However, if this ancilla qubit is entangled with a qubit

vital to the computation (a data qubit), its wavefunction is integrated with the wave function of

the data qubits. Therefore, if you were to alter the ancilla qubit’s quantum state (through

measurement or use after reassignment) you affect the probabilities of state measurements for the

data qubits which can result in an incorrect output [7]. This problem can be mitigated through a

process called uncomputation. This exploits the reversibility of quantum processes to return the

qubit to its original, unentangled state by subjecting it to the inverse of the operation which

entangled it. As seen, these transformations can be represented by unitary matrices so their

inverse is simply their conjugate transpose, making them efficient to implement [14]. This

process protects the state of the data qubits while allowing ancilla qubits to be safely reassigned

to other processes, maximizing resource use.

A quantum compiler on NISQ devices must also be aware of the limitations posed by the

system’s imperfect resources. Along with the high gate error rates and the lack of sufficient

qubits to perform error correction, it is important that the compiler seeks to mitigate the loss of

quantum information due to state decoherence [9]. Each qubit only has a short amount of time

that it can be considered viable. Therefore, the compiler should schedule operations on the qubit

such that all its gates finish before the decoherence time [12].

 While the considerations mentioned are vital for an ideal quantum compiler,

capable of implementing any arbitrary quantum program, current quantum compilers commonly

require a quantum circuit as an input. This means the compiler is only concerned with

implementing the given circuit on the hardware available, the user must be the one to ensure

11

proper resource management and use which will implement their goal. However, there are still

many measures the compiler can take to maximize the effectiveness of the computation. One of

the most intuitive ways is to prioritize scheduling programs to be executed on the most reliable

qubits. Information about error rates for individual qubits is available to the compiler which

allows it to make these decisions. One suggestion on how to most effectively implement this idea

is to design a greedy scheduling algorithm in which the qubit with the highest degree (most

operations) or the two qubits with the most CNOTs between them are assigned the qubits with

the lowest error rates [12].

 One of the best ways for the compiler to maximize the computation’s success

probability is to minimize the total number of CNOT operations. This is because the CNOT gate

has low fidelity and is thought to be the limiting factor in near-term NISQ machines [5]. While

CNOT gates described in the input quantum circuit cannot be avoided, the minimization of

CNOTs largely comes from the minimization of SWAP operations. These SWAPs are made up

of three CNOT gates and swap the states of two qubits. They can be minimized through

topological considerations of the hardware qubits.

 The topology of the quantum hardware is one of

the most important considerations a quantum compiler must make

while efficiently scheduling quantum algorithms. When mapping

qubits from the input quantum circuit to qubits on the hardware,

the compiler must strive to maximize parallelism while

minimizing communication [8]. Different quantum hardwares

have different qubit connectivities. Figures 1 and 2 show the

topology of two, five-qubit quantum devices provided by IBM.

Figure 1: ibmq_bogota Topology

The topology of IBM’s Bogota quantum

computer. Source: [16]

12

Topological considerations are important because two-qubit gates

can only be applied to adjacent qubits. For example, a CNOT could

applied on qubits 2 and 3 in the device in Figure 1, but not the device

in Figure 2. Therefore, if the quantum circuit calls for a CNOT to be

applied on two qubits which are not adjacent in the hardware, a

series of SWAP operations must be performed until they are

adjacent. The compiler should be able to optimize the mapping

which minimizes qubit movement [12], which contributes to

maximizing the computation’s probability of success. Besides the

high error rates, minimizing the amount of CNOT and SWAP operations and having the

compiler be communication-aware is important because high communication inflicts a

significant cost to global memory [8].

