
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

Department of Mechanical Engineering

Brain Impact Analysis from Overpressure Sources Through Machine Learning Based on
Explosion Simulations and Wearable Blast Gauges

JACKSON MACKAY

SPRING 2022

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree
in Mechanical Engineering

with honors in Mechanical Engineering

Reviewed and approved* by the following:

Reuben H. Kraft
Associate Professor of Mechanical Engineering

Thesis Supervisor

Daniel Cortes
Assistant Professor of Mechanical Engineering

Honors Advisor

* Electronic approvals are on file.

i

ABSTRACT

Wearable sensors gauges are increasing in demand to be worn by soldiers in combat in

order to track the overpressures that they experience. These sensors create the potential to

analyze blast overpressures and their effects on the brain. One company, BlackBox Biometrics,

have popularized these wearable gauges with sets of three typically being worn on the chest, one

shoulder and the back of soldier’s helmets. The problem with this is that the overpressure data is

tracked at these locations, and not the face which is needed for better brain computational

analysis. Due to this, there is great interest in research on how to transform these chest-shoulder-

helmet datums into accurate facial overpressures. Prior research on this topic suggests that

machine learning algorithms can accurately predict these sought after overpressures. In this

paper we utilize a blast simulation application called Viper::Blast to simulate combat

environments in order to collect a library of overpressure data to train linear regression, ridge

regression, and deep learning algorithms for accurate prediction of facial overpressure to be used

with BlackBox Biometric gauge data.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction ... 1

1.1 Problem Statement ... 1
1.2 Motivation .. 1

Chapter 2 Literature Review .. 2

2.1 What is TBI and ICP? .. 2
2.1.1 Causation of Traumatic Brain Injury ... 3
2.1.2 Science of Traumatic Brain Injury .. 4
2.1.3 Intracranial Wave Mechanics Due to Blasts ... 5

2.2 Diagnostics of Traumatic Brain Injury... 7
2.3 History of Intracranial Pressure Monitoring Technology .. 8
2.4 History of Blast Gauges ... 10

2.4.1 How do Blast Gauges Work? .. 10
2.4.2 Blast Gauge Positioning Data Gap .. 11

2.5 Past Thesis Work ... 11
2.6 What is Machine Learning (ML) and Computational Modeling? 12
2.7 AWS Computing and Viper ... 14

Chapter 3 Materials and Methodology .. 17

3.1 Viper CFD Simulation Software .. 17
3.1.1 Viper Inputs and Considerations ... 17
3.1.2 Monte Carlo ... 20

3.2 Models .. 22
3.2.1 Open-Field Geometry .. 23
3.2.2 Sniper Geometry ... 24
3.2.3 Breacher Geometry ... 25
3.2.4 Crouched Geometry .. 26

3.3 Computational Run Scenarios .. 27
3.3.1 Amazon S3 Bucket Transfer Code .. 27
3.3.2 Obstacles ... 29
3.3.3 Blast Variation of Location and Magnitude for Scenarios 31

3.4 Machine Learning Code ... 32

Chapter 4 Results ... 37

Chapter 5 Discussion ... 42

iii

Chapter 6 Conclusion ... 44

Chapter 7 Future Work .. 45

Appendix A Python Code for Machine Learning Algorithms 46

iv

LIST OF FIGURES

Figure 1: Pressure versus time curve of a typical Friedlander blast wave model. 6

Figure 2. Different ICP Monitoring device insertion locations. Source is open-access. 8

Figure 3: The Blast Gauge System by BlackBox Biometrics [15]. ... 11

Figure 4: Basic breakdown of a decision tree showcasing root, interior, and leaf nodes used to
make decisions. .. 13

Figure 5. Interface of Viper::Blast, a weapons effect simulator utilized for close proximity blast
explosions. The software imports CAD models of soldiers and uses sensors (yellow dots)
placed all around their heads to track pressure data from blast explosion sites (red dot). 15

Figure 6. User input data example in the Viper interface for the Domain and Charge for CFD
blast simulations ... 18

Figure 7. Time history output locations example table for the Sniper geometry model with all
thirteen sensors labeled .. 19

Figure 8. All thirteen overpressure time history output sensor locations on an open-field model. 19

Figure 9. Monte Carlo example user input for the Breacher geometry. 21

Figure 10. Example file collection code for the Sniper geometry model. 22

Figure 11. Open-field geometry model and box obstacle model shown in Blender. 23

Figure 12. Sniper geometry model shown in Blender .. 24

Figure 13. Breacher geometry model shown in Blender. ... 25

Figure 14. Crouched geometry model and wall obstacle shown in blender. 26

Figure 15: Cygwin64 Terminal commands for running the File Collection Code. 27

Figure 16: Cygwin64 Terminal commands for exporting files to AWS S3 Bucket 28

Figure 17: Isotropic view of Open-Field soldier geometry for clear view of the box obstacle and
its four distinct locations in blender. .. 29

Figure 18: Breacher geometry model with the additional riot shield obstacle. 30

Figure 19. Viper blast simulation scenario for the breacher geometry with a double wall and
shield obstacle showcasing the pressure waves from the blast. 31

Figure 20. Lines of code to define the dataset from the s3 Bucket and read in the overpressure
files. .. 33

v

Figure 21. Code to define the number of people in the simulation model. 34

Figure 22. For loop Python code that extracts the peak overpressure values from Viper simulation
files. .. 34

Figure 23. For loop to define names for sensor overpressure data from Viper simulation database.35

Figure 24. Creation of three data sets containing a series of peak overpressure information by
execution of the create_df function. ... 35

Figure 25. Python code to define target and predictor variables for the ML algorithms. 36

Figure 26. Python code to split the overpressure data library into training and validation sets
randomly. ... 36

Figure 27. Viper Blast example Overpressure vs Time graph showcasing all thirteen sensors’
pressures in real time. ... 37

Figure 28. Series of peak overpressure prediction vs scenario count plots testing the feasibility of
the linear and ridge regression ML models. ... 38

Figure 29. Output peak pressure prediction vs scenario count graph for all 10 non-targeted
sensors for linear, ridge, and Keras regression ML algorithms. 40

vi

LIST OF TABLES

Table 1: Monte-Carlo generated distribution example for five scenarios for the breacher model
with variation of explosive mass and location. .. 21

Table 2. R2 values for linear, ridge, and deep learning Keras regression models for all 10 non-
targeted sensor locations. ... 42

vii

ACKNOWLEDGEMENTS

 I would like to start off by thanking Dr. Reuben Kraft for providing me with the

opportunity to work side by side with him and conduct this research. I would like to thank him

for his extremely valuable help with the coding aspects of this thesis. I would also like to thank

Vikraman Subramani for his guidance and prior coding work for this research. Additionally, I

would like to acknowledge both Mykhailo Havrylets and Ahmed Aly for their CAD modeling

work. I would also like to thank Dr. Daniel Cortes for his assistance and overview of this honors

thesis.

1

Chapter 1

Introduction

1.1 Problem Statement

 Using machine learning algorithms based upon Viper simulation data to predict and

analyze facial overpressures from body worn sensors in military blast scenarios.

1.2 Motivation

 Today, it is still highly unknown how to treat and prevent brain trauma effectively

occurring from blast explosions in close proximity, i.e., in warfare scenarios. In an effort to

understand brain trauma, brain neural analysis methods must be utilized. Currently, there is no

way of accurately measuring facial overpressures in blast scenarios which is necessary for proper

brain analysis. Due to the severity and extreme incidence of head trauma, especially in war, it is

exceedingly becoming of importance that an accurate way of measuring facial overpressures be

established.

2
Chapter 2

Literature Review

2.1 What is TBI and ICP?

Traumatic brain injury (TBI) is an unfortunate condition that results in loss of motor,

cognitive, or memory functions in the brain due to head impacts or blast overpressures on the

head/brain [1]. TBI is a huge problem around the world today as it is one of the leading causes of

mortality among children and adolescents [2]. Not only this, but it is extremely prevalent in

athletes, soldiers, and even everyday drivers. Currently, there are over 5 million people who live

with TBI in the United States alone [1]. According to the CDC, 53,000 people die from TBI-

related injuries every year which contributes to 30.5% of all injury-related deaths [3]. With no

signs of halting, TBI related cases continue to rise and become more and more of a global

problem.

Although the incidence of TBI is increasing worldwide, the understanding and research

into long-term outcomes is still limited. Prevention and treatment are becoming more and more

of a necessity for TBI as cases increase. In order to research and test ways for both, it has been

hypothesized that monitoring of intracranial pressure (ICP) can facilitate and help treat or

prevent traumatic brain injury [4].

ICP is the pressure that the brain experiences from things like blows to the head or blast

explosions. Monitoring of ICP allows researchers to analyze how the brain reacts to pressure and

what damage it can cause [2]. This data can directly translate to TBI and how it occurs from

overpressures. In the past, pediatric TBI centers across Europe and the US have conducted TBI

monitoring studies which have unanimously reported the use of an ICP threshold of 20 mmHg,

3
meaning ICP values above this can cause brain damage [2]. In order to better understand

traumatic brain injury and how intracranial pressure monitoring is related, we need to understand

the causes of TBI.

2.1.1 Causation of Traumatic Brain Injury

Traumatic brain injury can be caused by any force or impact on the head/brain, so

naturally there are many different ways this can occur. Falls among children (0 to17 years) and

older adults (65 years and older) accounted for 48% of all TBI-related ED visits in the same year

in the US [3]. Another 17% of ED visits was caused by being struck with or against an object

[3]. For just general TBI cases, 21% are caused by sports or recreational activities among

American children. [5]. And more specifically, 50% of those cases occur during bicycling,

skateboarding, or skating [5]. These statistics are alarming in their own right, but are reported in

a country with no real warzones.

