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ABSTRACT 

 

In the decades since the conception of a quantum computer, significant progress has been 

made toward making them a reality. Current implementations are severely limited; however, they 

are a significant step in the development of the field and allow for the continuation and 

expansion of research in the area. While much of the research is focused on improving the 

robustness and scalability of the logical units as well as finding algorithms which fully utilize the 

power available to the quantum system, there are other areas which require attention to develop a 

fully functioning quantum computer. One such consideration, and the focus of this work, is the 

efficient management of the execution of quantum programs on a device. Current work seeks to 

find the factors which most directly influence the execution of programs and should therefore be 

considered to perform efficient operation and scheduling. The work also seeks to maximize their 

performance given the limitations of the current generation of quantum computers. Through 

utilizing IBM’s quantum backends, multiple scheduling heuristics were tested to determine the 

factors which contribute to the execution of programs and their relative importance. These 

included the error rates of the hardware, the traffic level measured by the queue time for each 

device, and the depth of the implemented quantum circuit. In this way this thesis is able to 

explore the field of quantum compilation and understand the current state of its development.  
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Chapter 1  
 

Introduction 

The field of quantum computation and information is newly emerging, rapidly 

developing, and becoming one of the most exciting areas in current scientific research. The 

strange quantum mechanical properties employed give these machines the possibility to vastly 

outperform the classical computers currently in widespread use. The actualization of a full 

quantum computer will require a wide range of research into each aspect of the system. While 

the construction of the hardware and development of quantum algorithms face obstacles unique 

to the field, other considerations are applicable to all computers and just require adoption to the 

quantum case. One such example, and the focus of this paper, is resource allocation and the 

scheduling of quantum programs. However, before getting into specifics, it is important to 

understand the theoretical concepts behind how a quantum computer works. 

As the classical bit (0 or 1) is the basis of a classical computer, the quantum bit, or qubit, 

is the basis of a quantum computer. A qubit is a two-dimensional quantum system with basis 

states defined as |0⟩ and |1⟩. The way this state can be manipulated is what gives quantum 

computers their computational advantage over classical ones and are given from the following 

quantum mechanical properties: 

• Superposition – A quantum state can be in multiple basis states simultaneously. 

While a classical bit can only be a 0 or a 1, a qubit can be in a superposition of 0 and 1, 

interpreted as a linear combination of the basis states |0⟩ and |1⟩ and written as: 

|𝛹⟩ =  𝑎0|0⟩ + 𝑎1|1⟩ 
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This can be interpreted as the state being both a 0 and a 1. 

• Measurement – Although a quantum state can be in multiple states at once, when 

a measurement is performed, the state will ‘collapse’ to one of the basis states according 

to its coefficient, which is a probability amplitude. By measuring the state |𝛹⟩ above, we 

will get a 0 with probability |𝑎0|2 and a 1 with probability |𝑎1|2. Following the 

measurement, |𝛹⟩ will be equal to the basis state corresponding to the result of the 

measurement, destroying the superposition. This is typically interpreted as the 

measurement ‘collapsing’ the superposition to the measured state. 

• Entanglement – Two quantum states are considered entangled to one another 

when the measurement of one qubit influences the measurement of the other. For 

example, consider the following state containing two qubits: 

|𝛹⟩ =
1

√2
(|00⟩ + |11⟩) 

If you measure the first qubit, there is an equal probability of it being a 0 or 1. However, 

because the second qubit was entangled with the first, if we measure it, it is guaranteed to 

be the value measured by its entangled partner.  

• Unitary Evolution – Every operation on a quantum system is unitary. Therefore, 

Unitary transformations mathematically describe quantum computation (Quantum 

Compiling). This quality also guarantees that any quantum operation can be represented 

by a unitary matrix if formulating the system’s evolution in terms of linear algebra. 
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Similar to classical computers, quantum computers perform computations by imposing a 

series of logical gates on the system’s qubits. These gates are what make up quantum circuits: an 

ordered sequence of quantum gates. However, unlike classical computation, quantum 

computation is most easily understood through linear algebra. A state containing 𝑛 qubits can be 

represented as a 2𝑛 dimensional vector and a quantum gate on 𝑛 qubits can be represented as a 

