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ABSTRACT 

 

For over 200 years, the integrity of elections in the United States has been threatened by 

the practice of partisan gerrymandering – drawing an electoral district map in such a way that 

one political party is favored over another. Opponents have spent several decades challenging 

allegedly gerrymandered district maps in both state and federal courts. These attempts have been 

largely unsuccessful. In these cases, the courts have commonly declared that they desire a more 

rigorous standard by which district maps can be evaluated before overruling them due to 

suspected gerrymandering. Researchers have developed mathematical metrics, statistical tests, 

and computer simulations for achieving a possible standard. 

We sought to build upon this research by developing an alternative computer simulation. 

Expanding upon our previous research, we developed a model for evaluating the fairness of a 

district map given its real-world outcome. Provided geographic and voter data, our model 

generates a sequence of randomly drawn district maps by joining counties and precincts into a 

given number of districts that align reasonably with certain federal and Pennsylvania state-level 

requirements. The model then determines the number of Democratic and Republican districts in 

each map. The model compiles these counts into probability distribution for the number of 

Democratic and Republican districts in a randomly drawn map. This model, provided appropriate 

data, can be used to evaluate a real-world election result. 

Our model determined that the 2016 House of Representatives and 2016 State House 

elections were fair. However, we identified potential limitations that should be addressed in a 

future model. 



ii 

 

TABLE OF CONTENTS 
 

LIST OF FIGURES ................................................................................................................. iv 

LIST OF TABLES ................................................................................................................... v 

ACKNOWLEDGEMENTS ..................................................................................................... vi 

Chapter 1 Introduction ................................................................................................. 1 

Chapter 2 Justiciability of Partisan Gerrymandering ................................................... 3 

Chapter 3 A Review of Quantifying Gerrymandering ................................................. 5 

Summary Metrics .................................................................................................. 5 

Geometric Compactness ....................................................................................... 7 
Computer Simulation ............................................................................................ 9 
Summary ............................................................................................................... 9 

Chapter 4 Methodology ............................................................................................... 11 

Original Monte Carlo Simulation ......................................................................... 11 

Improvements ....................................................................................................... 12 

Implementing Redistricting Constraints ........................................................ 12 

Including All Precincts .................................................................................. 13 
Data ....................................................................................................................... 15 

Revised Simulation ............................................................................................... 15 
Object Structures ........................................................................................... 15 
Data Preprocessing ........................................................................................ 16 

Initial District Construction ........................................................................... 17 

Appending Unchosen Precincts ..................................................................... 19 
Creating the Probability Distribution ............................................................ 19 
Plotting Maps ................................................................................................. 20 

Chapter 5 Results ......................................................................................................... 22 

2016 U.S. House of Representatives Election ...................................................... 22 
2016 State House Election .................................................................................... 24 
Interpretation of Results ....................................................................................... 26 

Limitations ............................................................................................................ 26 

Chapter 6 Conclusions ................................................................................................. 28 

Appendix A  Code for Preprocessing Data .................................................................. 30 



iii 

 

Appendix B  Code for U.S. House of Representatives Election Simulation ............... 32 

BIBLIOGRAPHY ........................................................................................................ 39 



iv 

 

LIST OF FIGURES 

Figure 1: the “Goofy kicking Donald Duck” district (Criss, 2019) ............................. 2 

Figure 2: examples of convex (top) and non-convex (bottom) shapes (Chambers & 

Miller, 2010) ......................................................................................................... 8 

Figure 3: Sample district plot for 2016 U.S. House of Representatives ...................... 23 

Figure 4: Sample red-blue plot for 2016 U.S. House of Representatives .................... 23 

Figure 5: Sample district plot for 2016 State Senate ................................................... 25 

Figure 6: Sample red-blue plot for 2016 State Senate ................................................. 25 

 

  



v 

 

LIST OF TABLES 

Table 1: Structure of probability distribution .............................................................. 20 

Table 2: Results of simulation for 2016 U.S. House of Representatives Election ...... 22 

Table 3: Results of simulation for 2016 State House Election .................................... 24 
 

  



vi 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my thesis supervisor, Dr. Adams, for 

introducing me to the topic of gerrymandering and for his 

continued support since we began our research on this topic in Fall 

of 2020; 

 

my faculty reader, Dr. Blum, for the time he has put into reviewing 

my research; 

 

my academic and honors adviser, Dr. Walker, for his outstanding 

support throughout my time in the honors program and as a student 

at Penn State Harrisburg; 

 

the faculty and staff of Penn State Harrisburg’s Mathematics and 

Computer Science department for teaching me much of what I 

know in mathematics, statistics, and computer science; 

 

our dataset’s GitHub contributors for their efforts to provide open, 

precinct-level election data; 

 

my family and friends for their unconditional support throughout my time as a 

Penn State student and as a Schreyer Scholar.



1 

Chapter 1  
 

Introduction 

The United States Constitution requires that states be divided into electoral districts 

following the decennial census. However, it offers surprisingly little guidance on how each 

state’s districts are to be drawn, simply requiring that they be approximately equal in population 

(U.S. Const. art. I, § 2). It is left up to individual states to determine how districts should be 

drawn. In Pennsylvania, for example, congressional districts are drawn by a committee 

consisting of five members: two from the majority party, two from the minority party, and one 

chairman selected by these four. If these four cannot agree on the fifth member, the fifth is 

appointed by the state Supreme Court. The committee proposes a district map for the 

commonwealth, made official with the governor’s signature (PA Const. art. II, § 17).  

A fault of the decennial redistricting process is gerrymandering: the practice of dividing 

or arranging voting districts in such a way that favors one political party or candidate (Merriam-

Webster, 2021). For over 200 years, the United States has used this for partisan gain. The 

practice is named after Elbridge Gerry, Governor of Massachusetts in 1812, whose party 

proposed a redistricting plan with a district that some said resembled a salamander (Cox & Katz, 

p. 3). Since that time, partisan gerrymandering has become a common practice (Kang, 2020). 

Gerrymandering is done through “cracking” – spreading the opposition party’s voters out across 

many districts such that they fall just short of victory – and “packing” – concentrating the other 

party’s voters into a small number of districts (McGhee & Stephanopoulos, 2015). Though the 
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practice has existed for over 200 years, modern computers allow for it to be done more 

effectively than ever before (Kang, 2020).  

 Despite the bipartisan structure of Pennsylvania’s committee, gerrymandering still 

occurs; the infamous “Goofy kicking Donald Duck” district is a striking example (Criss, 2019).  

 

Figure 1: the “Goofy kicking Donald Duck” district (Criss, 2019) 

The effect of gerrymandering is resulting in concerns over the fairness of elections. The 

United States has long espoused the ideal of “one man, one vote”. (Reynolds et al. Sims et al., 

1964). Court cases have been filed alleging that district maps have been drawn unfairly; until 

recently, few plaintiffs have been successful. The challenge in these cases has been the lack of a 

manageable standard by which to quantify the impact of gerrymandering, and the lack of a 

corresponding threshold at which a partisan gerrymander has changed what should have been the 

result of a fair election. In recent years, researchers have attempted to address these concerns by 

creating summary metrics, geometric measures, and computer simulations by which district 

plans can be evaluated. 
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Chapter 2  
 

Justiciability of Partisan Gerrymandering 

A significant challenge of addressing partisan gerrymandering is justiciability - defining a 

measure for its severity that will be accepted by the courts. While racial gerrymandering has 

been ruled illegal (Miller et al. v. Johnson et al., 1995; Voting Rights Act of 1965, 1965), 

partisan gerrymandering has proven to be a more complicated matter. In recent years, several 

cases have been brought before courts regarding alleged partisan gerrymanders. Nevertheless, 

courts have failed to resolve two critical questions: by what standard can a court of law measure 

the fairness of a district map, and at what point has the partisan gerrymander gone too far? 

In 1986, the Supreme Court declared that partisan gerrymandering is justiciable (Davis et 

al. v. Bandemer et al., 1986). At the federal court level, plaintiffs have since brought forth a 

variety of reasons by which they believed partisan gerrymanders to be unlawful including the 

Equal Protection Clause of the 14th amendment, the one person, one vote principle, and the 1st 

amendment. Each of these reasons has been struck down (Rucho et al. v. Common Cause et al., 

2019). 