An overlooked statistic of TBI related cases and something that isn’t reported in US

hospitals normally is from explosive mechanisms and blast overpressures in military

environments. In the wars in Iraq and Afghanistan, explosive mechanisms or improvised

explosive devices (IEDs) accounted for 70-75% of allied military killed or wounded – the

leading cause of casualty [6]. For those that survived blasts or nearby explosions, 35% of allied

soldier deaths were caused by TBI in 2009 [6]. The US Department of Defense estimated the

total number of medically diagnosed cases of TBI in the US military from 2000-2010 was

202,281 [6]. Due to the extreme numbers of TBI related cases and deaths from the Iraq and Iran

4
wars, there has been a huge push for research into TBI and the science behind it in order to better

understand it.

2.1.2 Science of Traumatic Brain Injury

The mechanism of production of TBI differs amongst the causation and is dependent

upon the physics of the brain [7]. Modeling of human brain physics first dates back to the 1940s

where Halbourn, an Oxford research physicist, stated that the behavior of the skull and brain

during and immediately after impact was determined by five physical properties of the

skull/brain and Newton’s laws of motion [8]. These physical properties are as follows: the brain

has comparatively uniform density, it’s extremely incompressible, it has a very small modulus of

rigidity, the skull has a comparably large modulus of rigidity, and the shape and size of the

brain/skull [8]. On the basis of these five properties and modeling experiments, Halbourn

concluded that the amount of pulling apart of the brain particles during impact was

proportionally related to the shear-strain occurring within the brain [8]. This directly leads to the

discovery that shear-strains are the cause of injury to the brain. Halbourn found that brain injury

naturally falls into two categories due to mathematical theory: localized injury due to skull

distortion, and injury due to rotation [8]. As one can imagine, if the skull is distorted or fractured,

major shear-strains can develop in the brain around the fracture causing massive damage. In this

case, hemorrhaging is common and can cause internal bleeding and quickly become life

threatening [8].

In the case of non-distortion of the skull, brain injuries are rooted in the rotational

acceleration of the brain/skull. The reason that rotational acceleration is the cause of injury is

5
because the shear-strains produced by linear acceleration are relatively small and can be

neglected [8]. This can easily be seen by filling a flask with water where moving it linearly

produces little effect on the water whilst rotating the flask tends to leave the water behind as

water particles attached to the surface of the flask separate from neighboring particles not

attached to the flask [8]. This is obviously an exaggerated model but holds true to the effects on

the brain. Halbourn went on to actually run experiments on the shear-strain concentrations in the

brain due to different rotations caused by different blows to the head. The most striking aspect of

this study is the large shear-strain concentrations in the anterior temporal lobe compared to the

absence in the cerebellum. This can be explained by the fact that the skull is somewhat attached

to the brain at this location and causes massive shearing when rotating at a high enough velocity

[8]. Additionally, a force impulse on the head creates non-linear shear waves which propagate at

different speeds in different regions therefore creating localized strain concentrations in different

regions [7].

The development of these shear-strains can be applied to many different types of brain

injuries and their causation. Although the physics discussed above was for direct impacts on the

head, it can still be applied for indirect pressures on the head, such as an explosion/blast. Blast

pressure waves act slightly different then the shock waves produced from direct blows and

therefore must be modeled differently within the brain.

2.1.3 Intracranial Wave Mechanics Due to Blasts

For blast pressure waves, the mechanism is less understood, but can be related to the

Friedlander waveform which causes rapid rise in pressure to a peak over-pressure, followed by a

6
negative pressure drop period of under-pressure. After passing through the skull, this negative

pressure drop can lead to cavitation within the head/brain tissues [6]. This over to under pressure

can be seen in Figure 1 along with the Friedlander equation.

Figure 1: Pressure versus time curve of a typical Friedlander blast wave model.

𝑃𝑃𝑠𝑠(𝑡𝑡) = 𝑃𝑃𝑠𝑠𝑠𝑠 �1 − 𝑡𝑡
𝑡𝑡0
� 𝑒𝑒−𝑏𝑏

𝑡𝑡
𝑡𝑡0 (1)

 In the Friedlander equation, there is a decay coefficient b defined which is very important

to how these waves function in different materials [10]. Blast waves vary depending upon the

material they are in or if they are incident or reflected, and the coefficient b allows this equation

to be dynamic for different cases [10]. For the case of blast waves, brain shear-strains develop

not only from rotational acceleration but also from the interaction of these blast waves with brain

composition.

 Paul Taylor, a researcher at the Sandia National Laboratories, created a model of these

blast waves within the brain in order to test this interaction [11]. The brain model was much

more complex and realistic than Halbourns model in the 1940s. It included cerebrospinal fluid

and air in the sinuses in addition to the skull and brain for more accurate results [11]. The model

was run through three different orientations of blast exposure simulations with a time interval of

only 2 ms as the majority of the intracranial wave mechanics was observed to occur almost

7
immediately [11]. For the tests, blasts were placed in the front, back, and right side of the model.

The pressure within the brain closest to the blasts was recorded the highest and the opposite end

of the brain correlated to the highest volumetric tension [11].

This study confirmed the fact that blast waves have an extreme effect on the brain before

any brain acceleration even occurs. Due to this, the initial blast wave interaction within the brain

must be included with the shear-strains developed from rotational acceleration. This helps

researchers and doctors diagnose TBI with more specificity to the amount of shear-strain and

what is causing it.

2.2 Diagnostics of Traumatic Brain Injury

A commonly used diagnostic scale for TBI is the Glasgow Coma scale. The scale is

weighed upon three aspects of responsiveness: motor, verbal, and eye-opening responses [12].

The levels of each respective parameter are scored from a minimum value of 1 (no response) up

to a maximum value of 4 for eye-opening response, 5 for verbal response, and 6 for motor

response [12]. Thus, the Glasgow Coma scale has values between 3 (worst) and 15 (best) [12].

Each numbered score for each parameter has a descriptive category that allows for ease of

scoring. In addition to this scale, TBI can be categorized by the cause of injury. The three main

categories of TBI are closed head (CHTBI), penetrating (PTBI), and explosive blast (EBTBI)

[6]. Within these groupings, a range of severity is noted ranging from mild (GCS13-15) to

moderate (GCS9-12) to severe (GSC3-8) with mild meaning just a brief change of consciousness

(concussion), severe meaning a significant period of unconsciousness/memory loss, and

moderate lying everywhere in between the two [3], [12]. Although the Glasgow Coma scale can

8
get specific, categorizing and diagnosing of TBI can be further broken down by the use of ICP

monitoring.

2.3 History of Intracranial Pressure Monitoring Technology

Intracranial pressure (ICP) monitoring has been theorized and tested for decades. In 1951,

the first data set published on ICP measurement was by two French doctors named Guillaume

and Janny [13]. They were able to create continuous ICP monitoring through an electronic

magnetic transducer (EMT) [13]. This allowed them to measure the changes in ventricular fluid

pressure within the brain. Their findings directly led to the first comprehensive analysis of ICP in

patients using curve morphology in 1965 [2]. In both cases, a transducer coupled to an external

ventricular drain (EVD) was used to measure ICP with great accuracy [2]. This is an invasive

monitoring device that is inserted into the brain at location A shown in Figure 2. This device

works to measure the pressure within the brain by connecting a drainage tube from the inside of

the brain to the outside of the head to measure the difference between atmospheric pressure and

intercranial pressure. It simultaneously drains cerebrospinal fluid (CSP) in order to manage

intracranial hypertension, which is basically just an increased overall pressure in the skull [2].

Figure 2. Different ICP Monitoring device insertion locations. Source is open-access.

9
Due to the extremely invasive nature of the EVD, an overall complication rate of 20-25%

has been estimated for it which includes infection, hemorrhage, misplacement, and malfunction

[2]. With this in mind, other methods of ICP monitoring have been developed. Parenchymal

monitoring is another means of measuring ICP in a less invasive way. It can take on many

different forms including fiber optic sensors (Camino ICP Monitor) which transmits light via a

fiber optic cable towards a displacement mirror, strain gauge devices (Codman MicroSensor ICP

sensor) which measure the resistance change in an inserted transducer correlating to ICP, and

pneumatic sensors which make use of a small balloon connected to a catheter placed within the

brain to register changes in pressure [2], [14]. Each of these monitoring techniques are used in

different parts of the brain and at different depths. The most commonly used are the strain gauge

devices which are still inserted into the brain like the EVD, but is instead placed within the

frontal lobe at a depth of only 2cm at location B shown in Figure 2 [2].

Another monitoring method, telemetric ICP monitoring, is an even less invasive device

that uses a parenchymal strain gauge sensor coupled to a wireless transcutaneous data transmitter

in order to wirelessly collect pressure data [2]. The telemetric device is inserted at location C

shown in Figure 2. Even though the parenchymal and telemetric devices are less invasive and

still very accurate, they also have high complication rates [2]. Due to the invasiveness and high

risk of these devices, researchers and doctors are currently looking for more accurate and

preferably non-invasive ways to monitor ICP. The recent development of blast gauges is a

promising way to monitor overpressures without being inserted in the brain and could be used

for future ICP monitoring.

10
2.4 History of Blast Gauges

Wearable blast gauges for soldiers have had a semi short history. Towards the end of US

involvement in the Iraq War, 200,000 US soldiers came home with TBI related injuries without

proper data in-battle to know the causes [15]. In light of this, the Defense Advanced Research

Projects Agency (DARPA) enlisted the help of the Rochester Institute of Technology (RIT) to

develop the Blast Gauge [16]. In 2011, the team developed the Blast Gauge and formed a

business called BlackBox Biometrics to manufacture and sell them. This device allowed for

measurement of blast overpressures to be analyzed for blast propagation and traumatic brain

injury. Today, BlackBox Biometrics have sold 550,000 Blast Gauges [15].