2𝑛 × 2𝑛 dimensional matrix. In this way, applying a quantum gate is equivalent to performing 

matrix multiplication. As mentioned by the unitary evolution of quantum systems, every gate is a 

reversible process and can be represented by a unitary matrix. Due to this, it is common that the 

term ‘unitary’ is interchangeable with ‘gate’. The following gates are the most important in 

understanding how quantum computers are able to utilize quantum mechanical principles to their 

advantage: 

• NOT – This gate is equivalent to the classical NOT gate. It will flip a |0⟩ state to 

a |1⟩ state and vice versa. This is a one-qubit gate and can therefore be represented by the 

following matrix: 

𝑋 = [
0 1
1 0

] 

The operator is denoted as 𝑋 because it is equivalent to the Pauli-X matrix, 𝜎𝑋. Similarly, 

the 𝑌 and 𝑍 unitaries are represented by the Pauli matrices 𝜎𝑌 and 𝜎𝑍 respectively, 

however, their functionality is less intuitive. 

• Hadamard – The Hadamard gate is a single qubit gate that puts the qubit into a 

superposition. Acting on the basis states results in the following transformations: 

𝐻|0⟩ =
1

√2
(|0⟩ + |1⟩) 
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𝐻|1⟩ =
1

√2
(|0⟩ − |1⟩) 

It can then be seen that the Hadamard gate has the following matrix representation: 

𝐻 =
1

√2
[
1 1
1 −1

] 

• Controlled-NOT (CNOT) – The CNOT gate is a two-qubit gate and used to 

create an entanglement. Of the two qubits, one is the control qubit and the other is the 

target. If the control qubit is |0⟩, then nothing is done to the target qubit. However, if the 

control qubit is |1⟩, then a NOT gate (described above) is applied to the target qubit. The 

unitary has the following matrix representation: 

𝐶𝑁𝑂𝑇 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] 

Although the gate may appear intuitive to understand, it can exhibit strange behavior. The 

following example shows how CNOT can be used to create entanglement. This is 

possible because the checking of whether the control qubit is |0⟩ or |1⟩ is not a 

measurement and can be done while maintaining a superposition: 

 

𝐶𝑁𝑂𝑇 (
1

√2
(|00⟩ + |10⟩)) =  

1

√2
(|00⟩ + |11⟩) 

This idea can also be generalized to create any arbitrary controlled n-qubit unitary by 

expanding the number of target bits. If the control bit is |0⟩, then still nothing will be 

done to the other qubits. However, if the control bit is |1⟩, then apply the desired unitary 

on those n qubits. 
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• Phase Gates – The phase gate is a one-qubit gate that alters the phase of the 

system according to the parameter 𝜑. These gates do not affect the measurement 

probabilities of the system. The general form of these gates is: 

𝑃(𝜑) = [
1 0
0 𝑒𝑖𝜑] 

However, the most common of these gates given their own name as: 

𝑇 = 𝑃 (
𝜋

4
) = [

1 0

0 𝑒𝑖
𝜋
4

] 

𝑆 = 𝑃 (
𝜋

2
) = [

1 0

0 𝑒𝑖
𝜋
2

] = [
1 0
0 𝑖

] 

The previously mentioned Z gate is also a phase gate as: 

𝑍 = 𝜎𝑍 = [
1 0
0 −1

] = [
1 0
0 𝑒𝑖𝜋] = 𝑃(𝜋) 

  

The CNOT gate, Hadamard gate, and S gate described above form the Clifford group — 

the group of unitary operators that map the group of Pauli operators to itself under conjugation 

[2]. These gates are important because the Clifford group and the T gate are a conventional form 

of a universal set of quantum gates [13]. This universality inspires the Solovey-Kitaev Theorem: 

any unitary operation can be represented as an ordered sequence of transformations acting on one 

and two-qubit subsystems [1,10,13], or equivalently, any unitary on an arbitrary number of 

qubits can be implemented as a circuit of the quantum gates described above. 

In order to execute a computation, the quantum computer implements a quantum circuit: 

a sequence of operations from the universal set of gates defined above. The quantum circuit is 

the compiler’s main consideration when deciding how to most ideally schedule and implement a 

given process. While information about things like the number of CNOTs and which qubits they 
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are between can help the compiler effectively map the circuit to hardware, a simple and useful 

piece of information the compiler can find is the circuit depth. The circuit depth is the number of 

layers of quantum operations stacked upon each other [15] and gives the compiler a general idea 

of the time needed to perform the computation, which is useful when optimizing resource use. 