Supreme Court Justices from both ends of the political spectrum have expressed interest 

in establishing a metric for quantifying partisan gerrymandering (League of United Latin 

American Citizens et al. v. Perry et al., 2006; Vieth et al. v. Jubelirer et al., 2004). In spite of 

this, opponents to gerrymandering were struck down again in 2019 when the Supreme Court 

ruled that it could not intervene in such cases, citing a lack of “judicially discoverable and 

manageable standards for resolving [them]” (Rucho et al. v. Common Cause et al., 2019). The 

Supreme Court has, however, pointed out that partisan gerrymandering can be addressed through 

state amendments or through the Congress (Rucho et al. v. Common Cause et al., 2019). 
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Initiatives in this realm, including those decided by District Courts, have seen greater success 

(Common Cause et al. v. Lewis et al., 2019; Whitford et al. v. Gill et al., 2016; League of Women 

Voters of Pennsylvania et al. v. the Commonwealth of Pennsylvania, 2018; Rucho et al. v. 

Common Cause et al., 2019). 

There have been several efforts to develop measures and methodologies for quantifying 

gerrymandering in a court setting (Chen, 2017; Herschlag et al., 2020; McGhee & 

Stephanopoulos, 2015; Wang, 2016). Some of these measures have seen success. McGhee and 

Stephanopoulos’s efficiency gap helped plaintiffs win a case in which the District Court for the 

Western District of Wisconsin ordered that gerrymandered districts be redrawn (Whitford et al. v. 

Gill et al., 2016). Chen’s research (2017), driven by computer simulation, played a role in a 

Court decision to strike down gerrymandered maps in North Carolina (Common Cause et al. v. 

Lewis et al., 2019). 

Whether or not partisan gerrymandering can be addressed by federal courts, there is still 

the possibility for standards to be put in place at the state level or through congress. This yields a 

need for continued research in improving existing metrics for partisan gerrymandering, or for 

creating new metrics. 

  

https://en.wikipedia.org/wiki/United_States_District_Court_for_the_Western_District_of_Wisconsin
https://en.wikipedia.org/wiki/United_States_District_Court_for_the_Western_District_of_Wisconsin
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Chapter 3  
 

A Review of Quantifying Gerrymandering 

Summary Metrics 

Many researchers have attempted to quantify partisan gerrymandering by proposing 

computationally simple summary metrics. Some metrics are heavily rooted in statistical theory, 

while others have simply quantified notions that Supreme Court Justices have considered with 

respect to gerrymandering. With their simplicity and the ability to define them based on legally 

sound principles, summary metrics have apparent potential in a court setting. One of the most 

notable of these metrics, the efficiency gap, has been considered and applied in court (Whitford 

et al. v. Gill et al., 2016). 

Partisan symmetry is the notion that a given number of votes for either party should 

translate directly to a certain number of legislative seats, regardless of which party has what 

percentage of the votes (McGhee & Stephanopoulos, 2015). For example, suppose Party A wins 

60% of the vote in a state and is given 10 seats. If partisan symmetry holds, then in a 

hypothetical election where Party B wins 60% of the vote, they should also be given 10 seats – 

no more, and no less. This is considered a meaningful metric with respect to gerrymandering, as 

cracking and packing would be expected to skew this symmetry. 

Discussions between Supreme Court Justices on using partisan symmetry as a means for 

measuring partisan gerrymandering inspired McGhee and Stephanopoulos to propose their 

efficiency gap metric. The efficiency gap quantifies partisan symmetry in terms of “wasted 

votes” - that is, the number of votes that are either cast for a losing candidate or for the winning 

candidate in excess of what is required to win. The efficiency gap is defined as the difference 
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between each parties’ wasted votes divided by the total number of votes cast (McGhee & 

Stephanopoulos, 2015). This measure has played a significant role in a court setting (Whitford et 

al. v. Gill et al., 2016). Other researchers have since studied various mathematical properties of 

this metric, proposed variations, or proposed algorithms for minimizing its value (Chatterjee et 

al., 2020; Tapp, 2019). 

Other metrics have been proposed as well. Following a partisan gerrymander, one might 

expect that the party favored by the gerrymander will have a large number of marginal victories, 

while the party targeted by the gerrymander will have a few landslide victories. One approach to 

measuring this is to consider the difference between the share of Democratic votes in districts 

that Democrats win and the share of Republican votes in districts that Republicans win (Wang, 

2015). Another approach is to use a mean-median difference: the difference between a party’s 

mean and median share of votes among districts (Wang, 2015). If either of these differences are 

far from zero, this could indicate that a party has been “packed” heavily into a few outlier 

districts. 

Though summary metrics are often convenient, they do have pitfalls. While the efficiency 

gap has been championed for playing a role in Whitford v. Gill, the case sparked discussion on 

some of its concerns. First, the constitution does not require that votes translate proportionally 

into seats - a notion that the efficiency gap assumes. Moreover, some speculated that the 

efficiency gap could be skewed by the political geography of a state (Whitford et al. v. Gill et al., 

2016). A state may have a natural underlying political bias if it contains, for example, a 

predominantly Democratic urban city or predominantly Republican rural grounds (Chen & 

Rodden, 2013). None of the other metrics discussed in this section account for geopolitical 

makeup either, as they are simply calculated from a given plan without greater context. 
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Researchers have proposed metrics which address this (Herschlag, 2020), but such metrics are 

sparse and not well studied. 

Geometric Compactness 

From the time of Elbridge Gerry’s “salamander”, accusers have pointed to bizarre district 

boundaries as evidence of gerrymandering (Alexeev & Mixon, 2018). In a court case on an 

alleged racial gerrymander, Supreme Court Justices claimed that bizarrely shaped districts 

warrant scrutiny (Shaw v. Reno, 1993). Measures of compactness, those which describe the 

“regularity” of a shape, can be applied these unusual districts. In fact, some states require that 

their districts be compact (Kaufman et al., 2020). Various categories of compactness measures 

have been applied to evaluate redistricting plans. Some of these measures are general-purpose, 

while others were designed particularly for the domain of gerrymandering. 

Since the early 1800s, mathematicians have proposed measures to quantify compactness. 

Historically common approaches to doing this include ratios between perimeter and area, 

comparison with standard shapes such as circles and squares, and the disbursement of area away 

from the shape’s center (Maceachren, 1986). Such measures can be applied in attempts to detect 

partisan gerrymanders. Some researchers have devised metrics particularly for measuring 

gerrymandering to take into account problem-specific factors such as the geopolitical distribution 

of voters  (Fryer & Holden, 2007). 

Another measure of compactness is convexity; a shape is convex if it contains the 

shortest path between any two points within. Many simple shapes such as circles, squares and 

triangles are convex, while irregular shapes tend to be non-convex (Chambers & Miller, 2010). 
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In more recent  years, researchers have measured district convexity by estimating the probability 

that the line between a given pair of points is contained within the district (Chambers & Miller, 

2010; Hodge et al., 2010). Such probabilities can be estimated using computer simulation 

(Hodge et al., 2010). 

 

Figure 2: examples of convex (top) and non-convex (bottom) shapes (Chambers & Miller, 

2010) 

Despite many states requiring their districts be compact, some researchers have 

questioned whether geometric compactness alone is a sufficient measure for detecting 

gerrymandering (Alexeev & Mixon, 2018). Regardless, the issue of manageable standards 

persists, as these states have not yet agreed on how to precisely define and measure compactness. 

Additionally, requiring districts to be compact might disadvantage certain subgroups of voters, 

such as Democratic voters in a city (Vieth et al. v. Jubelirer et al., 2004). Once again, few of 

these measures account for the geopolitical makeup of a region. One might also consider how 

some states are naturally non-compact, such as the state of Maryland. Detecting gerrymandering 

by compactness could be more difficult in such states.  



9 

Computer Simulation 

In light of modern-day computing technologies, it has become common for researchers to 

use computer simulations to study gerrymandering. These simulations generally involve 

generating a large set of possible redistricting plans, observing their properties, and comparing a 

proposed plan to those in the set to determine if it is an outlier with respect to the others. A major 

benefit of using computer simulation versus other metrics in studying gerrymandering is that it 

can account for the geopolitical makeup of voters within a state. By combining historical voting 

data with computer generated redistricting plans, one can study hypothetical election results 

relative to a state’s distribution of voters (Adams & Netznik, 2021). 

Many researchers have used a class of sampling methods known as Markov chain Monte 

Carlo (MCMC) algorithms to generate sets of plans (Barkstrom et al, 2019; Fifield et al., 2020; 

Herschlag et al, 2020). Other algorithms generate plans by selecting random units of a region as 

starting points for districts, connecting adjacent units in such a way that desirable districts are 

constructed (Adams & Netznik, 2021; Chen & Cottrell, 2016; Cirincione et al., 2000). One must 

be cautious that their simulation is efficient, as tasks such as generating sets of district maps can 

be computationally intensive (Fifield, 2020; Barkstrom et al., 2019). Chen’s computer simulation 

played a role in striking down gerrymandered maps in a 2019 court case (Chen, 2017; Common 

Cause et al. v. Lewis et al., 2019). 