2.4.1 How do Blast Gauges Work?

The Blast Gauge developed by BlackBox Biometrics works in a multi-sensor set meaning

one is placed on the back of the helmet, the chest, and a shoulder [15]. It has the ability to record

pressure and acceleration data in real-time. There are seven parts worth noting on the Blast

Gauge as seen in Figure 3. The main component of the gauge is the sensor dome which has an

accelerometer for acceleration data and takes in blast pressure waves to store pressure data. It has

a recessed activation button to make sure it doesn’t activate/deactivate unwanted and indicator

lights of red, green, and yellow to provide instant exposure data [15]. Although it has wireless

technology to transfer data, it has a micro-USB port for full time-based data analysis [15]. The

Blast Gauge also has an impact resistant casing, a heavy-duty attachment cord for seamless body

connections, and a color-coded body placement mark for each respective body part. This device

works by tracking triage data from the three body locations through proprietary software which

11
is very helpful in tracking pressure data near the head/face, but does not track the direct pressures

on it. [15].

Figure 3: The Blast Gauge System by BlackBox Biometrics [15].

2.4.2 Blast Gauge Positioning Data Gap

The Blast Gauge is the current best blast pressure tracking system for soldiers, but still

has a gap from its data to real facial pressures. Due to the fact that the Blast Gauge is set up on a

soldier’s chest, head, and shoulder, it tracks pressure data at those exact locations. This data set,

called triage data, can help estimate facial overpressures but is far from an exact facial pressure

measurement. Currently, there is no accurate transfer function from body sensor to face and no

real way to get accurate data on the face from Blast Gauges for brain analysis.

2.5 Past Thesis Work

 Lauren Katch, a Schreyer alumnus, previously wrote a thesis on this topic to help

determine this transfer function. She focused on developing a geometric transfer function that

12
would triangulate the data from the chest, shoulder, and helmet to identify the magnitude and

location of the blast source [17]. This was called inverse-source localization and was the focus of

her thesis. She ran simulations through a blast simulation software known as Kodiak CTH and

tracked pressure data on the shoulder, head, and helmet of a soldier model. She fit a geometric

model to the data to try and predict the locations of the blast explosions, but this fit model had an

average error of 71.23% [17]. She concluded that blast explosions at close-range were too

complex for a geometric algorithm. Katch then went on to attempt a different route of data

transfer, through machine learning. Instead of predicting the location of the blast, this time she

used chest, helmet, and shoulder data to predict nose data. Since most of the thesis work was

spent on the geometric algorithm for inverse-source localization, the machine learning approach

is limited. However, with just a limited number of simulations, she was able to predict nose

pressure data with relatively high accuracy and proved that machine learning could be a viable

option [17]. My thesis work aims to build off of Katch’s, and create an accurate machine

learning algorithm through an immense variety of blast simulations instead of using already

developed algorithms like she did.

2.6 What is Machine Learning (ML) and Computational Modeling?

Machine learning is essentially computer programming directly rooted in artificial

intelligence (AI). It allows computers to ‘learn’ and change things without being directly coded

to do so [18]. Utilizing machine learning algorithms enables computers and AI to predict things,

which can be an extremely useful tool. How machine learning works in theory is simple but in

13
application requires large and complicated algorithms. Basically, computers are able to learn,

predict, and improve by experience through large amounts of tasks, simulations, and data runs. It

is quite similar to statistical algorithms by fitting to data [18]. Machine learning is generally

classified into two groups: “supervised” and “unsupervised” learning. Supervised learning occurs

when the value of the dependent variable is known for each observation [18]. Unsupervised

learning occurs when the outcome or value of the dependent variable is not known, and the

algorithm attempts to fit data for it through identified natural relationships [18]. One of the most

popular machine learning algorithms is decision trees. Decision trees create a series of rules

based upon continuous input variables to predict outputs variables through decisions [18].

Figure 4 shows an example of a breakdown of a basic decision tree machine learning algorithm.

Figure 4: Basic breakdown of a decision tree showcasing root, interior, and leaf nodes used to make decisions.

Decision tree algorithms are generally easy to understand and used frequently. The type

of machine learning algorithm that Katch used in her thesis was the random forest which is a

type of decision tree algorithm. In any case, the benefit of using machine learning is that it can

analyze “Big Data” or extremely large data sets, tasks, simulations, or computational models

which computers can run through extremely fast [18].

14
Computational modeling is the simulation and study of complex systems using computers

[19]. This is another extremely useful tool which allows scientists and researchers to simulate

thousands of experiments extremely fast through a multi-variable model. Through these

computer-generated results, laboratory or field experiments can be identified to be most effective

in solving the problem being studied through modeling [19]. This is how Taylor, and the Sandia

National Laboratories, was able to run blast simulations on a brain model to determine that blast

waves have an effect on ICP in addition to brain rotational acceleration. They modeled a realistic

brain in a computer and created a code to run blast simulations to collect ICP data. Katch also

made use of computational models of soldiers to collect overpressure data on the chest, head, and

shoulder of a soldier for analysis. There are many useful computational modeling applications

for blast simulations including the Kodiak CTH used by Katch. For my own work, I will be

using a computational modeling platform known as Viper::Blast.

2.7 AWS Computing and Viper

Viper::Blast is a weapon effects simulator used to create computer models to run

simulations on. In brief, the application takes an STL file of a Computer Aided Design (CAD)

model (of a soldier) then uses set inputs such as boundary conditions, initial blast location,

sensor locations, and potential obstacle locations to output pressure data at the sensor locations.

The interface for this application is shown in Figure 5.

15

Figure 5. Interface of Viper::Blast, a weapons effect simulator utilized for close proximity blast explosions. The software
imports CAD models of soldiers and uses sensors (yellow dots) placed all around their heads to track pressure data from

blast explosion sites (red dot).

Every simulation ran on Viper automatically creates an overpressure data output file

which compiles all the pressure vs. time data at every sensor location for the simulation run. This

application also has a feature called Monte-Carlo (as seen in one of the tabs in Figure 5) which

allows for the setup of multiple different simulation runs at once. For example, this feature

allows the user to run hundreds of blast simulations in succession with each run having a

different input value such as the blast location or an obstacle location. This feature allows for

mass simulating to collect tons of different overpressure data files. The Monte-Carlo feature is

important because if you were to input these overpressure data files into a machine learning

algorithm, the algorithm would be able to predict certain outputs with higher accuracy the more

data it collects and uses. The downside of Viper and this feature is that it takes a lot of computing

power and usually cannot be done on common laptops and computers.

Amazon Web Services (AWS) is a platform that allows users to gain local access to

powerful computers that amazon owns. These supercomputers are more than capable of running

16
mass simulation programs such as Viper. The way AWS works is through cloud computing,

which is basically a wireless connection to IT resources over the internet [20]. So instead of

physically owning data centers, servers, computing power, massive storage, and databases, you

can simply “connect” to a needed technology service through AWS on a pay-as-you-go basis

[20].

In essence, this thesis aims to use computational modeling to simulate blast overpressure

scenarios through the application Viper on an AWS computer and then use machine learning to

predict and analyze facial overpressures from these simulations. This will allow us to apply our

machine learning algorithm to real blast gauge data from BlackBox Biometrics to better estimate

human facial overpressures from blasts. With this, researchers and doctors will be able to better

track ICP non-invasively to find ways to treat and prevent TBI.

17
Chapter 3

Materials and Methodology

3.1 Viper CFD Simulation Software

 All simulations and collection of overpressure datum in this thesis were ran and extracted

from Viper. In order to fully understand the methodology of Viper used in this thesis, a deeper

explanation of its functionality must be introduced.

3.1.1 Viper Inputs and Considerations

 In order to properly execute CFD blast simulations in Viper, a great deal of inputs and

boundary conditions need to be manually set. The most important input is the geometry for

which the blast is being set around, which in these cases is .stl files of soldiers in different

scenarios. These geometry models will be discussed with more detail in Section 3.2. Besides the

model input, there are three other important input categories. For starters, the domain of the blast

simulation area must be manually set with considerations of real life applications and what’s

necessary for proper overpressure data collection. Additionally, the makeup of the explosive

charge must be inputted with considerations for composition, mass, density, energy, locations,

and shape. For all scenarios, the composition was set to be TNT, the density was kept constant at

1600 kg/m^3, and the energy produced was set to 4.52e+06 J/kg. The mass, location, and charge

shape were all varied in different ways to produce large sets of different scenarios. An example

of these inputs directly in the Viper interface can be seen in Figure 6.

18

Figure 6. User input data example in the Viper interface for the Domain and Charge for CFD blast simulations

The third important user input is the time history output locations, or just simply the

overpressure sensor locations. This is what allows us to set sensors on the body of the soldier

geometries. In short, these sensors are created and placed on the geometries directly in Blender, a

CAD software that the soldier models were created in. Again, this will be further discussed in

Section 3.2. For understanding of Viper user input, these sensors are extracted from Blender in a

text file giving label and coordinate information which is then inputted directly into Viper. For

all soldier geometries, there are a total of thirteen sensors placed on each soldier. Their locations

respective to each person is as follows: left eye, right eye, forehead, nose, left ear, right ear, chin,

right cheek, left cheek, chest, back of the helmet, left shoulder, and right shoulder. This is a large

19
upgrade from the four sensor locations that were used in the simulations that Katch ran in her

thesis. The reason for the addition of nine new sensors was to create a more accurate sensor field

over the face of the soldier in order to better collect and train data to predict the overpressures

across the face, rather than just at the tip of the nose. An example input table of the time history

output locations can be seen in Figure 7. These can be visualized on a solider model in Figure 8

below.

Figure 7. Time history output locations example table for the Sniper geometry model with all thirteen sensors labeled

Figure 8. All thirteen overpressure time history output sensor locations on an open-field model.

20
 Besides these inputs, there are other constants and considerations to be noted. All

scenarios set the atmospheric pressure and temperature to 101325 Pa and 288 K, respectively.