Figure 2: ibmq_lima Topology

The topology of IBM’s Lima quantum

computer. Source: [16]

13

Chapter 3

Methodology

The quantum hardware owned and operated by IBM, referred to as backends, serves as a

valuable resource to collect data on the scheduling, compilation, and execution of quantum

programs. IBM maintains a number of quantum computers ranging from 5 to 127 qubits which

are always operating and accepting quantum circuits from users. Due to the focus on scheduling,

the more powerful backends were not required with all of the work being done using IBM’s

various 5-qubit hardwares: ibmq_lima, ibmq_belem, ibmq_quito, ibmq_bogota, and

ibmq_santiago. Through utilizing the services provided, one can get information about these

backends and send quantum circuits to be run on the quantum computer. To allow for wide

access of the services available, IBM developed a special package for the programming language

Python called Qiskit.

Qiskit is an open-source software platform that allows the user to interact with the

quantum machine language [10]. It provides all the functionality to construct quantum circuits,

manage the execution of the program, and send them to be run on an IBM backend. It is through

the creation and manipulation of Qiskit programs that allows anyone to design their own

quantum program and get the results from a real quantum computer. Additionally, IBM also

allows users to send quantum circuits to be implemented by one of their simulators. These

simulate the execution of the circuit classically and therefore do not have the same limitations of

high error rates and state decoherence. However, this work is focused on efficient scheduling

given the limitations of current quantum technologies, requiring the use of backends rather than

simulators. Similar to Qiskit, QASM is a quantum assembly language which provides an

14

alternate method of defining quantum circuits. However, QASM cannot send these circuits to be

executed and must be imported through Qiskit to do so.

With the focus of this work being compilation and scheduling, the process being sent to

the quantum backend is arbitrary. The chosen quantum circuit which was used to gather the

following data implements the Quantum Approximate Optimization Algorithm (QAOA) to solve

the max-cut problem for an input graph. QAOA is a hybrid quantum-classical algorithm which

works by running the quantum portion with tunable parameters, having the result fed into a

classical optimizer which gives improved parameters, and running the quantum circuit again

with these improved values from the optimizer. This process then continues iteratively but for

the purpose of this work, the circuit is passed with ideal parameters and run only once. QAOA

was chosen because it has a fundamentally simple structure which makes it an ideal process for

NISQ devices [4]. QAOA is used to solve the max-cut problem which, given a graph, seeks to

separate the vertices into two sets such that the number of edges between these sets is

maximized. A simple, 5-node graph was used as the input for the experimental quantum circuit.

Through the work with quantum scheduling and compilation, we looked into the

considerations needed to implement a scheduler over a set of available quantum hardware. While

most current work is concerned with a compiler which can only map processes to a single

quantum computer, this work sought to receive quantum circuits and optimally schedule them to

be run on one of five available backends. These backends were IBM’s five-qubit hardwares

described above. Through this work we were able to learn about which factors influence a

processes compilation and execution time such as the backend’s queue length, the circuit depth,

and the backend’s reliability.

15

The primary method of data collection came from implementing a scheduling algorithm,

running it for a queue of identical quantum programs described above (solving max-cut problem

with QAOA), and tracking the elapsed time between sending the circuit to IBM and receiving a

result. The scheduling algorithm chose the backend to send the program to according to multiple

heuristics: randomly, to the backend with the minimum queue, or the backend with the highest

performance/reliability. The quantum circuits sent also had variable depths to observe the effect

this would have on the scheduling and execution time. The QAOA algorithm can be

implemented as a quantum circuit with arbitrary depth which allowed for the creation of a set of

simple and comparable circuits of different depths to use for data collection. For this thesis, the

circuits which were used implemented QAOA with depths of 1, 5, 10, 15, and 20 to understand

the effect the input circuit’s depth would have on its execution. This procedure was performed at

different times to have data for both heavier and lighter traffic of the backends.

In order for the work to model a real scheduler, multithreading was used to overcome the

way jobs are sent to the backends with Qiskit. The Qiskit command execute takes parameters

which include the quantum circuit and is the function which sends out the program to be

executed on the IBM backends [6]. This function is atomic meaning the program will not

progress to the next instruction until the result of the computation has been returned by IBM.