Summary 

The last few decades have exhibited a rising concern over the topic of gerrymandering. 

Following the Supreme Court’s historic Rucho v. Common Cause ruling in 2019, along with the 
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continued need for unambiguous and complete measures by which to detect and quantify 

gerrymanders, addressing it has perhaps never been more urgent. But with technology 

advancing, mathematics maturing, and awareness increasing, the issue has never been more 

addressable. Bringing together the resources that we have today, the systematic and academic 

study of gerrymandering is crucial for policymakers to write meaningful and effective 

regulations by which to protect the public from its consequences. 

Prior work on gerrymandering brings about a variety of addressable issues. One of the 

most pressing of these concerns is the creation of a “manageable standard” by which to measure 

a gerrymander in a court setting. Future research could entail creating new metrics, or improving 

others’ metrics, for doing so. Summary metrics could be extended to take a wider variety of 

factors into account. There is also potential for further investigation into geometric compactness 

as it relates to gerrymandering. In the realm of computing, one could work towards creating 

more efficient and more realistic simulations. 
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Chapter 4  
 

Methodology 

We propose a Monte Carlo simulation that can be used to evaluate the results of an 

election. In our previous work (Adams & Netznik, 2021) we devised a simple simulation that 

could randomly generate district maps by connecting adjacent precincts into districts, then create 

a probability distribution for the outcome of an election upon calculating the number of 

Democratic majority and Republican majority districts in each map. Building off this, we will 

revise our simulation to better account for significant redistricting constraints – namely, that 

districts have approximately equal populations, are contiguous, and avoid breaking county lines 

unless necessary. We will then run our simulation on a set of real-world data. By using the 

results of 2016 elections, it should be possible to determine what fair districts are, and how they 

compare to the actual – potentially gerrymandered – districts. 

Original Monte Carlo Simulation 

Our goal is to generate a set of randomly drawn district maps for a given region. The 

basic approach that we will use to achieve this, established in our previous work, is a Monte 

Carlo simulation technique known as bootstrapping. Bootstrapping involves generating random 

values resulting from a process – in our case, the number of districts that each party wins based 

on a randomly drawn district map. Specifically, given the 𝑘𝑡ℎ 𝑛-district map in a sequence of 𝑁 

maps, the number of districts in the map won by each party is represented by the random variable 

𝑋𝑘 = (𝑥𝑘1, 𝑥𝑘2) 
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where 𝑥𝑖 represents the number of districts won by party 𝑖 and 𝑛 = 𝑥1 + 𝑥2. This results in a 

probability distribution with random variables 

𝑋𝑘 = {(0, 𝑛), (1, 𝑛 − 1), … , (𝑛, 0)}. 

The goal of our original simulation, laid out in our previous work, was to generate 𝑛 

redistricting plans (maps). We began by reading in sample data for a region’s electoral precincts. 

We then modeled the precincts as nodes of an initially unconnected graph, and districts as trees 

consisting of connected precincts. To construct the first district, we randomly selected an initial 

precinct as a starting point. We then randomly connected unselected adjacent precincts to the 

district until the district reached a set population threshold. This construction process was 

repeated until 𝑁 districts had been formed. Using the precinct data, we calculated the winning 

party (Republican or Democrat) of each district from each generated map by popular vote, 

storing the number of Republican and Democratic districts resulting from each map. This entire 

process was repeated 𝑛 times, resulting in 𝑛 randomly generated maps (Adams & Netznik, 

2021). 

This bootstrapping procedure provided a simple and practical way to construct the maps; 

however, before applying our simulation to real world data, we need to address a few pitfalls.  

Improvements 

Implementing Redistricting Constraints 

In our original simulation, our only redistricting constraint is that each district is 

contiguous and that all districts have approximately equal populations. We will expand our 
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criteria to better account for senatorial and representative redistricting criteria established in the 

Pennsylvania state constitution: namely, that “unless absolutely necessary no county, city, 

incorporated town, borough, township or ward shall be divided” (PA Const. art. II, § 16). To 

reduce the amount that districts break municipal boundaries, we will attempt to add entire 

counties to districts before adding individual precincts. 

Including All Precincts 

One significant concern with our original simulation is that it does not guarantee that all 

precincts will be connected to form the desired number of contiguous districts. It is likely that 

partially constructed districts and groups of unchosen precincts get “landlocked” by surrounding 

districts. 

In this model, as the simulation runs, if it finds that a district has no more unchosen 

adjacent precincts before reaching the population threshold, the district’s construction process is 

terminated. This resulted in districts with insufficient populations as well as precincts that are not 

appended to any district. 

An approach that we considered for addressing this issue is as follows: once all district 

construction has been terminated, the model begins to cycle through all remaining unchosen 

precincts. If an unchosen precinct is adjacent to a district, it is added to the district. This process 

is repeated until all precincts have been added to one of the districts. 

A problem with this approach is that some districts will likely have significantly higher 

populations than others. To alleviate this, the model begins swapping precincts from 
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overpopulated districts to less populated districts. This continues until the district populations are 

sufficiently balanced. 

This approach is not perfect. It may occur that a district is split by the swapping process. 

Hypothetically, one district could swap a precinct to an adjacent district, followed by a sequence 

of swaps that loops back into the original district, cutting off a portion of the underpopulated 

district. For the swapping process to yield constitutional, contiguous districts, the simulation 

would need a way to detect when continuity is broken, or to anticipate when it will be.  

Another approach we considered was to repeatedly generate maps, only keeping those 

that include all, or nearly all, of the region’s precincts. We ascertained that it would be infeasible 

to generate a fully constructed map without precincts and partially completed districts being 

landlocked by completed districts. Therefore, we chose to use approach but only keeping maps 

with a desired number of fully constructed districts. 

To obtain results using this approach, we will begin by using the repeated map generation 

approach to generate and keep partial maps with nearly all of its districts fully constructed. For 

example, if we are modeling the state of Pennsylvania and desire 18 districts, we could construct 

maps with at least 15 fully constructed and no more than 3 partially constructed districts. We will 

then cycle through each of the unchosen precincts and add them to the partially constructed 

districts. While the final districts will not all be contiguous, the frequency table generated by 

these maps should provide acceptable results.  
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Data 

Our data is part of a dataset from https://github.com/nvkelso/election-geodata, a 

repository containing precinct-level geographic data and vote results for several states. The data 

in the repository has been compiled from a variety of sources including election officials, 

journalists, and the 2010 Census. The particular data for Pennsylvania that we used was obtained 

from https://github.com/nvkelso/election-geodata/tree/master/data/42-

pennsylvania/statewide/2017. This dataset contains a shapefile representing Pennsylvania’s 9152 

precincts with data from the mid-2010s. The relevant data that we will be using includes shape 

data – coordinates for each of Pennsylvania’s precincts – and records for each of Pennsylvania’s 

precincts including county name, population, and number of voters by party for several elections.  

Revised Simulation 

In this section we will outline each aspect of our revised simulation in further detail. Our 

simulation is written in Python; we edited and ran it using PyCharm. 

Object Structures 

We created three Python classes to store data for each of the geographic units accounted 

for in our simulation – districts, counties, and precincts. 

We first instantiate the precinct objects. We assign IDs sequentially. We then obtain 

precinct population, county name, Democratic votes, and Republican votes from the shapefile 

records, where each record pertains to a precinct. Each precinct is stored in a list. 

https://github.com/nvkelso/election-geodata
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Before instantiating the county objects, we collect a list of counties by cycling through 

the shapefile records, collecting each unique county name. To instantiate the county objects, we 

again assign IDs sequentially. We obtain the county name from the list of counties we created 

previously. Each county object also contains a list of its precincts, obtained by scanning the list 

of precinct objects for all precincts that share the county name. County populations, Democratic 

votes, and Republican votes are computed by summing the respective fields from each of the 

precincts within the county. 

 We instantiate districts with a 𝑝ℎ𝑎𝑠𝑒 value of 0; the phase value is 0 if the simulation is 

adding counties to the district, and 1 if adding individual precincts. Each district is also given an 

empty list of precincts and empty sets of choices for the next county or precinct to append. The 

district population, Democratic vote count, and Republican vote count are each set to 0. Each 

district is also given an empty color field (this will be used if plotting districts). Finally, each 

district keeps track of an initially empty current county – this will be relevant in the initial 

district construction process. 