All boundaries of the simulation domain were set to be perfectly transmissible, and all obstacles

(including the ground) were set to be perfectly reflective. Creating realistic destruction of

obstacles which would allow for some transmissibility is outside the scope of Viper simulations.

3.1.2 Monte Carlo

 As mentioned in Section 2.7, the Monte-Carlo feature allows for automated running of

variations of inputs in order to create different simulation scenarios. It is the reason why Viper is

so good at batch processing and running large amounts of simulation scenarios. In essence, the

more data you run through a machine learning algorithm to train it, the more accurate it will

become, making the Monte-Carlo feature extremely valuable for this thesis. The focus for

different scenarios simulated was varying the charge locations as well as its mass, primarily. This

is in addition to other variations such as movable objects, walls, etc. All other variables were

kept constant in this feature. In order to vary an input, a mean, standard deviation, and number of

scenarios were set for a uniform distribution. An example input interface for the Monte-Carlo

feature can be seen in Figure 9.

21

Figure 9. Monte Carlo example user input for the Breacher geometry.

 This will create a randomized distributed table of blast scenario runs with the prescribed

inputs. The inputs that we wish to vary, explosive mass and location, will be generated in a

distribution while all other inputs will remain constant, as shown in Table 1. Two things to note

is that the blast location must be within the set domains, and obviously, mass cannot be negative.

 State Mass X_3d Y_3d Z_3d HOB_2d dx_1d dx_2d dx_3d E Density AB_e AB_t AtmosP AtmosT

1 0 7.864 -0.76 -11.0 3.95 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288

2 0 4.823 -1.09 -2.44 1.11 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288

3 0 3.176 -1.23 0.37 0.72 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288

4 0 1.107 1.57 -8.34 2.71 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288

5 0 10.823 -4.72 2.17 4.45 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288

Table 1: Monte-Carlo generated distribution example for five scenarios for the breacher model with variation of explosive
mass and location.

 After randomized uniform scenarios are created with this feature, Viper allows you to run

all scenarios in succession. Since Viper creates output files automatically, this feature creates

folders for all output files as well. The only file we are interested in in these folders is the

22
overpressure files, so in order to easily extract these files for collection from a large amount of

scenario files, a small code is needed. This code, seen in Figure 10, just simply extracts all files

from all Viper created scenario folders with the name ‘viper3d_th_overpressure.txt’ (which is the

automatic name given to overpressure output files from Viper) and then transfers them to a

newly created folder for ease of access. Unfortunately, the downside of this code is that each

different geometry model needs its own variation.

Figure 10. Example file collection code for the Sniper geometry model.

3.2 Models

In order to generate an exhaustive data library with many different scenarios for better

machine learning training, four completely different CAD designs were created. All four were

designed by two freelance workers on UpWork that Dr. Kraft hired, Ahmed Aly and Mykhailo

Havrylets, as mentioned in the Acknowledgements section in this thesis. They utilized a CAD

application called Blender, a comprehensive modeling platform that allows for creating 2D and

3D models. Not only were they able to design and mesh extremely detailed soldier geometries,

but they also created sensor tracers in Blender which were used in Viper for simulations. These

four CAD models were then used to create 12 distinct testing model variations by addition of

obstacles and items. This was done to increase depth of scenarios covered to hopefully create a

more accurate and wider scoped ML algorithm. These 12 models are the basis for all 2400

simulation scenarios created for analysis through this thesis.

23
3.2.1 Open-Field Geometry

The first geometry that was created (and utilized by Katch in her honors thesis) has been

labeled as the open-field geometry. This is a basic standing single soldier geometry with a 2m x

2m x 2.5m (height being 2.5m) box obstacle included. The open-field geometry can be seen in

Figure 11.

Figure 11. Open-field geometry model and box obstacle model shown in Blender.

 A large quantity of simulation scenarios was run for this model with variations in charge

location, charge mass, and obstacle location. Utilizing the existence of the block obstacle, a total

of five different models for this soldier geometry was created. Exact scenarios will be further

covered in Section 3.3, Computational Run Scenarios, and obstacle model variations will be

shown in Section 3.3.2, Obstacles.

24
3.2.2 Sniper Geometry

To add some more realism to these simulations, a model of a laying down soldier firing a

sniper rifle was designed. For this scenario, instead of an explosive bomb going off near the

soldier, the blast is located at the tip of the sniper rifle to model a sniper rifle backfiring and

exploding. The sniper geometry can be seen in Figure 12.

Figure 12. Sniper geometry model shown in Blender

 The initial plan was to keep with the realism of this model, which would mean there

wouldn’t be much variation in regard to blast mass or location as its supposed to be a gun

exploding. However, for the sake of mass data collection for ML training, we also created

simulation scenarios with randomized blast location and mass around the sniper. This will be

further covered in Section 3.3, Computational Run Scenarios.

25
3.2.3 Breacher Geometry

 Another model that was created was the Breacher geometry which is a collection of eight

soldiers in a line. This geometry was trying to model the scenario of a group of soldiers moving

forwards together in close quarters to try and minimize exposure and damage from the front.

This model can be seen in Figure 13.

Figure 13. Breacher geometry model shown in Blender.

 Since this was our largest model and had eight different sets of sensors for each soldier,

we decided to run lots of different scenarios for it. Variations with blast location, blast mass, wall

obstacles, as well as the addition of a riot shield for the first soldier were created. With the

existence of a wall obstacle and riot shield, four different models were created for this soldier

geometry. These obstacle model variations will be covered in Section 3.3.2, Obstacles.

26
3.2.4 Crouched Geometry

 The last model that was created was the crouched geometry which is a single soldier.

This geometry aimed to model a soldier crouching down and putting their hands over their head

for protection from an incoming explosive. As this model represents a very likely scenario for a

soldier in combat with an explosive going off, this was a welcomed addition for simulations.

This geometry can be seen in Figure 14 below.

Figure 14. Crouched geometry model and wall obstacle shown in blender.

 Due to the realism of this geometry, this model was also utilized with a breadth of

simulation scenarios. The charge location and mass were varied greatly, and the addition of a

wall obstacle was created. The idea for the wall geometries orientation was that in this model

scenario, the soldier was crouching up against a wall to try and protect themselves from a blast

behind them. With the addition of the wall, there were two different models created for this

soldier geometry.

27
3.3 Computational Run Scenarios

Utilizing Viper, we ran a total of 2400 simulation scenarios. The idea behind the

breakdown was to run an even 200 scenarios for each model created. This can be broken down

into 800 for the breacher geometry (four models), 1000 for the open-field geometry (five

models), 200 for the sniper geometry (one model), and 400 for the crouched geometry (two

models). Computational run scenarios for all geometries simultaneously varied explosive mass

and location which was done through the Monte Carlo feature. An important tool we utilized for

creating a data library to store all these run simulation scenarios was Amazon’s S3 Bucket.

3.3.1 Amazon S3 Bucket Transfer Code

 The Amazon S3 Bucket is a great tool to use for compiling large data libraries for ease of

access. Due to the sheer number of simulations, i.e., data files, that this research calls for, we

decided to make use of this AWS service. In order actually move our data to the S3 Bucket, a

series of steps needed to be taken. As discussed in Section 3.1.2, a small code was created to

extract and compile the overpressure files created by Viper. In order to run this code and then

send the compiled data to the Amazon S3 Bucket, certain commands need to be inputted into

Cygwin64 Terminal, a Windows command application. These commands can be seen in Figure

15 and 16 below.

Figure 15: Cygwin64 Terminal commands for running the File Collection Code.

28
 The above two lines of command in Figure 18 show the process of locating a certain

directory (which houses the compilation code file) on the computer using the command cd and

then simply running the code by utilizing the command ./ followed by the name of the code (An

example collection code can be seen in Figure 10). One thing to note is the file collection code is

unique and needs to be changed depending on the situation, therefore, there were 12 different

codes created for all 12 model variations. For ease of this code and ease of running through data

in the machine learning code, all files were inputted into the same folder on the S3 Bucket, but

we did separate them on the computer directory for our own reference.

Figure 16: Cygwin64 Terminal commands for exporting files to AWS S3 Bucket

 The single command line shown above in Figure 16 (first cd command line just finds

directory as already stated, which in this case is different from previous directory) is the most

important command line for this process. Utilizing the imported command aws, we are able to

send all the overpressure files collected straight to the AWS S3 Bucket. This concludes the

process of extraction, collection, and transfer of the overpressure files.

29
3.3.2 Obstacles

 To increase variation and realism of data, we added obstacles surrounding the breacher,

crouched, and open-field models. Since the obstacle created for the crouched geometry has

already been covered and shown in Section 3.2.4, it will be excluded from this section. The focus

for this section will be to show the obstacle variations for the breacher and open-field models as

they have the most sub-models. For the open-field geometry, a box obstacle was included into

the blast area, as already mentioned in Section 3.2.1. This obstacle was positioned in four

different locations all evenly spaced 2 m in the x and 2 m in the y away from the soldier. This

was the basis for the first four models of the open-field geometry. The fifth model was simply

the soldier geometry surrounded by four box obstacles in all four locations to simulate a small

two way corridor. All four obstacle locations can be seen in Figure 17.

Figure 17: Isotropic view of Open-Field soldier geometry for clear view of the box obstacle and its four distinct locations
in blender.

30
 Since viper does not support textures or compositions of objects, the box was set to be an

ideal and perfectly reflective object, which holds true with all objects/obstacles used in this

research. Obviously, this is not realistic, but will still give us good data to train a machine

learning algorithm with.

 Furthermore, two different obstacles were created for the breacher geometry, as

previously mentioned, resulting in a total of four different breacher models to run scenarios on

(one with none, one with both). In one instance, a riot shield type obstacle was added to the front

soldier of the breacher line. The other obstacle we decided to add was a two sided wall

surrounding the breacher line. These obstacles can be seen in Figure 18.

Figure 18: Breacher geometry model with the additional riot shield obstacle.