However, the scheduler should not have to wait for a job to finish before considering the next

one in the queue, ideally it should be able to send out a circuit to be run and then immediately

begin to consider where to schedule the next process without needing to wait for a result.

Multithreading helped with this issue as it allowed me to incorporate more simultaneity to the

scheduler. The only limitation of this is that IBM limits the number of simultaneous jobs a user

16

can run to five. The requests to execute jobs would be periodically declined if too many of the

previously sent programs had not finished executing yet.

A difficulty with this procedure, however, is that the results are constrained by IBM’s

scheduling algorithms for its individual backends. Once a program is sent to the queue of jobs to

be performed on the hardware, it is IBM’s scheduling algorithm which determines the order in

which they will be run, which the program written to enact this procedure has no control over.

IBM orders the computations generally as a typical first in first out (FIFO) queue but the lack of

control of the program after it has been sent to IBM is still a concern. However, this is a product

of utilizing their services and it would require a local quantum computer to have total control

over process scheduling and execution. Regardless, it is still possible to gain useful information

from this procedure and this discussion simply serves to identify a limitation of it.

17

Chapter 4

Results and Discussion

Through implementing various scheduling heuristics using constructed queues of

comparable circuits with variable depth, we was able to determine the most important factors for

developing a quantum compiler and scheduler. Through considerations of the depth of the

program’s quantum circuit as well as information about the implementing hardware like its

performance capabilities and job queue length, a quantum computer would be able to efficiently

schedule and execute computations. The data being collected by sending out circuits to IBM and

waiting for them to return was definitely not ideal and lead to various difficulties and unexpected

results, however, the process was still informative and satisfied the purpose of the work.

 At the start, we were primarily concerned with the scheduling algorithm being

implemented and wanted to test out the most intuitive heuristic: sending the quantum circuit to

the backend with the minimum queue length. It was not until later that the depth of the quantum

circuit was incorporated as an important consideration so at this point, all of the circuits being

used had a depth of 5. A queue of 25 of these circuits was created where each to be scheduled on

a specific backend according to some scheduling heuristic and then sent to be executed, with the

times to complete each one being recorded. To gauge the effectiveness of scheduling the

program on the backend with the minimum queue, the same procedure was performed with the

backend chosen randomly and with the backend with the highest reliability chosen for

comparison.

 The results from the minimum queue scheduling can be seen in Table 1 where the

average time to execute a circuit as well as the average minimum queue length is shown.

18

Table 1: Minimum Queue Scheduling

Average Execution Time (s) Average Minimum Queue Length

1.301596 0.1875

1.4708502 1.5333333

1.188492 2.625

2.625 23.7333333

While, on average, there seems to be a slight trend indicating a longer queue will result in longer

execution time but when the backend was chosen randomly, the average execution was 1.40475 seconds

and 1.1533 seconds when selecting the most reliable backend. Many of the data points also indicated that

the queue length alone was not a perfect indicator of the time it would take to execute. It was at this point

that we began to suspect that time the depth of the circuits was affecting the result. The scheduling

algorithm IBM uses to manage the job queues for their backends prioritizes the execution of circuits with

larger depths. This meant that while sending circuits with the same depth, we saw similar execution times

regardless of the length of the queue.

In order to try and account for IBM prioritizing the execution of circuits with greater depth, the

queue of circuits maintained on our end was changed to include circuits of varying depth. This allowed

for us to gauge how the depth of the circuit would affect the execution time and if a trend between queue

length and execution time could still be

seen when accounting for circuits of

different depths. The results from

performing the procedure with circuits of

varying depths where the backend with the

minimum queue length is selected are shown

in Table 2. The circuit depth, average

execution time, and average queue length

Figure 3: Depth Conscious Scheduling

19

are shown while running the procedure at 5 different times. The data is also represented graphically in

Figure 3. While Table 2 shows averages, Figure 3 shows every data point plotted on a scatter plot of the

queue length of the selected backend and the execution time. The 5 different colors correspond to the five

runs performed to collect the data.