An understanding of relevant quantum mechanical principles and the standard gates 

which construct quantum circuits is important in quantum computing, however, similarly 

important is the history of the field as well as its current state of development.  The idea of a 

computer able to utilize quantum mechanical properties to perform more difficult computations 

was first conceptualized in the 1980s. However, it was the publication of Peter Shor’s factoring 

algorithm in 1994 that many attribute to the inception of the field of quantum computing. This 

algorithm exhibits an exponential speedup over the best-known classical factoring algorithm and 

gave the first glimpses at the power of a quantum computer. Since then, research in developing 

the hardware necessary to actualize a full quantum computer as well as research in quantum 

algorithms and the theoretical bounds on a quantum computer’s power have made large strides. 

If successful, there are numerous potential applications and many still to be found. The most 

intuitive application is the simulation of quantum systems. This would contribute to fields like 

quantum chemistry as even the evolution of simple molecules is difficult to simulate classically 

[3]. 

Despite this progress, we are still a ways away from a quantum computer large and fault-

tolerant enough to implement the quantum algorithms that give it a decisive computational 

advantage over classical computers. The machines in the current epoch of quantum computers 

are referred to as Noisy Intermediate-Scale Quantum (NISQ) Computers. These are characterized 

as containing around 10-100 qubits and relatively high rates of gate error and state decoherence. 
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Although imperfect, these NISQ devices have significantly expanded access to quantum 

technologies, however limited they may be. Developers such as IBM offer up their quantum 

computers to run any program you would want. This expanded access has hastened research as 

more people can get involved. Also, with some working hardware, it opened new areas of 

research that were not possible before, including the focus of this paper: scheduling and resource 

allocation. 
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Chapter 2  
 

Literature Review 

The ultimate goal of a quantum compiler is to provide robust control of the computation 

and map the quantum computation into ordered sequences of gates implementable on real 

quantum hardware [10]. While the quantum nature of the computations requires many necessary 

considerations, at a high level, quantum compilation has the same functionality as a compiler on 

a classical computer: implementing a process on the available hardware. Current quantum 

compilers must also be cognizant of the limited functionality of NISQ machines. This includes 

considerations of the limited availability of qubits, high error rates, and state decoherence. 

Therefore, much of the research in quantum compilation seeks to mitigate the effects of the 

error-prone, unstable hardware on the result of the computation through efficient compilation 

and scheduling algorithms.  

Despite their differences, there are several concepts from classical compilation that are 

universal to process management and can therefore be applied to the quantum case. One example 

is being aware of operation dependencies while scheduling a program to be executed. The 

compiler must be conscious of the order in which operations should be performed to preserve the 

integrity of the computation. One such way is to produce a Directed Acyclic Graph (DAG) to 

describe the dependencies of each operation. This DAG would also inform the compiler of which 

processes are independent and can be run simultaneously, thus maximizing parallelism [18]. 

Another example is an understanding of the resources and time needed to perform the 

computation. The high implementation cost of qubits and operations emphasizes the importance 

of a compiler which can quickly estimate what resources will be consumed [7].  
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While the universal set of quantum gates described in the Introduction can be used to 

implement any arbitrary unitary, it is not guaranteed to be able to implement it exactly. In some 

cases, the quantum compiler may receive a quantum circuit expressed with high-level, multi-

qubit unitaries, that it then must approximate as a sequence of low-level operations native to the 

processor [5,10]. However, it is suggested that this process accounts for error as the abstraction 

of high-level unitaries can perturb the evolution of the underlying quantum states, leading to a 

less reliable outcome [17]. A good framework to understand this issue is to consider the 

computation as the evolution of the system’s Hamiltonian. On 𝑛 qubits, the system’s 

Hamiltonian will have dimension 2𝑛 × 2𝑛. However, by formulating the evolution as a series of 

low-level gates, we are representing the Hamiltonian as a sum of sub-system interactions [13]. 

The entire Hamiltonian has no guarantee that it can be perfectly represented in this way which is 

the source of the error. A suggested solution to this issue is to aggregate the operations by 

creating a custom control pulse optimized to enact the high-level transformation. This allows the 

compiler to consider the evolution of a larger number of qubits, rather than just its decomposition 

into one and two-qubit gates [17]. Another proposed solution is to train a deep-learning 

algorithm to generalize how to convert any unitary into a sequence of elementary gates [11]. 