 The only model that an obstacle was not added to was the sniper geometry. The reason

for this was because the sniper model was based upon a very specific scenario of a bullet

exploding. Since the blast here is on a smaller scale than the other model scenarios, the addition

of obstacles wasn’t of importance.

31
3.3.3 Blast Variation of Location and Magnitude for Scenarios

As mentioned in Section 3.1.2, two inputs for the explosive, mass, and location, were

varied simultaneously to create a large quantity of unique blast scenarios. The software Viper

seemed unable to handle any explosive mass close to or above 15 kg and would crash when

initiated. To avoid this, all explosive masses for all models were generally set to be in a

randomized range from 0-14 kg. The other variable was the blast location, which was varied in

the x, y, and z directions. For all models, the z was randomized to be between 0-6 m and the x

and y were varied differently for each case. The x and y location of the blast was randomized to

be within the domain, which slightly differed from model to model. For example, the breacher

geometry generally had a domain of -6 to 6 m in the x direction and -12 to 3 m in the y direction.

However, the crouched geometry, since it was centered, had a domain of -6 to 6 m in the x and y

directions. Small variations of these domains were made to fit better with their corresponding

sub-models. An image of a breacher model scenario mid-simulation can be seen in Figure 19.

Figure 19. Viper blast simulation scenario for the breacher geometry with a double wall and shield obstacle showcasing
the pressure waves from the blast.

32
3.4 Machine Learning Code

The most important portion of this thesis is the machine learning algorithm developed to

be trained with the extracted Viper overpressure data. Utilizing three different popular machine

learning algorithms, linear regression, ridge regression, and a deep neural network model known

as the Keras Regressor, we were able to assess the applicability of each regarding this research.

All three of these algorithms are readily available in an open-source python library for machine

learning models called scikit-learn. According to Jason Brownlee, the author of the book

Machine Learning Mastery with Python, these three machine learning models are previously

known to be quite effective in predicting continuously varying quantities, which in this case is

the peak pressure at the facial sensor locations [21].

To train and evaluate the validity of these three ML models for this thesis, the 2400

overpressure files were split into two data sets, a training set, and a validation set. The machine

learning algorithms were first trained with the training data set at all thirteen sensor locations to

give it accurate prediction power of facial overpressures. Then the validation set was sent

through the code to evaluate the efficiency of this prediction by matching the predictions with

the simulated facial overpressure from the validity set files.

The entire Python code can be seen in Appendix A of this thesis; however, this section

will go over some important aspects of the code for better comprehension. To start out, a short

yet important code is written out to define and read in the overpressure files from the S3 Bucket

to be manipulated for the ML algorithms. This can be seen in Figure 20.

33

Figure 20. Lines of code to define the dataset from the s3 Bucket and read in the overpressure files.

After all files have been read in, four important variables are defined. The first is

nscenarios which is set to be equal to the number of files read in, i.e., 2400. Two sensor count

variables are defined nspp and nsw which are set to be equal to the number of sensors per person

in simulations (13) and the number of sensors worn by people in real life (3 – chest, shoulder,

helmet), respectively. The final important variable defined is PeakDurationExtraction which,

as its name states, is the duration of which pressure is known to be at its peak in the simulation

and set to be 0.5.

 To begin the process of manipulating these overpressure files to extract the peak

pressures, the function create_df was defined to create a matrix of scenarios from the

root_folder. This function is the basis for all manipulation and extraction of the overpressure

files through a series of for loops. In order to make this code applicable to all scenarios,

especially the ones with multiple soldiers compared to just one soldier, two lines of code were

created to define the shape of df and create the variable npeople. This allowed the code to loop

through extraction for loops by the number of people there were in the simulation model. This

section of code can be seen below in Figure 21.

34

Figure 21. Code to define the number of people in the simulation model.

 One of the most important for loops in this code is the computation and extraction of the

peak overpressures, which is the varying quantity we want to evaluate with the ML algorithms.

By considering the number of people, the number of scenarios, and the number of sensors, this

for loop creates a matrix of MaxPressureValues through the append command. This for loop

can be seen in Figure 22.

Figure 22. For loop Python code that extracts the peak overpressure values from Viper simulation files.

The next step in the process was to define what each column was in df and assign a name

to them. Each column represents the overpressure data from each sensor, so the three relevant

sensors to BlackBox Biometrics – chest, one shoulder, helmet – were defined with names while

the rest were just given numbers. This allowed for the analysis of the predictive power of all

other sensor locations with regard to these three. In other words, the overpressure data from just

the chest, one shoulder, and the back of the helmet will be used to predict the overpressures at all

other locations, since these are the three that Black Box Biometrics use. This for loop can be

seen in Figure 23.

35

Figure 23. For loop to define names for sensor overpressure data from Viper simulation database.

Once relevant data has been extracted and defined properly from the Viper overpressure

files, the create_df function is executed and a series of data sets are created to store all peak

pressure information such as maximum peak pressure and maximum peak duration of pressure.

This execution code can be seen in Figure 24.

Figure 24. Creation of three data sets containing a series of peak overpressure information by execution of the
create_df function.

 As mentioned earlier, the 2400 scenarios were randomly split into two different data sets:

a training set and a validation set. In order for the machine learning algorithm to properly do this,

it was informed that the target variables for predicting facial overpressures were the chest,

shoulder, and helmet. The predictor variables for predicting facial overpressures (basically aids

to the ‘target’ variables) were the rest of the facial sensors, as seen in Figure 25.

36

Figure 25. Python code to define target and predictor variables for the ML algorithms.

 These two sets of variables (which are columns of a matrix) are then stored into data sets

X and Y. These sets are split randomly into the training and validation data sets with a 67% to

33% split, respectively. This split can be seen in the following Python code in Figure 26.

Figure 26. Python code to split the overpressure data library into training and validation sets randomly.

 To measure the performance of the machine learning algorithms numerically, the

coefficient of determination (R2) was utilized between the prediction of the target variables from

the training set directly from the Viper simulations and the prediction of the target variables from

the validation set for the actual algorithms. This allowed us to quantitatively decipher our results

and see how effective the different algorithms were at prediction. The R2 values can range from

0 to 1 with 1 indicating that the algorithms perfectly predict the varying target quantities.

37
Chapter 4

Results

Viper not only outputs overpressure data files, but also gives a real time overpressure vs

time data while the simulation is running. This showcases all thirteen sensors and their respective

overpressures as the simulation runs through milliseconds. For reference and visual aid through

what we are actually analyzing through the ML code, an example of this overpressure vs time

graph can be seen in Figure 27 below.

Figure 27. Viper Blast example Overpressure vs Time graph showcasing all thirteen sensors’ pressures in real time.

 This data was then processed and ran through the three Machine learning algorithms as

previously mentioned. To start out, an initial test of just the linear and ridge regression

38
algorithms were ran with no output of R2 to test feasibility and initial effectiveness. Only the

peak pressure data extracted from the overpressure files was analyzed for predictive power.

Additionally, only half the sensors were analyzed for prediction in order to save computational

cost and time, since most come in sets of two anyway (i.e., left eye, right eye). All other graphs

outputted straight horizontal lines as they were not tested. These initial tests can be seen in

Figure 28.

Figure 28. Series of peak overpressure prediction vs scenario count plots testing the feasibility of the linear and ridge
regression ML models.

The sensors above correlate to left eye, forehead, right ear, chin, and right cheek labelled

as sensors 0 through 8. These graphs quantify the predictive power of the targeted sensors –

chest, shoulder, and helmet– with regard to the other facial sensors. As seen in the above graphs,

the linear regression algorithm overall performed quite well on all sensors at lower peak

pressures. Sensor 0 and sensor 2 both performed at higher peak pressures as well, but the other

39
sensors seemed to miss the high spike peak pressures of some scenarios for the linear regression

algorithm. The ridge regression model performed a lot worse and seemed to be off peak

pressures by a large margin. One thing to note about this is that the ridge regression model did

predict changes and spikes of peak pressure, just not at the right scale, which could be due to

initial ridge regression code error.

Once the initial test was done and several rounds of debugging, we then added in the

deep learning regression model (Keras Regression) to the python code and had it run through the

overpressure data at a more precise scope for all 10 non-targeted sensors. This was run through

in batches of 500 scenarios as running all 2400 at once was extremely time consuming and didn’t

allow for troubleshooting or cleaning of data. All 10 peak output plots can be seen in Figure 29.

40

Figure 29. Output peak pressure prediction vs scenario count graph for all 10 non-targeted sensors for linear, ridge, and
Keras regression ML algorithms.

41
Sensor 0, which refers to the left eye, exhibited a R2 value of 0.78 for the linear and ridge

regression models and 0.68 for the deep learning model. It can be inferred that at a smaller scope

like this the ridge model increases in predictive power greatly to the point of matching the linear

model. The deep learning model did not perform quite as well. Sensor 1, which refers to the right

eye, outputted a R2 value of 0.36 for all three models. This indicated an unnatural disagreement

between the right and left eyes which seemed to be presented throughout the data.

Sensor 2, which refers to the forehead, gave a R2 value of 0.42 for all three models.

Sensor 3, which refers to the nose, exhibited a R2 value of 0.69 for the linear and ridge regression

models and 0.84 for the deep learning model. The nose, which previously has been mentioned as

an important sensor location, gives an incredibly high deep learning model R2 value, which is

promising. Sensor 4, which refers to the right ear, showed a R2 value of 0.70 for the linear and

ridge and a 0.76 for the deep learning. Sensor 5, which refers to the left ear, exhibited a R2 value

of 0.82 for both the linear and ridge regression and 0.85 for the Keras regression. As previously

seen, there was an unforeseen miscorrelation between the left and ride sets of sensors, this one

was less severe, though, and both are quite accurate in prediction.