Table 2: Depth Conscious Scheduling

Circuit Depth Average Queue Length Average Execution Time (s)

1 0 18.54374

1 0.2 18.6827

1 7 205.2663

1 25 239.5091

1 52.8 188.5003

5 0 30.87362

5 0 20.77894

5 1.8 176.5415

5 21.4 200.5158

5 51 24.55472

10 0 20.39888

10 0 86.67842

10 9 90.65643

10 17.8 240.9247

10 49.6 24.76164

15 0 21.3227

15 0.2 24.91586

15 10.4 48.27044

15 16.4 96.85856

15 50 19.03058

20 0 27.17698

20 0.4 18.56392

20 10.6 48.80586

20 22.4 194.9741

20 34.4 29.79254

 The results shown do not give an ideal trend for the relationship between input circuit

depth, queue length, and average execution time. However, this is largely due to IBM’s

scheduling algorithm used to manage the queue after the circuit has been sent out. There were

20

many data points where it appeared that the program being tracked was getting starved out due to

other circuits in the queue. Essentially, the circuit being sent would not be prioritized in favor of

some other processes, regardless of when they were received, resulting in a significantly longer

execution time even if the queue length was not too large. This resulted in significant outliers in

the distribution of data that made drawing a clear conclusion difficult.

 Despite the imperfections in the data, they are still telling of the factors which influence

the execution of a quantum program, the ability to draw conclusions is just muddied by the

allocation algorithm used by IBM to manage their backends. Circuits with higher depths will

take longer to execute because they contain more layers of sequenced instructions. This is also

why it was a factor in IBM’s scheduler and should be a considered factor in any scheduling

heuristic. Similarly, the queue of jobs waiting to be executed will also affect the execution time

as there will be some delay before the program can begin to execute. While this concept is

intuitive, it can be applied to a scheduler when scheduling a sequence of programs onto the same

region of hardware. In this way it would be able to balance the cost of waiting for the resources

to be available with scheduling it on another, potentially less reliable, but available region. These

considerations outline the basis under which quantum programs should be scheduled: making

efficient resource allocation decisions to maximize the reliable execution of processes while

minimizing the time needed to do so.

21

Chapter 5

Conclusion

 The research which contributes to the development of a fully functioning quantum computer has

made considerable strides in the decades since the field’s inception, however, it will require much more to

meet this goal. While the limitations in the robustness and scalability of qubits are a primary concern,

other necessary factors for any computer, such as the management of the execution of processes, are

similarly important. This motivates research into the development of quantum compilers and schedulers

which can efficiently allocate system resources to manage the execution of quantum programs, with a

focus on accommodating the current, error-prone NISQ devices in use. Through consideration of the

quantum computer’s error rates, its topographical layout, and the circuit’s parameters, it has been shown

how a quantum compiler can maximize the efficiency of its operation: a necessary component of a

quantum computer.

 Through the work described, this thesis was able to confirm some of the factors mentioned which

influence the effectiveness of a computation and therefore, are important when designing a quantum

compiler. While the procedure left us unable to map the computation onto a specific subset of qubits on a

single device like a quantum compiler would do, the results produced are still informative. The individual

backends chosen from can be considered analogous to different regions of a quantum computer with

different error rates and topologies. In this way, the work done with limited control over IBM’s quantum

computers is still relevant and applicable to current research. Further research could be performed where

the researcher has robust control over a local quantum computer. This would allow for better management

of the assignment of resources in the execution of programs, giving more unambiguous and direct data

about different scheduler configurations or heuristics. Further research could also incorporate other

concepts that further complicate the system such as the handling of entangled qubits or mapping the

22

process onto specific qubits based on their respective error rates. These considerations are required to

fully implement a quantum compiler, with this work being concerned more with the considerations

needed for efficient scheduling, and their relative importance.