While this implementation will still be imperfect due to the approximation, the program can 

learn techniques to produce the most optimal approximation. 

Another problem the compiler must consider that is unique to quantum computation is 

dealing with qubits which have been entangled. Temporary values are common in programming 

and while a classical compiler can reassign the resources storing these values with little 

consideration, a quantum compiler must be aware if any of these temporary values are entangled 

with a qubit which will be used later in the computation. These qubits which store temporary 
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values which aid in the computation are referred to as ancilla qubits. If an ancilla qubit will not 

be used for the remainder of a computation, the compiler may want to reassign it to another 

program’s exeution where it can be used. However, if this ancilla qubit is entangled with a qubit 

vital to the computation (a data qubit), its wavefunction is integrated with the wave function of 

the data qubits. Therefore, if you were to alter the ancilla qubit’s quantum state (through 

measurement or use after reassignment) you affect the probabilities of state measurements for the 

data qubits which can result in an incorrect output [7]. This problem can be mitigated through a 

process called uncomputation. This exploits the reversibility of quantum processes to return the 

qubit to its original, unentangled state by subjecting it to the inverse of the operation which 

entangled it. As seen, these transformations can be represented by unitary matrices so their 

inverse is simply their conjugate transpose, making them efficient to implement [14]. This 

process protects the state of the data qubits while allowing ancilla qubits to be safely reassigned 

to other processes, maximizing resource use. 

A quantum compiler on NISQ devices must also be aware of the limitations posed by the 

system’s imperfect resources. Along with the high gate error rates and the lack of sufficient 

qubits to perform error correction, it is important that the compiler seeks to mitigate the loss of 

quantum information due to state decoherence [9]. Each qubit only has a short amount of time 

that it can be considered viable. Therefore, the compiler should schedule operations on the qubit 

such that all its gates finish before the decoherence time [12]. 

 While the considerations mentioned are vital for an ideal quantum compiler, 

capable of implementing any arbitrary quantum program, current quantum compilers commonly 

require a quantum circuit as an input. This means the compiler is only concerned with 

implementing the given circuit on the hardware available, the user must be the one to ensure 
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proper resource management and use which will implement their goal. However, there are still 

many measures the compiler can take to maximize the effectiveness of the computation. One of 

the most intuitive ways is to prioritize scheduling programs to be executed on the most reliable 

qubits. Information about error rates for individual qubits is available to the compiler which 

allows it to make these decisions. One suggestion on how to most effectively implement this idea 

is to design a greedy scheduling algorithm in which the qubit with the highest degree (most 

operations) or the two qubits with the most CNOTs between them are assigned the qubits with 

the lowest error rates [12]. 

 One of the best ways for the compiler to maximize the computation’s success 

probability is to minimize the total number of CNOT operations. This is because the CNOT gate 

has low fidelity and is thought to be the limiting factor in near-term NISQ machines [5]. While 

CNOT gates described in the input quantum circuit cannot be avoided, the minimization of 

CNOTs largely comes from the minimization of SWAP operations. These SWAPs are made up 

of three CNOT gates and swap the states of two qubits. They can be minimized through 

topological considerations of the hardware qubits. 

 The topology of the quantum hardware is one of 

the most important considerations a quantum compiler must make 

while efficiently scheduling quantum algorithms. When mapping 

qubits from the input quantum circuit to qubits on the hardware, 

the compiler must strive to maximize parallelism while 

minimizing communication [8]. Different quantum hardwares 

have different qubit connectivities. Figures 1 and 2 show the 

topology of two, five-qubit quantum devices provided by IBM. 

Figure 1: ibmq_bogota Topology 

The topology of IBM’s Bogota quantum 

computer. Source: [16] 
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Topological considerations are important because two-qubit gates 

can only be applied to adjacent qubits. For example, a CNOT could 

applied on qubits 2 and 3 in the device in Figure 1, but not the device 

in Figure 2. Therefore, if the quantum circuit calls for a CNOT to be 

applied on two qubits which are not adjacent in the hardware, a 

series of SWAP operations must be performed until they are 

adjacent. The compiler should be able to optimize the mapping 

which minimizes qubit movement [12], which contributes to 

maximizing the computation’s probability of success. Besides the 

high error rates, minimizing the amount of CNOT and SWAP operations and having the 

compiler be communication-aware is important because high communication inflicts a 

significant cost to global memory [8]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: ibmq_lima Topology 