Data Preprocessing  

We preprocessed the data to generate each adjacency list used in the district construction 

process. We generated three adjacency lists – precinct-precinct, county-precinct, and county-

county – each mapping the former units to their adjacent latter units. These lists will be used in 

determining which units can be added next to a district in construction. 

To create the precinct-precinct adjacency list, we obtained precinct latitude-longitude 

coordinates from the shapefile and rounded each to five decimal places to eliminate any existing 
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rounding error. We then stored each precinct’s coordinates in a set and used set intersections to 

determine which precincts contain overlapping coordinates. To construct the county-precinct and 

county-county adjacency lists we cycled through each precinct with its respective precinct 

adjacency list, noting the county associated with each precinct. We used this information to 

construct the lists. The adjacency lists were written to text files, which are read each time the 

simulation is run. 

Initial District Construction  

 Once the data is preprocessed, we enter the main method of the simulation where district 

construction occurs. The main method takes in five parameters: 

• 𝑚: population of the entire region 

• 𝑛: desired number of districts 

• 𝑛𝑢𝑚_𝑟𝑢𝑛𝑠: the number of complete district maps to be generated 

• 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: the minimum population desired for a district – any district with a 

smaller population will be considered incomplete 

• 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑐𝑜𝑢𝑛𝑡: the minimum number of completed districts for a complete map 

The majority of district construction takes place in an initial phase where we apply two methods: 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() and 𝑎𝑑𝑑_𝑢𝑛𝑖𝑡(). To begin the district construction process, we randomly select an 

unchosen precinct and attempt to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() a district with the precinct’s county; if the 

county’s population exceeds the threshold of 𝑚/𝑛, rather than calling 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() with the 

county, we advance to phase 1 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() with the precinct. Once each of the 𝑛 districts has 

been initialized, we continue to cycle through each of them, applying 𝑎𝑑𝑑_𝑢𝑛𝑖𝑡() district-by-
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district. The simulation terminates a district’s construction process when either it’s population 

exceeds the threshold or it fails to identify adjacent unchosen precincts. 

Provided a county (phase 0) or precinct (phase 1), the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() method appends each 

of the provided unit’s precincts to the district’s precinct list, updating the lists of unchosen 

precincts and counties accordingly. It then updates the district’s list of possible next choices for 

adding a precinct (and adding a county, if in phase 0) by pulling the appropriate elements from 

the precinct-precinct and county-precinct adjacency lists, ensuring to only add those elements 

that have not been appended to any district. If in phase 1, the simulation will update the district’s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑢𝑛𝑡𝑦 field. The district’s population, Democratic votes, and Republican votes are 

then updated accordingly.  

Once all districts have been initialized, the simulation begins to apply the 𝑎𝑑𝑑_𝑢𝑛𝑖𝑡() 

method. Provided a district, this method will add an adjacent precinct or county depending on the 

district’s phase. 

In phase 0, the method determines if there are any adjacent counties that can be added to 

the district. If there are none, the district advances to phase 1 and the method returns. Otherwise, 

the method will choose a random adjacent county to append to the district. If the district’s 

population plus the total population of all unchosen precincts in the county exceeds the district’s 

population threshold, the district advances to phase 1 (see below). Otherwise, the county is added 

to the district and the district’s fields are updated accordingly. 

In phase 1, the method determines if there are any unchosen adjacent precincts that can 

be added to the district. If there are none, the district’s initial construction process terminates. 

Otherwise, the simulation randomly chooses an adjacent precinct to add. The simulation will first 

try to choose an adjacent precinct from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑢𝑛𝑡𝑦 - the county that either going into 
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𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() or in a previous application of 𝑎𝑑𝑑_𝑢𝑛𝑖𝑡() could not be appended. If no such 

precinct is available, it will choose a precinct from outside of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑢𝑛𝑡𝑦. If adding this 

precinct would send the district’s population beyond 𝑚/𝑛, the district’s initial construction 

process is terminated; otherwise the precinct is added and the district’s fields are updated 

accordingly. 

Appending Unchosen Precincts  

At this point, each district has either reached its population threshold or has no adjacent 

units to append. To generate a complete map, we must cycle through any remaining unchosen 

precincts and append them to districts.  

The simulation counts the number of districts that have been populated at least to the 

provided minimum district population 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. If this count falls short of the 

minimum number of complete districts desired 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑐𝑜𝑢𝑛𝑡, the initial map is 

discarded and the run is restarted. If all districts have reached the minimum district population, 

each of the remaining unchosen precincts is appended to the district with the smallest initial 

population. Otherwise, the simulation cycles through each of the initially underpopulated 

districts, adding a remaining unchosen precinct each time.  

Creating the Probability Distribution  

Once all precincts have been appended to districts, the map is complete and we can use 

voter data to compute the winning party of each district. To do this, we begin by count the total 

votes for each party by districts then tallying the number of predominantly Democratic and 
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predominantly Republican districts in the map. We then update a list, 𝑑_𝑤𝑖𝑛𝑠, that stores the 

number of times in the sequence of runs that the Democratic party wins 𝑖 of 𝑛 districts at index 𝑖. 

At this point, we repeat the simulation until we have constructed the desired number of complete 

district maps. 

Once all runs are complete, we construct and print a table for the probability distribution 

using the 𝑑_𝑤𝑖𝑛𝑠 list. The first two columns correspond to the number of Democratic and 

Republican districts in a map, respectively. The third column reports the number of times that 

each of those outcomes occurred in the simulation, and the fourth column divides that count by 

the number of maps to obtain a probability. 

Table 1: Structure of probability distribution 

D R F P 

0 𝑛 𝑑_𝑤𝑖𝑛𝑠[0] 𝑑_𝑤𝑖𝑛𝑠[0]/𝑛 

1 𝑛 − 1 𝑑_𝑤𝑖𝑛𝑠[1] 𝑑_𝑤𝑖𝑛𝑠[1]/𝑛 

⋮ ⋮ ⋮ ⋮ 

𝑖 𝑛 − 𝑖 𝑑_𝑤𝑖𝑛𝑠[𝑖] 𝑑_𝑤𝑖𝑛𝑠[𝑖]/𝑛 

⋮ ⋮ ⋮ ⋮ 

𝑛 0 𝑑_𝑤𝑖𝑛𝑠[𝑛] 𝑑_𝑤𝑖𝑛𝑠[𝑛]/𝑛 

Plotting Maps 

Finally, the simulation can plot two types of maps for a run – one being a plot of each 

unique district, and one being a red-blue map showing the geopolitical distribution of a map 

(Republican districts are plotted red and Democratic districts are plotted blue). Using Python’s 

matplotlib library, the simulation loops through a list of districts, plotting each as a color – a 
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randomly chosen color from a list if plotting the unique districts, and red or blue if plotting the 

geopolitical distribution. 
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Chapter 5  
 

Results 

2016 U.S. House of Representatives Election 

We simulated Pennsylvania’s 2016 U.S. House of Representatives election. We used total 

population 𝑚 = 12732284, number of districts 𝑛 = 18, number of runs 𝑛𝑢𝑚_𝑟𝑢𝑚𝑠 = 100, 

minimum initial district population 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 670000 (roughly 95% of 𝑚/𝑛), 

and minimum complete district count 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 = 15. We also plotted a district 

map and a red-blue map. The results are presented below. 

Table 2: Results of simulation for 2016 U.S. House of Representatives Election 

𝐃 𝐑 𝐅 𝐏 
0 18 0 0 
1 17 0 0 
2 16 0 0 
3 15 3 0.03 
4 14 21 0.21 
5 13 42 0.42 
6 12 28 0.28 
7 11 6 0.06 
8 10 0 0 
⋮ ⋮ ⋮ ⋮ 
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Figure 3: Sample district plot for 2016 U.S. House of Representatives 

 

Figure 4: Sample red-blue plot for 2016 U.S. House of Representatives 
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2016 State House Election 

We simulated Pennsylvania’s 2016 State House election. We used total population 𝑚 =

12732284, number of districts 𝑛 = 203, 𝑛𝑢𝑚_𝑟𝑢𝑛𝑠 = 100, minimum initial district population 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  40000, and minimum complete district count 𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 

=  160. We also plotted a district map and a red-blue map. The results are presented below.  