 This work contributes toward the larger goal of implementing a fully functioning, fault-tolerant

quantum computer. If achieved, it would be a momentous milestone in our scientific and technological

development. The full possibilities are still being realized but it is already known that quantum

technologies will offer significantly more computational power that what’s available to classical ones

today. The applications are still being realized but are very exciting and sure to have a significant impact

on society. With interest around the field growing, there is a lot of confident that this goal will be realized

in the near future and a lot of excitement around the possibilities it will allow for.

23

BIBLIOGRAPHY

[1] Barenco, Adriano, et al. “Elementary Gates for Quantum Computation.” Physical Review A,

vol. 1, 23 Mar. 1995.

[2] Bravyi, Sergey, and Alexei Kitaev. “Universal Quantum Computation with Ideal Clifford

Gates and Noisy Ancillas.” Physical Review A, vol. 71, ser. 022316, 22 Feb. 2005. 022316.

[3] Cao, Yudong, et al. “Quantum Chemistry in the Age of Quantum Computing.” Chemical

Reviews, vol. 119, no. 19, 28 Dec. 2018.

[4] Choi, Jaeho and Joongheon Kim. "A Tutorial on Quantum Approximate Optimization

Algorithm (QAOA): Fundamentals and Applications," 2019 International Conference on

Information and Communication Technology Convergence (ICTC), 2019.

[5] Davis, Marc, et al. “Toward Optimal Topology Aware Quantum Circuit Synthesis.” IEEE

International Conference on Quantum Computing and Engineering (QCE), 12 Oct. 2020.

[6] “Executing Experiments (Qiskit.execute_function)¶.” Executing Experiments

(Qiskit.execute_function) - Qiskit 0.34.2 Documentation,

https://qiskit.org/documentation/apidoc/execute.html.

[7] JavadiAbhari, Ali, et al. “ScaffCC: A Framework for Compilation and Analysis of Quantum

Computing Programs.” ACM Conference on Computing Frontiers, 20 May 2014.

[8] Heckey, Jeff, et al. “Compiler Management of Communication and Parallelism for Quantum

Computation.” International Conference on Architectural Support for Programming

Languages and Operating Systems, 2 Mar. 2015.

[9] Hu, X, et al. “Decoherence and dephasing in spin-based solid state quantum computers. In

Foundations Of Quantum Mechanics In The Light Of New Technology: ISQM—

Tokyo’01”, pages 3–11. World Scientific. 2002

[10] Maronese, Marco, et al. “Quantum Compiling.” ArXiv Preprint ArXiv:2112.00187, 1 Dec.

2021.

[11] Moro, Lorenzo, et al. “Quantum Compiling by Deep Reinforcement Learning.”

Communication Physics, vol. 4, 31 May 2021.

[12] Murali, Prakash, et al. “Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale

Quantum Computers.” International Conference on Architectural Support for

Programming Languages and Operating Systems, 30 Jan. 2019.

24

[13] Nielsen, Michael A., and Isaac L. Chuage. Quantum Computation and Quantum

Information. Cambridge University Press, 2010.

[14] Paradis, Anouk, et al. “Unqomp: Synthesizing Uncomputation in Quantum Circuits.”

Programming Language Design and Implementation, 23 June 2021.

[15] Pirhooshyaran, Mohammad and Tamas Terlaky. “Quantum circuit design search.” Quantum

Mach. Intell. 3, 25, 2021.

[16] “Services.” IBM Quantum, https://quantum-computing.ibm.com/services?services=systems.

[17] Shi, Yunong, et al. “Optimized Compilation of Aggregated Instructions for Realistic

Quantum Computers.” International Conference on Architectural Support for

Programming Languages and Operating Systems. 17 Feb. 2019

[18] Tzvetan S. Metodi, et al. "Scheduling physical operations in a quantum information

processor," Proc. SPIE 6244, Quantum Information and Computation IV. 12 May 2006

ACADEMIC VITA