The topology of IBM’s Lima quantum 

computer. Source: [16] 
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Chapter 3  
 

Methodology 

The quantum hardware owned and operated by IBM, referred to as backends, serves as a 

valuable resource to collect data on the scheduling, compilation, and execution of quantum 

programs. IBM maintains a number of quantum computers ranging from 5 to 127 qubits which 

are always operating and accepting quantum circuits from users. Due to the focus on scheduling, 

the more powerful backends were not required with all of the work being done using IBM’s 

various 5-qubit hardwares: ibmq_lima, ibmq_belem, ibmq_quito, ibmq_bogota, and 

ibmq_santiago. Through utilizing the services provided, one can get information about these 

backends and send quantum circuits to be run on the quantum computer. To allow for wide 

access of the services available, IBM developed a special package for the programming language 

Python called Qiskit. 

Qiskit is an open-source software platform that allows the user to interact with the 

quantum machine language [10]. It provides all the functionality to construct quantum circuits, 

manage the execution of the program, and send them to be run on an IBM backend. It is through 

the creation and manipulation of Qiskit programs that allows anyone to design their own 

quantum program and get the results from a real quantum computer. Additionally, IBM also 

allows users to send quantum circuits to be implemented by one of their simulators. These 

simulate the execution of the circuit classically and therefore do not have the same limitations of 

high error rates and state decoherence. However, this work is focused on efficient scheduling 

given the limitations of current quantum technologies, requiring the use of backends rather than 

simulators. Similar to Qiskit, QASM is a quantum assembly language which provides an 
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alternate method of defining quantum circuits. However, QASM cannot send these circuits to be 

executed and must be imported through Qiskit to do so.  

With the focus of this work being compilation and scheduling, the process being sent to 

the quantum backend is arbitrary. The chosen quantum circuit which was used to gather the 

following data implements the Quantum Approximate Optimization Algorithm (QAOA) to solve 

the max-cut problem for an input graph. QAOA is a hybrid quantum-classical algorithm which 

works by running the quantum portion with tunable parameters, having the result fed into a 

classical optimizer which gives improved parameters, and running the quantum circuit again 

with these improved values from the optimizer. This process then continues iteratively but for 

the purpose of this work, the circuit is passed with ideal parameters and run only once. QAOA 

was chosen because it has a fundamentally simple structure which makes it an ideal process for 

NISQ devices [4]. QAOA is used to solve the max-cut problem which, given a graph, seeks to 

separate the vertices into two sets such that the number of edges between these sets is 

maximized. A simple, 5-node graph was used as the input for the experimental quantum circuit.  

Through the work with quantum scheduling and compilation, we looked into the 

considerations needed to implement a scheduler over a set of available quantum hardware. While 

most current work is concerned with a compiler which can only map processes to a single 

quantum computer, this work sought to receive quantum circuits and optimally schedule them to 

be run on one of five available backends. These backends were IBM’s five-qubit hardwares 

described above. Through this work we were able to learn about which factors influence a 

processes compilation and execution time such as the backend’s queue length, the circuit depth, 

and the backend’s reliability.  
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The primary method of data collection came from implementing a scheduling algorithm, 

running it for a queue of identical quantum programs described above (solving max-cut problem 

with QAOA), and tracking the elapsed time between sending the circuit to IBM and receiving a 

result. The scheduling algorithm chose the backend to send the program to according to multiple 

heuristics: randomly, to the backend with the minimum queue, or the backend with the highest 

performance/reliability. The quantum circuits sent also had variable depths to observe the effect 

this would have on the scheduling and execution time. The QAOA algorithm can be 

implemented as a quantum circuit with arbitrary depth which allowed for the creation of a set of 

simple and comparable circuits of different depths to use for data collection. For this thesis, the 

circuits which were used implemented QAOA with depths of 1, 5, 10, 15, and 20 to understand 

the effect the input circuit’s depth would have on its execution. This procedure was performed at 

different times to have data for both heavier and lighter traffic of the backends. 

In order for the work to model a real scheduler, multithreading was used to overcome the 

way jobs are sent to the backends with Qiskit. The Qiskit command execute takes parameters 

which include the quantum circuit and is the function which sends out the program to be 

executed on the IBM backends [6]. This function is atomic meaning the program will not 

progress to the next instruction until the result of the computation has been returned by IBM. 