Table 3: Results of simulation for 2016 State House Election 

D R F P 

0 203 0 0 

⋮ ⋮ ⋮ ⋮ 
74 129 0 0 

75 128 1 0.01 

76 127 0 0 

77 126 3 0.03 

78 125 2 0.02 

79 124 3 0.03 

80 123 9 0.09 

81 122 7 0.07 

82 121 6 0.06 

83 120 16 0.16 

84 119 8 0.08 

85 118 4 0.04 

86 117 13 0.13 

87 116 5 0.05 

88 115 7 0.07 

89 114 5 0.05 

90 113 4 0.04 

91 112 1 0.01 

92 111 3 0.03 

93 110 1 0.01 

94 109 2 0.02 

95 108 0 0 

⋮ ⋮ ⋮ ⋮ 
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Figure 5: Sample district plot for 2016 State Senate 

 

Figure 6: Sample red-blue plot for 2016 State Senate 
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Interpretation of Results 

The 2016 U.S. House of Representatives election resulted in 5 Democratic and 13 

Republican seats (2016 Pennsylvania House Election Results, n.d.). With a 0.05 level of 

significance, we can expect a fair district map to contain between (3D, 15R) and (7D, 11R) 

districts, inclusive. The 2016 U.S. House of Representatives election was fair according to our 

results. 

The 2016 State House election resulted in 82 Democratic and 121 Republican seats 

(Pennsylvania House of Representatives elections, 2016, n.d.). With a 0.05 level of significance, 

we can expect a fair district map to contain between (77D, 126R) and (93D, 110R) districts 

inclusive. Pennsylvania’s 2016 State Senate election was fair according to our results. 

Limitations 

Note that these conclusions assume that our model is generating a representative sample 

of possible district maps. Due to Pennsylvania’s redistricting constraints that we enforced and 

various decisions we made regarding how our algorithm generates maps, the possible maps 

generated by our model are limited. Additionally, these conclusions assume that the probability 

distribution generated by the sample of maps is the same as the probability distribution for all 

possible maps. 

We note that the simulated results for the 2016 U.S. House of Representatives lean 

heavily in favor of the Republican party. There are two possible theories for this. The first theory 

is that this results from a pitfall in our simulation. Because our simulation attempts to add 

counties before individual precincts, and Republican-leaning counties have smaller populations 
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than Democratic-leaning counties, Republican districts are constructed more quickly and 

landlock Democratic districts. These Democratic districts terminate early, and surrounding 

Democratic voters end up packed into surrounding Republican districts. We believe that this 

theory is a probable explanation for our results. 

 An alternative theory, which could hold true in addition to the first, is that the large 

Republican district count results from a natural “packing” affect that arises from Pennsylvania’s 

geopolitical makeup in conjunction with the nature of districting. When one follows the PA 

Constitution redistricting constraints of not crossing county and municipal lines unless necessary, 

it is inevitable that some counties and municipalities are too populated to fit entirely into one 

district. These highly populated counties and municipalities tend to be highly Democratic. Thus, 

they are split between districts, and Democratic voters are packed into Republican districts. This 

is expected to occur in any constitutional district map, even one that is not intentionally 

gerrymandered. 
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Chapter 6  
 

Conclusions 

 Politicians and academic researchers alike have spent several years considering how to 

define a manageable standard for evaluating alleged partisan gerrymanders. We addressed this 

matter by designing and implementing a computer simulation that randomly generates a set of 

district maps that conform reasonably to several state and federal guidelines, counts the number 

of Democratic majority and Republican majority districts in each map, and complies these counts 

into a probability distribution by which a real-world election result can be evaluated against. Our 

model showed that both Pennsylvania’s 2016 U.S. House of Representatives election and 

Pennsylvania’s 2016 State House election were fair, and thus their associated district maps were 

not gerrymandered. 

 However, our model does have a few limitations. First, though we assume that the district 

maps our model generates represent the population of all possible maps, the possible maps 

generated by our simulation are constrained. We also assume that the probability distribution 

generated by these maps represents the probability distribution generated by all possible maps. In 

addition, some districts get landlocked before completion, resulting in non-contiguous districts 

and the possible packing of Democratic voters into surrounding Republican counties. 

Future research could further address the limitation of districts being landlocked before 

completion. A particularly promising direction would be constructing districts using a “top-

down” approach. Beginning with an entire state, use 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() and 𝑎𝑑𝑑_𝑢𝑛𝑖𝑡() to divide the 

state into two or three districts. We have found that it is not difficult to generate fully populated, 

contiguous maps with so few districts. From here, apply 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() and 𝑎𝑑𝑑_𝑢𝑛𝑖𝑡() to each of 

these subdivisions, dividing each of them into another two or three districts. If one chooses an 
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appropriate number of subdivisions at each step, they could continue this process until they have 

constructed the precise number of districts that they desire. For example, if generating 18 

congressional districts, the state of Pennsylvania could be divided into two districts, each of 

those into three, and each of those into three. For a desired number of districts that cannot be 

factored into such small numbers, simply generate scattered initial districts until the remaining 

number of districts can be broken down. For example, if one desires 19 districts, one can create 

one district as presented in our methodology, then divide the remainder of the state into the 

remaining 18 districts by the process described above. This process would allow for the 

construction of complete district maps with exclusively contiguous districts. This would also 

address our theory that voters surrounding landlocked districts get packed into surrounding 

districts controlled by their opposing party. 

Another direction could be to apply the “swapping” approach for appending remaining 

precincts, exploring graph-theoretic techniques for detecting when a swap would break 

continuity. One could also use demographic data to investigate racial gerrymandering. One could 

also apply our simulation in conjunction with other existing measures, such as the efficiency gap 

or measures of compactness.  
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Appendix A 

 

Code for Preprocessing Data 

import shapefile 
 

class County: 

    def __init__(self): 
        self.id = -1 

        self.name = "" 

        self.precincts = [] 
        self.population = 0 

        self.d_votes = self.r_votes = 0 

 
class Precinct: 

    def __init__(self): 

        self.id = -1 
        self.population = 0 

        self.county_name = "" 

        self.district = None 
        self.d_votes = self.r_votes = 0 

 

sf = shapefile.Reader("C:/Users/nhnet/Documents/College/Honors Thesis/Data Sources/VTDs_Oct17 (Precinct Shapefiles)/VTDs_Oct17.shp") 
shapes = sf.shapes() 

records = sf.records() 
 

p_adjacency = {i: [] for i in range(len(shapes))} 

 
# Round points to 5 decimal places 

p = [[] for i in range(len(shapes))] 

for i in range(len(shapes)): 
    for j in range(len(shapes[i].points)): 

        p[i].append(tuple([round(shapes[i].points[j][0], 5), round(shapes[i].points[j][1], 5)])) 

 
# Store points as sets and use set intersections to determine if two districts 

# are adjacent 

points = [set(p[i]) for i in range(len(p))] 
 

county_list = set() 

for i in range(len(records)): 
    county_list.add(records[i][23]) 

county_list = list(county_list) 

 
county_list.sort() 

 

# Initialize precinct and county objects 
precincts = [Precinct() for i in range(len(records))] 

counties = [County() for county in county_list] 

 
for i in range(len(precincts)): 

    precincts[i].id = i 

    precincts[i].population = records[i][4] 
    precincts[i].county_name = records[i][23] 

    precincts[i].d_votes = records[i][39] 

    precincts[i].r_votes = records[i][40] 
 

for i in range(len(county_list)): 

    counties[i].id = i 
    counties[i].name = county_list[i] 

    counties[i].precincts = [p for p in precincts if records[p.id][23] == counties[i].name] 

    counties[i].population = sum([p.population for p in counties[i].precincts]) 
    counties[i].d_votes = sum([p.d_votes for p in counties[i].precincts]) 

    counties[i].r_votes = sum([p.r_votes for p in counties[i].precincts]) 
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for i in range(len(shapes)): 
    for j in range(i + 1, len(shapes)): 

        if points[i].intersection(points[j]) != set(): 

            p_adjacency[i].append(j) 
            p_adjacency[j].append(i) 

 

#https://stackoverflow.com/questions/36965507/writing-a-dictionary-to-a-text-file 
with open('precincts.txt', 'w') as f: 

    print(precincts, file=f) 

 
with open('counties.txt', 'w') as f: 

    print(counties, file=f) 

 
with open('p_adjacency.txt', 'w') as f: 

    print(p_adjacency, file=f) 

 
county_ind = {c.name: c.id for c in counties} 

 

with open('county_ind.txt', 'w') as f: 
    print(county_ind, file=f) 

 

c_c_adjacency = {c.id: set() for c in counties} 
c_p_adjacency = {c.id: set() for c in counties} 

for p1 in p_adjacency: 
    for p2 in p_adjacency[p1]: 

        if p1 != p2: 

            if records[p1][23] != records[p2][23]: 
                c_c_adjacency[county_ind[records[p1][23]]].add(county_ind[records[p2][23]]) 

                c_p_adjacency[county_ind[records[p1][23]]].add(p2) 

 
for c in counties: 

    c_c_adjacency[c.id] = list(c_c_adjacency[c.id]) 

    c_p_adjacency[c.id] = list(c_p_adjacency[c.id]) 
 

with open('c_c_adjacency.txt', 'w') as f: 

    print(c_c_adjacency, file=f) 