Sensor 6, which refers to the chin, calculated a R2 value of 0.36 for the linear and ridge

models and 0.51 for the deep learning model. Sensor 7, which refers to the right cheek, outputted

a R2 value of -19.14 for both the linear and ridge algorithms while the deep learning algorithm

had a R2 value of -6.50. This was the first extremely off case, which can only be accounted for

through computational error. Sensor 8, which refers to the left cheek, showed a value of 0.68 for

the linear and ridge regressions and -0.01 for the deep learning. The last sensor, sensor 9, which

refers to the right shoulder, was another outlier with values of -0.19 for the linear and ridge and

-0.12 for the Keras.

42

Chapter 5

Discussion

The results make it clear that the ridge and linear regression models both perform exactly

the same for this research, which did not agree with our initial testing. This can be explained by

the fact that ridge regression is just a slight augmentation of linear regression as linear is

extremely basic and simply ‘fits’ the best straight line to the datum. The purpose for ridge or

other linear regression variations is to make it less susceptible to outliers or overfitting. Since the

data library used in this research is extremely extensive and similar to each other, there are not

that many outliers, which explains why these two regression models tend to each other in this

research. Table 2 below showcases all R2 values for all three machine learning algorithms for

more concise access.

Table 2. R2 values for linear, ridge, and deep learning Keras regression models for all 10 non-targeted sensor locations.

Sensor Location Linear Regression Ridge Regression Deep Learning Keras

Left eye 0.78 0.78 0.68

Right eye 0.36 0.36 0.36

Forehead 0.42 0.42 0.42

Nose 0.69 0.69 0.84

Right ear 0.70 0.70 0.76

Left ear 0.82 0.82 0.85

Chin 0.36 0.36 0.51

Right cheek -19.14 -19.14 -6.50

Left cheek 0.68 0.68 -0.01

Right shoulder -0.19 -0.19 -0.12

43
 When comparing the three ML models, it can be seen that the linear and ridge regression

both performed better than the Keras regression on the left eye and left cheek only, while in all

other locations the deep learning Keras model performed the same or better. The entire reason

we added the Keras regression model because it performs continuously better with large

increases in data and isn’t such an ‘average’ fit as the linear and ridge are. With such a large

quantity of overpressure files running through these algorithms, it makes sense that the deep

learning model performs the best for the majority of locations. Additionally, the R2 value of 0.84

for the deep learning model on the nose is extremely promising as the nose is quite important in

datum locations for computational brain analysis.

 One trend to note about the resulting R2 values is that in the cases of ears, cheeks, and

eyes, the left locations have much higher values. An interesting factor, and one to be tested upon

more in the future, is the fact that for this thesis, the left shoulder was the shoulder chosen as the

targeted shoulder wearing a blast gauge, and the right shoulder was left to be a training sensor.

We believe that since the overpressure data from the left shoulder was used to predict facial

overpressures and not the right, the sensor locations that were closer to the left shoulder were

more accurate due to distance and reported higher R2 values.

 Another trend that needs to be addressed is the results of the bottom three sensor

locations in Table 2, the right cheek, left cheek and right shoulder. All three display negative R2

output values which can only be explained through computational error. This glitch can be

credited to either an error in exact sensor node location (maybe inside of soldier’s cheek, for

example) or an error in the implementation and processing of the data in the python code for

those locations. This could either be in the manipulation of the data at the beginning of the code

or the actual processing through the algorithms.

44

Chapter 6

Conclusion

Overall, it is clear that machine learning has extreme potential in prediction of facial

overpressures to be used in computational biomechanics research, and this thesis reiterates that.

The python code developed in this research that implements a linear regression, ridge regression,

and deep learning regression model, shows good promise for use with BlackBox Biometrics

three sensor gauge system. Unfortunately, the results of this thesis are not yet where they should

be in order for this company to actually make full use of this approach. Although the R2 values

for the non-targeted sensor locations show great qualities and tell us a lot about the next steps to

take, they are a bit lower than expected and hoped for. The additions in this research and the

resulting code are extremely helpful and a big step from previous work, however, there is still a

lot of work to be done in the future.

45
Chapter 7

Future Work

Due to the scope and additive nature of this research, there is still a large amount of work

to be done to increase its accuracy. This research is already years in the works, and can

potentially go on for many more. For the purposes of this thesis, I only worked with 4 different

soldier geometries with a total of 12 distinct models. The total count of overpressure file

scenarios used to train the machine learning algorithms was 2400. Hypothetically, the accuracy

of the algorithms predictive power for real life scenarios will increase as you increase the depth

of simulation scenarios covered, and this accuracy can be continuously improved upon. Although

the ML algorithms trained in this thesis could be used by BlackBox Biometrics to predict nose

overpressure based upon their head, shoulder, and chest overpressures with decent accuracy,

there is a lot of room for improvement. Moving forward, more soldier geometries and sub-

models with obstacles needs to be designed as well as a larger and more varied datum library of

scenarios. In theory, there is an infinite number of scenarios and geometries you could cover to

increase accuracy, so for future work, the breadth of datum needs be increased a lot.

Additionally, only three machine learning algorithms were trained for this thesis. Testing and

training a large variation of machine learning algorithms could provide for more predictive

power with certain ones. More in depth research on what kind of ML algorithm would work best

for this research would have to be conducted. Ultimately, the reason for this research and thesis

was to provide a fully trained machine learning algorithm for BlackBox Biometrics to use on

their real overpressure datum, so the next big step would be to actually test these trained

algorithms on their data. We believe that the code developed for this thesis isn’t at that stage yet

and still needs to be tweaked and debugged further as well as potentially added to.

46
Appendix A

Python Code for Machine Learning Algorithms

import s3fs
import matplotlib as plt
import numpy as np
import math
import pandas as pd
import os
import h5py

#Define root path
fs = s3fs.S3FileSystem()
root = "s3://blast-sim-data/"

Define first set of data to read
dataset = "SCENARIO_TRAINER_THESIS/"
root_folder1 = os.path.join(root, dataset)
print('Dataset Location = ',root_folder1)
files = fs.ls(root_folder1);
nfiles = len(files);

#import glob
#files1 = glob.glob("s3://blast-sim-data/breachers/*.txt");
files1 = files[1:nfiles];
files1 = files[1:2];
files1[:nfiles]

Important Variables
number of scenarios that will be processed. Each scenario should be
a different file from viper.
nscenarios = files1
print('nscenarios = ',len(nscenarios))
number of sensors per person
nspp = 13
Number of Sensors Worn (nsw) by person
nsw = 3 # chest, shoulder, helmet for B3
Peak duration extraction (time for which pressure is above x% of max)

47
PeakDurationExtraction = 0.5
def create_df(scenarios,root_folder):
 all_max_values = []
 all_max_durations = []
 AllPeakInformation = []
 StartEndIndices= {}
 OverPressureDuration = []
 combinedNames = []
 NewColumnNames = []
 npeople = []
 OverPressureDurationAll = pd.DataFrame()
 MaxDurations = pd.DataFrame()
 MaxPressureValuesAll = pd.DataFrame()
 MaxDurationValuesAll = pd.DataFrame()
 combinedDf = pd.DataFrame()
 ScenarioCounter = 0

 # each file represents a different scenario. each scenario could have
 # multiple people (npeople) with with multiple tracer locations or
 # number of sensors per person (nspp)
 for scenario in scenarios:
 ScenarioFileName = os.path.basename(scenario)
 ScenarioFilePath = os.path.join(root_folder,ScenarioFileName)
 df = []
 df = pd.read_csv(ScenarioFilePath, delim_whitespace=True, header=None)
 # remove time (the first column)
 df = df.drop(df.columns[[0]], axis=1) # df.columns is zero-based pd.Index
 #print('df = ',df)
 # read only 1st column to store time trace
 time = pd.read_csv(ScenarioFilePath,delim_whitespace=True,usecols=[0], header=None)
 #convert array to list
 #time = time.values.tolist()
 time = np.array(time)

 row, col = df.shape
 #print(row, col)
 npeople.append(int(col/nspp))
 #print(npeople[ScenarioCounter])

 #print(df.shape)

48
 #print(df)
 # makes single array with chest thresholds for each person, each sensor
 # basically half value of maximum in each column in df
 thresholds=PeakDurationExtraction*df.max(axis=0)
 # number of timepoints (number of rows in viper file)
 #print(time)
 ntimepoints=len(time)
 #print('ntimepoints = ',ntimepoints)

 # Initalize OverpressureDuration
 OverPressureDuration = []
 OverpressureDurationAll = []
 MaxPressureValues = []
 MaxDurationValues =[]
 frames = []

 print('npeople in Scenario ',ScenarioCounter,' = ',npeople[ScenarioCounter])
 # FIRST COMPUTE MAX PRESSURES
 for j in range(0,int(npeople[ScenarioCounter])):
 tmp = []
 for k in range (0,nspp):
 # Compute the max pressure values for this column,store only the pressures for this
person
 tmp.append(df.iloc[:,j*nspp+k].max())
 # Add pressures from this person to the total pressure list
 MaxPressureValues.append(tmp)

 ### NOW COMPUTE DURATIONS
 for j in range(0,int(npeople[ScenarioCounter])):
 tmp = []
 for k in range (0,nspp):
 start_index = -1
 end_index = -1
 for i in range(0, ntimepoints):
 if (df.iloc[i,j*nspp+k]>thresholds.iloc[j*nspp +k] and start_index == -1):
 start_index=i
 #break
 for i in range(start_index, ntimepoints):
 if df.iloc[i,j*nspp+k]<thresholds.iloc[j*nspp +k] and end_index == -1:
 #print('min detected !','sensor ',k+1, ' i index = ',i)