However, the scheduler should not have to wait for a job to finish before considering the next 

one in the queue, ideally it should be able to send out a circuit to be run and then immediately 

begin to consider where to schedule the next process without needing to wait for a result. 

Multithreading helped with this issue as it allowed me to incorporate more simultaneity to the 

scheduler. The only limitation of this is that IBM limits the number of simultaneous jobs a user 
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can run to five. The requests to execute jobs would be periodically declined if too many of the 

previously sent programs had not finished executing yet.  

A difficulty with this procedure, however, is that the results are constrained by IBM’s 

scheduling algorithms for its individual backends. Once a program is sent to the queue of jobs to 

be performed on the hardware, it is IBM’s scheduling algorithm which determines the order in 

which they will be run, which the program written to enact this procedure has no control over. 

IBM orders the computations generally as a typical first in first out (FIFO) queue but the lack of 

control of the program after it has been sent to IBM is still a concern. However, this is a product 

of utilizing their services and it would require a local quantum computer to have total control 

over process scheduling and execution. Regardless, it is still possible to gain useful information 

from this procedure and this discussion simply serves to identify a limitation of it. 
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Chapter 4  
 

Results and Discussion 

Through implementing various scheduling heuristics using constructed queues of 

comparable circuits with variable depth, we was able to determine the most important factors for 

developing a quantum compiler and scheduler.  Through considerations of the depth of the 

program’s quantum circuit as well as information about the implementing hardware like its 

performance capabilities and job queue length, a quantum computer would be able to efficiently 

schedule and execute computations. The data being collected by sending out circuits to IBM and 

waiting for them to return was definitely not ideal and lead to various difficulties and unexpected 

results, however, the process was still informative and satisfied the purpose of the work. 

 At the start, we were primarily concerned with the scheduling algorithm being 

implemented and wanted to test out the most intuitive heuristic: sending the quantum circuit to 

the backend with the minimum queue length. It was not until later that the depth of the quantum 

circuit was incorporated as an important consideration so at this point, all of the circuits being 

used had a depth of 5. A queue of 25 of these circuits was created where each to be scheduled on 

a specific backend according to some scheduling heuristic and then sent to be executed, with the 

times to complete each one being recorded. To gauge the effectiveness of scheduling the 

program on the backend with the minimum queue, the same procedure was performed with the 

backend chosen randomly and with the backend with the highest reliability chosen for 

comparison. 

 The results from the minimum queue scheduling can be seen in Table 1 where the 

average time to execute a circuit as well as the average minimum queue length is shown. 
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Table 1: Minimum Queue Scheduling 

Average Execution Time (s) Average Minimum Queue Length 

1.301596 0.1875 

1.4708502 1.5333333 

1.188492 2.625 

2.625 23.7333333 
 

While, on average, there seems to be a slight trend indicating a longer queue will result in longer 

execution time but when the backend was chosen randomly, the average execution was 1.40475 seconds 

and 1.1533 seconds when selecting the most reliable backend. Many of the data points also indicated that 

the queue length alone was not a perfect indicator of the time it would take to execute. It was at this point 

that we began to suspect that time the depth of the circuits was affecting the result. The scheduling 

algorithm IBM uses to manage the job queues for their backends prioritizes the execution of circuits with 

larger depths. This meant that while sending circuits with the same depth, we saw similar execution times 

regardless of the length of the queue.  

In order to try and account for IBM prioritizing the execution of circuits with greater depth, the 

queue of circuits maintained on our end was changed to include circuits of varying depth. This allowed 

for us to gauge how the depth of the circuit would affect the execution time and if a trend between queue 

length and execution time could still be 

seen when accounting for circuits of 

different depths. The results from 

performing the procedure with circuits of 

varying depths where the backend with the 

minimum queue length is selected are shown 

in Table 2. The circuit depth, average 

execution time, and average queue length 

Figure 3: Depth Conscious Scheduling 
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are shown while running the procedure at 5 different times. The data is also represented graphically in 

Figure 3. While Table 2 shows averages, Figure 3 shows every data point plotted on a scatter plot of the 

queue length of the selected backend and the execution time. The 5 different colors correspond to the five 

runs performed to collect the data. 