 

with open('c_p_adjacency.txt', 'w') as f: 

    print(c_p_adjacency, file=f) 
 

if __name__ == "__main__": 

    print() 
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Appendix B 

 

Code for U.S. House of Representatives Election Simulation 

""" 
Goal: Create a Monte Carlo simulation to generate a discrete probability distribution for 

the number of Democrat and Republican districts in an election with a randomly drawn map 

""" 
 

# Source used for syntax:: https://docs.python.org/3/ 

 
import ast 

import matplotlib.pyplot as plt 

import random as rand 
import shapefile 

 

class District: 
    def __init__(self): 

        self.complete = False 

        self.phase = 0       # 0 if adding counties, 1 if adding precincts 
        self.precincts = [] 

        self.c_choices = set() 

        self.p_choices = set() 
        self.population = 0 

        self.d_votes = 0 
        self.r_votes = 0 

        self.color = "" 

        self.current_county = County() 
 

class County: 

    def __init__(self): 
        self.id = -1 

        self.name = "" 

        self.precincts = [] 
        self.population = 0 

        self.d_votes = self.r_votes = 0 

 
class Precinct: 

    def __init__(self): 

        self.id = -1 
        self.population = 0 

        self.county_name = "" 

        self.district = None 
        self.d_votes = self.r_votes = 0 

         

n = 18 
 

sf = shapefile.Reader("C:/Users/nhnet/Documents/College/Honors Thesis/Data Sources/VTDs_Oct17 (Precinct Shapefiles)/VTDs_Oct17.shp") 

shapes = sf.shapes() 
records = sf.records() 

 

# Create initial list of counties 
county_list = set() 

for i in range(len(records)): 

    county_list.add(records[i][23]) 
county_list = list(county_list) 

 

county_list.sort() 
 

# Initialize precinct and county objects 

precincts = [Precinct() for i in range(len(records))] 
counties = [County() for county in county_list] 

 

for i in range(len(precincts)): 
    precincts[i].id = i 
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    precincts[i].population = records[i][4] 
    precincts[i].county_name = records[i][23] 

    precincts[i].d_votes = records[i][39] 

    precincts[i].r_votes = records[i][40] 
 

for i in range(len(county_list)): 

    counties[i].id = i 
    counties[i].name = county_list[i] 

    counties[i].precincts = [p for p in precincts if records[p.id][23] == counties[i].name] 

    counties[i].population = sum([p.population for p in counties[i].precincts]) 
    counties[i].d_votes = sum([p.d_votes for p in counties[i].precincts]) 

    counties[i].r_votes = sum([p.r_votes for p in counties[i].precincts]) 

 
# Read in preprocessed  files 

#https://www.kite.com/python/answers/how-to-read-a-dictionary-from-a-file-in--python 

 
file = open("county_ind.txt", "r") 

contents = file.read() 

county_ind = ast.literal_eval(contents) 
file.close() 

 

file = open("c_c_adjacency.txt", "r") 
contents = file.read() 

c_c_adjacency = ast.literal_eval(contents) 
file.close() 

 

file = open("c_p_adjacency.txt", "r") 
contents = file.read() 

c_p_adjacency = ast.literal_eval(contents) 

file.close() 
 

file = open("p_adjacency.txt", "r") 

contents = file.read() 
p_adjacency = ast.literal_eval(contents) 

file.close() 

 

def main(m, n, num_runs, complete_threshold, min_complete_count): 

    ''' 

    Conducts the simulation 
        m: population size of region 

        n: desired number of districts 

        num_runs: number of runs used to construct probability distribution 
        complete_threshold: minimum population for a district to be considered complete before appending leftover precincts 

        min_complete_count: number of contiguous districts desired 

    ''' 
 

    # Stores the number of runs in which the Democratic party wins k out of n districts 

    # This will be used to generate the probability distribution 
    d_wins = {k: 0 for k in range(n + 1)} 

 

    j = 0 
    while j < num_runs: 

        c_adj = {} 

        c_p_adj = {} 

        p_adj = {} 

         

        for p in precincts: 
            p.district = None 

 

        # Keeps track of unchosen counties/precincts respectively 
        c_unchosen = [c.id for c in counties] 

        unchosen = [p.id for p in precincts] 

 
        # Copy in contents of the adjacency lists at the beginning of each run 

        for c in counties: 

            c_adj[c.id] = c_c_adjacency[c.id].copy() 
            c_p_adj[c.id] = c_p_adjacency[c.id].copy() 

        for p in precincts: 
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            p_adj[p.id] = p_adjacency[p.id].copy() 
 

        # Initialize the districts 

        districts = [District() for i in range(n)] 
        for d in districts: 

            p = rand.choice(unchosen) 

            node = counties[county_ind[precincts[p].county_name]] 
 

            if node.population > m/n: 

                d.phase = 1 
                node = precincts[p] 

 

            initialize(counties, d, node, c_unchosen, unchosen, c_adj, c_p_adj, p_adj) 
 

        # Continue district construction 

        complete = True 
        for d in districts: 

            if not d.complete: 

                complete = False 
        while not complete: 

            for d in districts: 

                if not d.complete: 
                    add_unit(districts, d, c_unchosen, unchosen, c_adj, c_p_adj, p_adj, m, n) 

            complete = True 
            for d in districts: 

                if not d.complete: 

                    complete = False 
 

        # Append remaining precincts 

        count = len([d for d in districts if d.population > complete_threshold]) 
        min_pop = min([d.population for d in districts]) 

        if count >= min_complete_count: 

            remaining = [] 
            remaining += unchosen 

            new_dist = [d for d in districts if d.population < complete_threshold] 

 

            new_dist_ind = [districts.index(d) for d in districts if d.population < complete_threshold] 

 

            # If all districts are sufficiently populated, pick district with minimum population to add remaining precincts to 
            if not new_dist: 

                min_dist = districts[0] 

                for d in districts: 
                    if d.population < min_dist.population: 

                        min_dist = d 

                d = min_dist 
                while remaining: 

                    precinct = precincts[remaining[0]] 

                    d.precincts.append(precinct.id) 
                    d.population += precinct.population 

                    d.d_votes += precinct.d_votes 

                    d.r_votes += precinct.r_votes 
                    remaining = remaining[1:] 

 

            # If any districts are not sufficiently populated, cycle through these and add remaining precincts 

            while remaining: 

                for d in new_dist: 

                    precinct = precincts[remaining[0]] 
                    d.precincts.append(precinct.id) 

                    d.population += precinct.population 

                    d.d_votes += precinct.d_votes 
                    d.r_votes += precinct.r_votes 

                    remaining = remaining[1:] 

 
                    if not remaining: 

                        break 

            for i in range(len(new_dist)): 
                districts[new_dist_ind[i]] = new_dist[i] 
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            # A dictionary containing total R and total D votes per district 
            count_by_district = get_party_count_by_district(districts) 

 

            # A dictionary {'R': r_votes_in_region, 'D':d_votes_in_region} 
            region_count = get_region_count(count_by_district) 

 

            # Add one win to d_wins list at proper index 
            d_wins[region_count['D']] += 1 

 

            j += 1 
 

    print_table(d_wins, n, num_runs) 

 
    return districts 

 

# Initializes given district object with chosen precinct or county 
def initialize(counties, d, node, c_unchosen, unchosen, c_adj, c_p_adj, p_adj): 

    if d.phase == 0: 

        for precinct in [p for p in node.precincts]: 
            precinct.district = d 

            d.precincts.append(precinct.id) 

            unchosen.remove(precinct.id) 
 

        c_unchosen.remove(node.id) 
 

        d.c_choices = {x for x in d.c_choices if x != node.id} 

        d.c_choices = d.c_choices.union(set(c_adj[node.id])).intersection(set(c_unchosen)) 
 

        d.p_choices = {x for x in d.p_choices if x in unchosen} 

        d.p_choices = d.p_choices.union(set(c_p_adj[node.id])).intersection(set(unchosen)) 
         

        d.population += node.population 

        d.d_votes += counties[node.id].d_votes 
        d.r_votes += counties[node.id].r_votes 