49
 end_index=i
 #break
 #print('start_index = ', start_index)
 #print('end_index = ', end_index)
 StartEndIndices[j*nspp+k+0] = start_index
 StartEndIndices[j*nspp+k+1] = end_index
 tmp.append(time[end_index][0] - time[start_index][0])
 MaxDurationValues.append(tmp)
 #print('MaxDurationValues = ', MaxDurationValues)

 print('finished processing scenario ',ScenarioCounter,'...')
 # save pressures into single arrary, first convert to dataframe
 MaxPressureValuesDF = pd.DataFrame(MaxPressureValues)
 MaxPressureValuesAll =
pd.concat([MaxPressureValuesAll,MaxPressureValuesDF],ignore_index=True)
 # save pressures into single arrary, first convert to dataframe
 MaxDurationValuesDF = pd.DataFrame(MaxDurationValues)
 MaxDurationValuesAll = pd.concat([MaxDurationValuesAll,
MaxDurationValuesDF],ignore_index=True)
 #print('MaxPressureValuesDF = ', MaxPressureValuesDF)
 ScenarioCounter = ScenarioCounter + 1
 #print('MaxPressureValuesAll = ', MaxPressureValuesAll)
 #print('MaxDurationValuesAll = ', MaxDurationValuesAll)

 #create column names for pressure df
 for k in range (0,nspp):
 # these numbers 0 1 2 may need to be modified based on nsw
 if k == 0:
 NewColumnNames.append('Chest-P')
 elif k == 1:
 NewColumnNames.append('Shoulder-P')
 elif k == 2:
 NewColumnNames.append('Helmet-P')
 elif k > nsw-1:
 NewColumnNames.append('Sensor-'+str(k)+'-P')
 MaxPressureValuesAll.columns=NewColumnNames
 NewColumnNames = []

 for k in range (0,nspp):

50
 #print(str(col)+'P')
 # these numbers 0 1 2 may need to be modified based on nsw
 if k == 0:
 NewColumnNames.append('Chest-D')
 elif k == 1:
 NewColumnNames.append('Shoulder-D')
 elif k == 2:
 NewColumnNames.append('Helmet-D')
 elif k > nsw-1:
 NewColumnNames.append('Sensor-'+str(k)+'-D')
 MaxDurationValuesAll.columns=NewColumnNames

 AllPeakInformation=pd.concat([MaxPressureValuesAll, MaxDurationValuesAll], axis=1)
 #print(AllPeakInformation)
 l1 = MaxDurationValuesAll.columns
 l2 = MaxPressureValuesAll.columns
 #print('l1',l1)
 #print('l2',l2)
 colNames = zip(l2, l1)
 #print(colNames)
 combinedNames = [name for pair in colNames for name in pair]
 AllPeakInformation = AllPeakInformation[combinedNames]
 #print(AllPeakInformation)
 return AllPeakInformation, MaxPressureValuesAll, MaxDurationValuesAll

#df1, peak_df1, max_values_df1, max_durations_df1 = create_df (files1,root_folder1)
AllPeakInformation, MaxPressureValuesAll, MaxDurationValuesAll = create_df
(files1,root_folder1)
#print(AllPeakInformation)

hf = h5py.File('ProcessedData.h5', 'w')
hf.create_dataset('AllPeakInformation', data=AllPeakInformation)
hf.create_dataset('MaxPressureValuesAll', data=MaxPressureValuesAll)
hf.create_dataset('MaxDurationValuesAll', data=MaxDurationValuesAll)
hf.close()

#Linear regression for peak pressure and peak duration (separately)
import sklearn
#from matplotlib import pyplot
import matplotlib.pyplot as plt

51
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import model_selection
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from math import sqrt
import pickle

used for DL
import tensorflow as tf
import os
tf.get_logger().setLevel('WARNING')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
print(tf.__version__)
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

define base model
def baseline_model():
 # create model
 model = Sequential()
 model.add(Dense(3, input_dim=3, kernel_initializer='normal', activation='relu'))
 model.add(Dense(1, kernel_initializer='normal'))
 # Compile model
 model.compile(loss='mean_squared_error', optimizer='adam')
 return model

Regression Models for Pressure

52
PredictorColumnNames = MaxPressureValuesAll.columns[0:nsw]
TargetColumnNames = MaxPressureValuesAll.columns[nsw:nspp]
SaveYTest = []
SaveYPred_LinReg = []
SaveYPred_rr = []
SaveYPred_DL = []
NumTests = 0
#for j in range(0,nspp-nsw):
for j in range(0,2):
 print('Sensor: ',j)
 X = AllPeakInformation[PredictorColumnNames]
 y = AllPeakInformation[TargetColumnNames[j]]
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=40)
 # save the y testing data to compare the predictions to
 SaveYTest = np.append(SaveYTest, y_test)

 # Set the number of tests...will be used for plotting.
 if j==0:
 NumTests = len(X_test)
 if j>0 and NumTests != len(X_test):
 print('Number of training tests are different! Will cause issues when plotting')

 # Linear Regression
 linreg = LinearRegression().fit(X_train, y_train)
 y_pred_LinReg = linreg.predict(X_test)
 SaveYPred_LinReg = np.append(SaveYPred_LinReg, y_pred_LinReg)
 print('Lin. Reg. MSE = %.2f' % np.sqrt(mean_squared_error(y_test,y_pred_LinReg)))
 print('Lin. Reg. R2 = %.2f' % r2_score(y_test, y_pred_LinReg))
 print(' ')

 # Ridge Regression
 rr = Ridge(alpha=0.01)
 rrf = rr.fit(X_train, y_train)
 y_pred_rr = rrf.predict(X_test)
 SaveYPred_rr = np.append(SaveYPred_rr, y_pred_rr)
 print('Ridge Reg. MSE = %.2f' % np.sqrt(mean_squared_error(y_test,y_pred_rr)))
 print('Ridge Reg. R2 = %.2f' % r2_score(y_test, y_pred_rr))
 print(' ')

 # Deep Learning - evaluate DL model

53
 estimator = KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0)
 kfold = KFold(n_splits=10)
 results = cross_val_score(estimator, X, y, cv=kfold)
 estimator.fit(X_train, y_train)
 y_pred_dl= estimator.predict(X_test)
 print('ML y_train Mean Squared Error: %.2f' % np.sqrt(mean_squared_error(y_test,
y_pred_dl)))
 print('ML y_train R2 score: %.2f' % r2_score(y_test, y_pred_dl))
 SaveYPred_DL = np.append(SaveYPred_DL, y_pred_dl)
 print('--------------------------- ')

print('Length of SaveYTest = ',len(SaveYTest))
print('Length of SaveYPred_rr = ',len(SaveYPred_rr))
print('Length of SaveYPred_LinReg = ',len(SaveYPred_LinReg))
print('Length of SaveYPred_DL = ',len(SaveYPred_DL))

from matplotlib.backends.backend_pdf import PdfPages
import matplotlib as mpl
mpl.rcParams.update(mpl.rcParamsDefault)

pdf_pages = PdfPages('Training-Results.pdf')
print('NumTests =',NumTests)
PlotPairs = int((nspp-nsw)/2)
#print(PlotPairs)
print
for j in range(0,PlotPairs):
 fig, axs = plt.subplots(1, 2,figsize=(10,5))
 iterator = (nsw-1)*j
 tmp_plot1 = []
 tmp_plot2 = []
 tmp_plot3 = []
 tmp_plot4 = []
 for i in range(0,NumTests):
 tmp_plot1 = np.append(tmp_plot1,SaveYTest[iterator*NumTests + i])
 tmp_plot2 = np.append(tmp_plot2,SaveYPred_LinReg[iterator*NumTests + i])
 tmp_plot3 = np.append(tmp_plot3,SaveYPred_rr[iterator*NumTests + i])
 tmp_plot4 = np.append(tmp_plot4,SaveYPred_DL[iterator*NumTests + i])
 axs[0].plot(tmp_plot1, label="Test")
 axs[0].plot(tmp_plot2, label ="Liner Reg.")

54
 axs[0].plot(tmp_plot3,'--b' , label ="Ridge Reg.")
 axs[0].plot(tmp_plot4,'--x' , label ="Deep Learning")
 axs[0].set_xlabel("Test Data Counter")
 axs[0].set_ylabel("Peak Pressure Prediction")
 axs[0].set_title('Sensor = '+str((nsw-1)*j))
 axs[0].legend(loc="upper right")
 plt.tight_layout(pad=8.0)

 iterator = (nsw-1)*j+1
 tmp_plot1 = []
 tmp_plot2 = []
 tmp_plot3 = []
 tmp_plot4 = []
 for i in range(0,NumTests):
 tmp_plot1 = np.append(tmp_plot1,SaveYTest[iterator*NumTests + i])
 tmp_plot2 = np.append(tmp_plot2,SaveYPred_LinReg[iterator*NumTests + i])
 tmp_plot3 = np.append(tmp_plot3,SaveYPred_rr[iterator*NumTests + i])
 tmp_plot4 = np.append(tmp_plot4,SaveYPred_DL[iterator*NumTests + i])
 axs[1].plot(tmp_plot1, label="Test")
 axs[1].plot(tmp_plot2, label ="Liner Reg.")
 #axs[1].set_xlabel("Test Data Counter")
 axs[1].set_ylabel("Peak Pressure Prediction")
 axs[1].plot(tmp_plot3,'--b' , label ="Ridge Reg.")
 axs[1].plot(tmp_plot4,'--x' , label ="Deep Learning")
 axs[1].legend(loc="upper right")
 axs[1].set_title('Sensor = '+str((nsw-1)*j+1))
 t = "An item is found at i"
 #axs[1].text(0, 0, t, wrap=True)
 axs[1].set_xlabel(r"Test Data Counter"
 "\n"
 "hi3")
 pdf_pages.savefig(fig)

pdf_pages.close()
print('Training Complete. Images saved.')

55
BIBLIOGRAPHY

[1] C. C. Taylor, P.A. and Ford, “Simulation of Head Impact Leading to Traumatic Brain

Injury,” Int. NeuroTrauma Lett., no. October 2016, 2007, [Online]. Available: http://isn-

csm.mit.edu/literature/2007-ijnl-taylor.pdf.