 

Table 2: Depth Conscious Scheduling 

Circuit Depth Average Queue Length Average Execution Time (s) 

1 0 18.54374 

1 0.2 18.6827 

1 7 205.2663 

1 25 239.5091 

1 52.8 188.5003 

5 0 30.87362 

5 0 20.77894 

5 1.8 176.5415 

5 21.4 200.5158 

5 51 24.55472 

10 0 20.39888 

10 0 86.67842 

10 9 90.65643 

10 17.8 240.9247 

10 49.6 24.76164 

15 0 21.3227 

15 0.2 24.91586 

15 10.4 48.27044 

15 16.4 96.85856 

15 50 19.03058 

20 0 27.17698 

20 0.4 18.56392 

20 10.6 48.80586 

20 22.4 194.9741 

20 34.4 29.79254 
 

 The results shown do not give an ideal trend for the relationship between input circuit 

depth, queue length, and average execution time. However, this is largely due to IBM’s 

scheduling algorithm used to manage the queue after the circuit has been sent out. There were 
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many data points where it appeared that the program being tracked was getting starved out due to 

other circuits in the queue. Essentially, the circuit being sent would not be prioritized in favor of 

some other processes, regardless of when they were received, resulting in a significantly longer 

execution time even if the queue length was not too large. This resulted in significant outliers in 

the distribution of data that made drawing a clear conclusion difficult. 

 Despite the imperfections in the data, they are still telling of the factors which influence 

the execution of a quantum program, the ability to draw conclusions is just muddied by the 

allocation algorithm used by IBM to manage their backends. Circuits with higher depths will 

take longer to execute because they contain more layers of sequenced instructions. This is also 

why it was a factor in IBM’s scheduler and should be a considered factor in any scheduling 

heuristic. Similarly, the queue of jobs waiting to be executed will also affect the execution time 

as there will be some delay before the program can begin to execute. While this concept is 

intuitive, it can be applied to a scheduler when scheduling a sequence of programs onto the same 

region of hardware. In this way it would be able to balance the cost of waiting for the resources 

to be available with scheduling it on another, potentially less reliable, but available region. These 

considerations outline the basis under which quantum programs should be scheduled: making 

efficient resource allocation decisions to maximize the reliable execution of processes while 

minimizing the time needed to do so. 
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Chapter 5  
 

Conclusion 

 The research which contributes to the development of a fully functioning quantum computer has 

made considerable strides in the decades since the field’s inception, however, it will require much more to 

meet this goal. While the limitations in the robustness and scalability of qubits are a primary concern, 

other necessary factors for any computer, such as the management of the execution of processes, are 

similarly important. This motivates research into the development of quantum compilers and schedulers 

which can efficiently allocate system resources to manage the execution of quantum programs, with a 

focus on accommodating the current, error-prone NISQ devices in use. Through consideration of the 

quantum computer’s error rates, its topographical layout, and the circuit’s parameters, it has been shown 

how a quantum compiler can maximize the efficiency of its operation: a necessary component of a 

quantum computer.  

 Through the work described, this thesis was able to confirm some of the factors mentioned which 

influence the effectiveness of a computation and therefore, are important when designing a quantum 

compiler. While the procedure left us unable to map the computation onto a specific subset of qubits on a 

single device like a quantum compiler would do, the results produced are still informative. The individual 

backends chosen from can be considered analogous to different regions of a quantum computer with 

different error rates and topologies. In this way, the work done with limited control over IBM’s quantum 

computers is still relevant and applicable to current research. Further research could be performed where 

the researcher has robust control over a local quantum computer. This would allow for better management 

of the assignment of resources in the execution of programs, giving more unambiguous and direct data 

about different scheduler configurations or heuristics. Further research could also incorporate other 

concepts that further complicate the system such as the handling of entangled qubits or mapping the 
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process onto specific qubits based on their respective error rates. These considerations are required to 

fully implement a quantum compiler, with this work being concerned more with the considerations 

needed for efficient scheduling, and their relative importance.  

 This work contributes toward the larger goal of implementing a fully functioning, fault-tolerant 

quantum computer. If achieved, it would be a momentous milestone in our scientific and technological 

development. The full possibilities are still being realized but it is already known that quantum 

technologies will offer significantly more computational power that what’s available to classical ones 

today. The applications are still being realized but are very exciting and sure to have a significant impact 

on society. With interest around the field growing, there is a lot of confident that this goal will be realized 

in the near future and a lot of excitement around the possibilities it will allow for. 
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