         

    elif d.phase == 1: 

        d.precincts.append(node.id) 

        node.district = d 

        unchosen.remove(node.id) 
 

        d.current_county = counties[county_ind[node.county_name]] 

 
        d.p_choices = {x for x in d.p_choices if x != node.id} 

        d.p_choices = d.p_choices.union(set(p_adj[node.id])).intersection(set(unchosen)) 

 
        d.population += node.population 

        d.d_votes += precincts[node.id].d_votes 

        d.r_votes += precincts[node.id].r_votes 
 

# Used in construction process to add new counties or precincts to districts 

def add_unit(districts, d, c_unchosen, unchosen, c_adj, c_p_adj, p_adj, tot_population, num_districts): 
    if d.phase == 0: 

        # Take intersection with c_unchosen to remove any choices taken by previous districts 

        d.c_choices = d.c_choices.intersection(set(c_unchosen)) 

        if d.c_choices == set(): 

            d.phase = 1 

            return 
 

        node = counties[rand.choice(tuple(d.c_choices))] 

        pop = sum([p.population for p in node.precincts if p.id in unchosen]) 
        if pop + d.population > tot_population/num_districts: 

            d.current_county = node 

            d.phase = 1 
 

        if d.phase == 0: 

            for precinct in [p for p in node.precincts if p.id in unchosen]: 
                precinct.district = d 

                d.precincts.append(precinct.id) 
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                unchosen.remove(precinct.id) 
 

            c_unchosen.remove(node.id) 

 
            d.c_choices.remove(node.id) 

            d.c_choices = d.c_choices.union(set(c_adj[node.id])).intersection(set(c_unchosen)) 

 
            d.p_choices = {x for x in d.p_choices if x in unchosen} 

            d.p_choices = d.p_choices.union(set(c_p_adj[node.id])).intersection(set(unchosen)) 

             
            d.population += pop 

            d.d_votes += counties[node.id].d_votes 

            d.r_votes += counties[node.id].r_votes 
 

    elif d.phase == 1: 

        # Take intersection with unchosen to remove any choices taken by previous districts 
        d.p_choices = d.p_choices.intersection(set(unchosen)) 

        if d.p_choices == set(): 

            d.complete = True 
            return 

 

        from_county = [p for p in d.p_choices if precincts[p].county_name == d.current_county.name] 
        if from_county: 

            node = precincts[rand.choice(tuple(from_county))] 
        else: 

            node = precincts[rand.choice(tuple(d.p_choices))] 

 
        if precincts[node.id].population + d.population > tot_population/num_districts: 

            d.complete = True 

         
        if not d.complete: 

            d.precincts.append(node.id) 

            node.district = d 
            unchosen.remove(node.id) 

 

            d.p_choices = {x for x in d.p_choices if x != node.id} 

            d.p_choices = d.p_choices.union(set(p_adj[node.id])).intersection(set(unchosen)) 

 

            d.population += node.population 
 

            d.d_votes += precincts[node.id].d_votes 

            d.r_votes += precincts[node.id].r_votes 
 

def get_party_count_by_district(districts): 

    ''' 
    Taking in a list of districts, returns a dictionary with keys corresponding 

    to districts and values that are lists containing total R votes, D votes 

    ''' 
    return {districts.index(d):[d.r_votes, d.d_votes] for d in districts} 

     

def get_region_count(count_by_district): 
    ''' 

    Taking in R and D count by district, returns a dictionary containing 

    total R and D count for the region (all districts) 

    ''' 

    region_count = {'R':0, 'D':0} 

    for d in count_by_district.keys(): 
        if count_by_district[d][0] > count_by_district[d][1]: 

            region_count['R'] += 1 

        elif count_by_district[d][0] < count_by_district[d][1]: 
            region_count['D'] += 1 

     

    return region_count 
 

def print_table(d_wins, n, num_runs): 

    ''' 
    Prints the frequency table 
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    Notice that: 
        i: number of D wins in a run 

        n - i: number of R wins in a run 

        d_wins[i]: frequency (number of times democrats had 'i' wins) 
        d_wins[i]/num_runs: probability 

    ''' 

    print('D\t\t\tR\t\t\tF\t\t\tP') 
    for i in range(len(d_wins)): 

        print('{}\t\t\t{}\t\t\t{}\t\t\t{}'.format(i,n-i,d_wins[i],d_wins[i]/num_runs)) 

 
def plot_map(districts): 

    ''' 

    Plots districts 
    ''' 

    # plot generation code: https://gis.stackexchange.com/questions/131716/plot-shapefile-with-matplotlib 

    plt.figure() 
 

    colors = ["#000000","#4E321D","#C48B5F","#366C28","#87ED6E","#cc1919","#FF0F0F","#FF8FCE", "#80007D", "#FFB3FE", 

"#8C8C8C", 
              "#8A0000","#FF531A","#1A21FF","#00058F","#8F93FF","#A38000","#FFFF00"] 

 

    print() 
    print("Plotting districts...") 

     
    num_precincts = sum([len(d.precincts) for d in districts]) 

    print(num_precincts) 

    for j in range(len(districts)): 
        col_idx = j % 18 

        d = districts[j] 

        choice = colors[col_idx] 
        d.color = choice 

        for precinct in d.precincts: 

            shape = sf.shapeRecords()[precinct] 
            x = [i[0] for i in shape.shape.points[:]] 

            y = [i[1] for i in shape.shape.points[:]] 

            plt.plot(x,y, color=choice, linewidth=0.5) 

    plt.show() 

 

 
def plot_map_party(districts): 

    ''' 

    Plots red-blue party map based on district winners 
    ''' 

    # plot generation code: https://gis.stackexchange.com/questions/131716/plot-shapefile-with-matplotlib 

    plt.figure() 
 

    print() 

    print("Plotting districts...") 
 

    num_precincts = sum([len(d.precincts) for d in districts]) 

    print(num_precincts) 
    for j in range(len(districts)): 

        d = districts[j] 

        choice = "#0000FF" 

        if d.d_votes < d.r_votes: 

            choice = "#FF0000" 

        d.color = choice 
        for precinct in d.precincts: 

            shape = sf.shapeRecords()[precinct] 

            x = [i[0] for i in shape.shape.points[:]] 
            y = [i[1] for i in shape.shape.points[:]] 

            plt.plot(x, y, color=choice, linewidth=0.5) 

    plt.show() 
 

if __name__ == "__main__": 

    ''' 
    Creating distribution for 2016 congressional election with  

        m: population of Pennsylvania (sum of population of precincts), 



38 
        n: 18 districts, 
        num_runs: 100, 

        complete_threshold: 670000 (roughly 80% of m/n) 

        min_complete_count: 15 districts 
    ''' 

    dist = main(m = 12732284, n = 18, num_runs = 100, complete_threshold=670000, min_complete_count=15) 

    plot_map(dist) 
    plot_map_party(dist) 

 

  



39 

BIBLIOGRAPHY 

2016 Pennsylvania House Election Results. Politico. (n.d.). Retrieved March 30, 2022, from 

https://www.politico.com/2016-election/results/map/house/pennsylvania/  

Adams, B. & Netznik, N. (2021). Monte Carlo Simulation to Estimate Probability Distributions 

of Party Representation in Political Redistricting. Proceedings of the Northeast Decision 

Sciences Institute  

Alexeev, B., & Mixon, D.G. (2018). Partisan gerrymandering with geographically compact 

districts. Journal of Applied Probability, 55, 1046-1059. doi: 10.1017/jpr.2018.70   

Barkstrom, J., Dalvi, R., & Wolfram, C. (2018). Detecting gerrymandering with probability: A 

markov chain monte carlo model. (Unpublished paper)  

Chambers, C. P. & Miller, A. D. (2010). A Measure of Bizarreness. Quarterly Journal of 

Political Science, 5(1), 27-44. doi:http://dx.doi.org/10.1561/100.00009022  

Chatterjee, T., DasGupta, B., Palmieri, L., Al-Qurashi, Z., & Anastasios, S. (2020). On 

theoretical and empirical algorithmic analysis of the efficiency gap measure in partisan 

gerrymandering. Journal of Combinatorial Optimization, 40, 512-

546. doi:https://doi.org/10.1007/s10878-020-00589-x   

Chen, J. (2017). The Impact of Political Geography on Wisconsin Redistricting: An Analysis of 

Wisconsin’s Act 43 Assembly Districting Plan. Election Law Journal, 16(4), 443-452. 

doi:10.1089/elj.2017.0455  

Chen, J. & Cottrell, D. (2016). Evaluating partisan gains from Congressional gerrymandering: 

Using computer simulations to estimate the effect of gerrymandering in the U.S. House. 