[2] S. H. Pedersen, A. Lilja-Cyron, R. Astrand, and M. Juhler, “Monitoring and Measurement

of Intracranial Pressure in Pediatric Head Trauma,” Front. Neurol., vol. 10, no. January,

pp. 1–9, 2020, doi: 10.3389/fneur.2019.01376.

[3] Centers for Disease Control and Prevention, “TBI: Get the Facts | Concussion | Traumatic

Brain Injury | CDC Injury Center,” U.S. Department of Health & Human Services. pp. 1–

3, 2019, [Online]. Available:

https://www.cdc.gov/traumaticbraininjury/get_the_facts.html.

[4] P. Rønning, E. Helseth, N. O. Skaga, K. Stavem, and I. A. Langmoen, “The effect of ICP

monitoring in severe traumatic brain injury: A propensity score–weighted and adjusted

regression approach,” J. Neurosurg., vol. 131, no. 6, pp. 1896–1904, 2019, doi:

10.3171/2018.7.JNS18270.

[5] Johns Hopkins Medicine, “Sports Injury Statistics.” 1 - 4, 2021, [Online]. Available:

https://www.hopkinsmedicine.org/health/conditions-and-diseases/sports-injuries/sports-

injury-statistics.

[6] D. Wallace and S. Rayner, “Combat helmets and blast traumatic brain injury,” J. Mil.

Veterans. Health, vol. 20, no. 1, pp. 10–17, 2012.

[7] K. Laksari, M. Kurt, H. Babaee, S. Kleiven, and D. Camarillo, “Mechanistic Insights into

Human Brain Impact Dynamics through Modal Analysis,” Phys. Rev. Lett., vol. 120, no.

13, p. 138101, 2018, doi: 10.1103/PhysRevLett.120.138101.

56
[8] A. H. S. Holbourn, “Mechanics of Head Injuries,” Lancet, vol. 242, no. 6267, pp. 438–

441, 1943, doi: 10.1016/S0140-6736(00)87453-X.

[9] S. Heimbs, J. Ritzer, and J. Markmiller, “A Numerical Method for Blast Shock Wave

Analysis of Missile Launch from Aircraft,” Int. J. Aerosp. Eng., vol. 2015, no. May, 2015,

doi: 10.1155/2015/897213.

[10] V. Karlos, G. Solomos, and M. Larcher, “Analysis of the blast wave decay coefficient

using the Kingery–Bulmash data,” Int. J. Prot. Struct., vol. 7, no. 3, pp. 409–429, 2016,

doi: 10.1177/2041419616659572.

[11] P. A. Taylor and C. C. Ford, “Simulation of blast-induced early-time intracranial wave

physics leading to traumatic brain injury,” J. Biomech. Eng., vol. 131, no. 6, pp. 1–11,

2009, doi: 10.1115/1.3118765.

[12] J. Iverson, “Glasgow Coma Scale.” StatPearls Publishing, Treasure Island, FL, 3–1, 2021,

[Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK513298/.

[13] A. S. Alali et al., “Intracranial pressure monitoring in severe traumatic brain injury:

Results from the american college of surgeons trauma quality improvement program,” J.

Neurotrauma, vol. 30, no. 20, pp. 1737–1746, 2013, doi: 10.1089/neu.2012.2802.

[14] P. H. Raboel, J. Bartek, M. Andresen, B. M. Bellander, and B. Romner, “Intracranial

pressure monitoring: Invasive versus non-invasive methods-A review,” Crit. Care Res.

Pract., vol. 2012, pp. 3–7, 2012, doi: 10.1155/2012/950393.

[15] “BlackBox Biometrics®, Inc.” Rochester, NY, 5–23, 2020 [Online]. Available:

https://b3inc.com/.

[16] Defense Advanced Research Projects Agency, “Blast gauge.” 2015, [Online]. Available:

https://www.darpa.mil/about-us/timeline/blast-gauge.

57
[17] L. Katch, “Reverse Source Localization for Identification of Overpressure Sources Based

on Wearable Bast Gauges,” The Pennsylvania State Univeristy, 2021.

[18] Q. Bi, K. E. Goodman, J. Kaminsky, and J. Lessler, “What is machine learning? A primer

for the epidemiologist,” Am. J. Epidemiol., vol. 188, no. 12, pp. 2222–2239, 2019, doi:

10.1093/aje/kwz189.

[19] National Institute of Biomedical Imaging and Bioengineering, “Computational modeling,”

Chemical and Engineering News, vol. 79, no. 35. p. 13, 2001, doi:

10.4135/9781412976626.n29.

[20] S. Karim and T. R. Soomro, “What Is Cloud Computing?” Amazon, pp. 1–27, 2020,

[Online]. Available: https://aws.amazon.com/what-is-cloud-

computing/?nc2=h_ql_le_int_cc.

[21] J. Brownlee, Machine Learning Mastery with Python: understand your data, create

accurate models, and work projects end-to-end. Machine Learning Mastery,

independently published, 2016.

ACADEMIC VITA

*Attached below

JACKSON MACKAY
jcm6102@psu.edu

EDUCATION
The Pennsylvania State University University Park, Pennsylvania
College of the Engineering Expected Graduation: May 2022
Bachelor of Science in Mechanical Engineering
Relevant Coursework: Computational Tools, Circuit Analysis, Thermodynamics, Heat Transfer,
Finite Element Engineering, Mechatronics, Mechanical Design, Fluid Flow, Material Science

Schreyers Honors College University Park, Pennsylvania
Accepted into the university’s prestigious honors college. Currently enrolled in honors classes August 2018-Present
and working on a professional thesis to be submitted to the college before graduation.
Held to the highest standards that the college upholds.
WORK EXPERIENCE
Critchfield Mechanical, Inc. San Jose, California
Project Engineer Intern May 2021-August 2021

• Helped in the process of bidding, estimating, and designing HVAC systems for buildings in Silicon Valley
• Calculated air distribution requirements for buildings based off of numerous criteria
• Sized and designed duct work, mechanical piping, and HVAC equipment to meet air distribution requirements.
• Prepared full cost estimates of materials, labor, fabrication, and design for HVAC systems

Computational Biomechanics Lab (Honors Thesis) State College, Pennsylvania
Undergraduate Researcher November 2020-Present

• Developing and printing 3D CAD models of wrestling head gear prototypes that contain head trauma sensors
• Making use of AWS computing to run thousands of blast overpressure simulation scenarios on soldiers
• Utilizing machine learning to predict facial overpressures for brain neural analysis through varied overpressure sim files

INVOLVEMENT
Engineers Without Borders University Park, Pennsylvania
Active General Body Member/Volunteer September 2018-2020

• Attending weekly meetings and volunteering hours to help on yearly EWB projects
• Designing and developing models and systems capable of sustaining the projects intentions
• Determining how to supply and distribute a clean water source to Namutamba, Uganda

Feeding the Community University Park, Pennsylvania
Head Community Outreach Chair October 2020-October 2021

• Attending meetings and volunteering hours to collect and provide resources for local food pantries
• Designing food drive boxes to be put out around the community to collect non-perishables
• Contacting food pantries to donate to as well as local businesses to use as donators or food drive locations

Sigma Pi University Park, Pennsylvania
Executive Secretary and Alumni Relations Chair January 2019-Present

• Promoting fellowship and developing leadership roles in the local community as well as Alumni connections
• Raising money for Penn State Dance Marathon (THON); largest student run philanthropy benefitting pediatric cancer
• Attending weekly chapter meeting as well as exec meetings while taking Secretary notes and providing leadership assistance

SKILLS/ HONORS/INTERESTS
Key Skills
CAD Capabilities (SolidWorks)

• Enrolled in multiple mechanical engineering courses in CAD and utilized it in an undergraduate research project
Coding Capabilities

• Studied MATLAB in multiple courses that integrated advanced calculus and tools as well as C++ through Arduino
Arduino Circuitry

• Analyzed circuits in multiple courses that utilized the Arduino circuit boards
Microsoft Office

• 10+ years of experience with Word, Excel, PowerPoint, and Outlook

Honors: Schreyers Honors Scholarship, Alpha Lambda Delta Honors Society Inductee, Dean’s List for four semesters
Interests: Mechanical Engineering, CAD Design, Circuitry, Civil Engineering, Physics, Aerospace, Astronomy, Finance & Business

	Thesis Final Submission - Jackson Mackay.pdf
	Chapter 1 Introduction
	1.1 Problem Statement
	1.2 Motivation

	Chapter 2 Literature Review
	2.1 What is TBI and ICP?
	2.1.1 Causation of Traumatic Brain Injury
	2.1.2 Science of Traumatic Brain Injury
	2.1.3 Intracranial Wave Mechanics Due to Blasts

	2.2 Diagnostics of Traumatic Brain Injury
	2.3 History of Intracranial Pressure Monitoring Technology
	2.4 History of Blast Gauges
	2.4.1 How do Blast Gauges Work?
	2.4.2 Blast Gauge Positioning Data Gap

	2.5 Past Thesis Work
	2.6 What is Machine Learning (ML) and Computational Modeling?
	2.7 AWS Computing and Viper

	Chapter 3 Materials and Methodology
	3.1 Viper CFD Simulation Software
	3.1.1 Viper Inputs and Considerations
	3.1.2 Monte Carlo

	3.2 Models
	3.2.1 Open-Field Geometry
	3.2.2 Sniper Geometry
	3.2.3 Breacher Geometry
	3.2.4 Crouched Geometry

	3.3 Computational Run Scenarios
	3.3.1 Amazon S3 Bucket Transfer Code
	3.3.2 Obstacles
	3.3.3 Blast Variation of Location and Magnitude for Scenarios

	3.4 Machine Learning Code

	Chapter 4 Results
	Chapter 5 Discussion
	Chapter 6 Conclusion
	Chapter 7 Future Work
	Appendix A Python Code for Machine Learning Algorithms

	Academic Vita.pdf