Electoral Studies, 44, 329-340. doi:https://doi.org/10.1016/j.electstud.2016.06.014  

https://doi.org/10.1007/s10878-020-00589-x


40 

Chen, J., & Rodden, J. (2013). Unintentional Gerrymandering: Political Geography and Electoral 

Bias in Legislatures. Quarterly Journal of Political Science, 8, 239-269. 

doi:10.1561/100.00012033  

Cirincione, C., Darling, T. A., O’Rourke, T. G. (2000). Assessing South Carolina’s 1990s 

congressional redistricting. Political Geography, 19, 189-211. 

doi:https://doi.org/10.1016/S0962-6298(99)00047-5  

Common Cause et al. v. Lewis et al. (2019). https://www.nccourts.gov/assets/inline-files/18-

CVS-14001_Final-Judgment.pdf?Bwsegeo1VV20zhJsp9hoClvmoRp3A6AR  

Cooper, W., Seiford, L., & Zhu, Joe. (2011). Data Envelopment Analysis: History, Models, and 

Interpretations. doi:10.1007/978-1-4419-6151-8_1  

Cotz, G. W. & Katz, J. N. Elbridge Gerry’s salamander: The electoral consequences of the 

reapportionment revolution. Cambridge University Press.  

Criss, D. (2019, June 27). Gerrymandering – explained. CNN. 

https://www.cnn.com/2019/06/27/politics/what-is-gerrymandering-trnd  

Davis et al. v. Bandemer et al., 478 U.S. 109 (1986). https://tile.loc.gov/storage-

services/service/ll/usrep/usrep478/usrep478109/usrep478109.pdf  

Fifield, B., Higgins, M., Imai, K. & Tarr, A. (2020). Automated Redistricting Simulation Using 

Markov Chain Monte Carlo. Journal of Computational and Graphical Statistics, 29(4), 

715-728. doi:10.1080/10618600.2020.1739532  

Fryer, R. G., Jr., & Holden, R. (2011). Measuring the Compactness of Political Districting Plans. 

The Journal of Law & Economics, 54(3), 493-535. doi:10.1086/661511  

https://www.nccourts.gov/assets/inline-files/18-CVS-14001_Final-Judgment.pdf?Bwsegeo1VV20zhJsp9hoClvmoRp3A6AR
https://www.nccourts.gov/assets/inline-files/18-CVS-14001_Final-Judgment.pdf?Bwsegeo1VV20zhJsp9hoClvmoRp3A6AR
https://tile.loc.gov/storage-services/service/ll/usrep/usrep478/usrep478109/usrep478109.pdf
https://tile.loc.gov/storage-services/service/ll/usrep/usrep478/usrep478109/usrep478109.pdf


41 

Herschlag, G., Kang, H. S., Luo, J., Graves, C. V., Bangia, S., Ravier, R., & Mattingly, J. C. 

(2020). Quantifying Gerrymandering in North Carolina. Statistics and Public Policy, 

7(1), 30-38. doi:https://doi.org/10.1080/2330443X.2020.1796400   

Hodge, J. K., Marshall, E., & Patterson, G. (2010). Gerrymandering and Convexity. College 

Mathematics Journal, 41(4), 312-324. doi:10.4169/074683410X510317  

Kang, M. S. (2020). Hyperpartisan Gerrymandering. Boston College Law Review, 61(4), 1379- 

1445. https://lawdigitalcommons.bc.edu/bclr/vol61/iss4/4   

Kaufman, A., King, G. & Komisarchik, M. (2020). How to measure legislative district 

compactness if you only know it when you see it. (Unpublished paper).  

League of United Latin American Citizens v. Perry, 548 U. S. ____ (2006).  

League of Women Voters of Pennsylvania et al. v. the Commonwealth of Pennsylvania et 

al.  (2018). http://www.pacourts.us/assets/files/setting-6061/file-6852.pdf?cb=df65be   

Maceachren, A. (1985). Compactness of Geographic Shape: Comparison and Evaluation of 

Measures. Geografiska Annaler. Series B, Human Geography, 67(1), 53-67. 

doi:10.2307/490799  

Merriam-Webster (n.d.). Gerrymandering. In Merriam-Webster.com dictionary. Retrieved March 

24, 2021, from https://www.merriam-webster.com/dictionary/gerrymandering  

Miller et al. v. Johnson et al., 515 U.S. 900 (1995). https://tile.loc.gov/storage-

services/service/ll/usrep/usrep515/usrep515900/usrep515900.pdf  

PA Const. art. II, § 16  

PA Const. art. II, § 17  

https://doi.org/10.1080/2330443X.2020.1796400
https://lawdigitalcommons.bc.edu/bclr/vol61/iss4/4
http://www.pacourts.us/assets/files/setting-6061/file-6852.pdf?cb=df65be
https://tile.loc.gov/storage-services/service/ll/usrep/usrep515/usrep515900/usrep515900.pdf
https://tile.loc.gov/storage-services/service/ll/usrep/usrep515/usrep515900/usrep515900.pdf


42 

Pennsylvania House of Representatives elections, 2016. Ballotpedia. (n.d.). Retrieved March 30, 

2022, from 

https://ballotpedia.org/Pennsylvania_House_of_Representatives_elections,_2016  

Reynolds et al. Sims et al., 377 U.S. 533 (1964). 

Rucho et al. v. Common Cause et al., 588 U.S. ____ (2019). 

https://www.supremecourt.gov/opinions/18pdf/18-422_9ol1.pdf   

Shaw et al. v. Reno et al., 509 U.S. 630 (1993).  

Stephanopoulos, N., & McGhee, E. (2015). Partisan Gerrymandering and the Efficiency Gap. 

The University of Chicago Law Review, 82(2), 831-900. Retrieved March 9, 2021, from 

http://www.jstor.org/stable/43410706  

Tapp, K. (2019) Measuring Political Gerrymandering. The American Mathematical Monthly, 

126(7), 593-609, doi: 10.1080/00029890.2019.1609324  

U.S. Const. art. I, § 2  

Vieth et al. v. Jubelirer et al., 541 U. S. ____ (2004). 

https://www.supremecourt.gov/opinions/03pdf/02-1580.pdf  

Voting Rights Act of 1965, 52 U.S.C. §10101 et seq. (1965).  

Wang, S. S. H. (2016). Three tests for practical evaluation of partisan gerrymandering. Stanford 

Law Review, 68(6), 1263-1289. 

https://link.gale.com/apps/doc/A460507850/LT?u=carl39591&sid=LT&xid=ad257f5e   

Whitford et al. v. Gill et al. (2016). http://www.lb7.uscourts.gov/documents/16-1161-op-bel-dist-

ct-wisc.pdf  

 

  

https://www.supremecourt.gov/opinions/18pdf/18-422_9ol1.pdf
http://www.jstor.org/stable/43410706
https://www.supremecourt.gov/opinions/03pdf/02-1580.pdf
https://link.gale.com/apps/doc/A460507850/LT?u=carl39591&sid=LT&xid=ad257f5e
http://www.lb7.uscourts.gov/documents/16-1161-op-bel-dist-ct-wisc.pdf
http://www.lb7.uscourts.gov/documents/16-1161-op-bel-dist-ct-wisc.pdf


 
ACADEMIC VITA 

 
Education:   

Bachelor of Science Degree in Mathematical Sciences, Penn State Harrisburg, Spring 

2022  
Bachelor of Science Degree in Computer Science, Penn State Harrisburg, Spring 2022  
Honors in Mathematical Sciences  

Thesis Title: Evaluating Redistricting in Pennsylvania using Monte Carlo Simulation  
Thesis Supervisor: Dr. J. Brian Adams  
Faculty Reader: Dr. Jeremy Blum 

Honors Adviser: Dr. Ronald Walker  
  
Experience:  

Peer Tutoring, Russell E. Horn Sr. Learning Center, Fall 2019 – Spring 2022  
      Supervisor: Lainey Schock  
Ohio State University MBI REU Program, Summer 2020  

Supervisors: Dr. Enkeleida Lushi, Dr. Kristen Severi  
Honors Service Learning at WE cARE Food Pantry, Fall 2021  

Supervisor: Ashley Schools  
  
Awards:  

Dean’s List, Fall 2017 – Spring 2022  
President’s Freshman Award, Spring 2018  
Mathematical Science Outstanding Undergraduate Student Award, Spring 2022  

  
Activities/Presentations:  

Pi Mu Epsilon (Vice President), Upsilon Pi Epsilon, Phi Kappa Phi  
Presenter, Paper titled “Monte Carlo Simulation to Estimate Probability Distributions of 

Party Representation in Political Redistricting”, Northeast Decision Sciences Institute 

2021 conference  
Co-author, Paper titled “Estimating the Probability Distribution of Party Representation 

as a Result of Political Redistricting Using a Random Walk Monte Carlo Technique”, 

Journal of Management Policy and Practice, Summer 2021 


