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ABSTRACT 
 

Wearable sensors gauges are increasing in demand to be worn by soldiers in combat in 

order to track the overpressures that they experience. These sensors create the potential to 

analyze blast overpressures and their effects on the brain. One company, BlackBox Biometrics, 

have popularized these wearable gauges with sets of three typically being worn on the chest, one 

shoulder and the back of soldier’s helmets. The problem with this is that the overpressure data is 

tracked at these locations, and not the face which is needed for better brain computational 

analysis. Due to this, there is great interest in research on how to transform these chest-shoulder-

helmet datums into accurate facial overpressures. Prior research on this topic suggests that 

machine learning algorithms can accurately predict these sought after overpressures. In this 

paper we utilize a blast simulation application called Viper::Blast to simulate combat 

environments in order to collect a library of overpressure data to train linear regression, ridge 

regression, and deep learning algorithms for accurate prediction of facial overpressure to be used 

with BlackBox Biometric gauge data. 
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Chapter 1  
 

Introduction 

1.1 Problem Statement 

 Using machine learning algorithms based upon Viper simulation data to predict and 

analyze facial overpressures from body worn sensors in military blast scenarios.  

1.2 Motivation 

 Today, it is still highly unknown how to treat and prevent brain trauma effectively 

occurring from blast explosions in close proximity, i.e., in warfare scenarios. In an effort to 

understand brain trauma, brain neural analysis methods must be utilized. Currently, there is no 

way of accurately measuring facial overpressures in blast scenarios which is necessary for proper 

brain analysis. Due to the severity and extreme incidence of head trauma, especially in war, it is 

exceedingly becoming of importance that an accurate way of measuring facial overpressures be 

established.  
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Chapter 2  

 
Literature Review 

2.1 What is TBI and ICP? 

Traumatic brain injury (TBI) is an unfortunate condition that results in loss of motor, 

cognitive, or memory functions in the brain due to head impacts or blast overpressures on the 

head/brain [1]. TBI is a huge problem around the world today as it is one of the leading causes of 

mortality among children and adolescents [2]. Not only this, but it is extremely prevalent in 

athletes, soldiers, and even everyday drivers. Currently, there are over 5 million people who live 

with TBI in the United States alone [1]. According to the CDC, 53,000 people die from TBI-

related injuries every year which contributes to 30.5% of all injury-related deaths [3]. With no 

signs of halting, TBI related cases continue to rise and become more and more of a global 

problem.  

Although the incidence of TBI is increasing worldwide, the understanding and research 

into long-term outcomes is still limited. Prevention and treatment are becoming more and more 

of a necessity for TBI as cases increase. In order to research and test ways for both, it has been 

hypothesized that monitoring of intracranial pressure (ICP) can facilitate and help treat or 

prevent traumatic brain injury [4].  

ICP is the pressure that the brain experiences from things like blows to the head or blast 

explosions. Monitoring of ICP allows researchers to analyze how the brain reacts to pressure and 

what damage it can cause [2]. This data can directly translate to TBI and how it occurs from 

overpressures. In the past, pediatric TBI centers across Europe and the US have conducted TBI 

monitoring studies which have unanimously reported the use of an ICP threshold of 20 mmHg, 



3 
meaning ICP values above this can cause brain damage [2]. In order to better understand 

traumatic brain injury and how intracranial pressure monitoring is related, we need to understand 

the causes of TBI.  

2.1.1 Causation of Traumatic Brain Injury 

Traumatic brain injury can be caused by any force or impact on the head/brain, so 

naturally there are many different ways this can occur. Falls among children (0 to17 years) and 

older adults (65 years and older) accounted for 48% of all TBI-related ED visits in the same year 

in the US [3]. Another 17% of ED visits was caused by being struck with or against an object 

[3]. For just general TBI cases, 21% are caused by sports or recreational activities among 

American children. [5]. And more specifically, 50% of those cases occur during bicycling, 

skateboarding, or skating [5]. These statistics are alarming in their own right, but are reported in 

a country with no real warzones.  

An overlooked statistic of TBI related cases and something that isn’t reported in US 

hospitals normally is from explosive mechanisms and blast overpressures in military 

environments. In the wars in Iraq and Afghanistan, explosive mechanisms or improvised 

explosive devices (IEDs) accounted for 70-75% of allied military killed or wounded – the 

leading cause of casualty [6]. For those that survived blasts or nearby explosions, 35% of allied 

soldier deaths were caused by TBI in 2009 [6]. The US Department of Defense estimated the 

total number of medically diagnosed cases of TBI in the US military from 2000-2010 was 

202,281 [6]. Due to the extreme numbers of TBI related cases and deaths from the Iraq and Iran 
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wars, there has been a huge push for research into TBI and the science behind it in order to better 

understand it.  

2.1.2 Science of Traumatic Brain Injury 

The mechanism of production of TBI differs amongst the causation and is dependent 

upon the physics of the brain [7]. Modeling of human brain physics first dates back to the 1940s 

where Halbourn, an Oxford research physicist, stated that the behavior of the skull and brain 

during and immediately after impact was determined by five physical properties of the 

skull/brain and Newton’s laws of motion [8]. These physical properties are as follows: the brain 

has comparatively uniform density, it’s extremely incompressible, it has a very small modulus of 

rigidity, the skull has a comparably large modulus of rigidity, and the shape and size of the 

brain/skull [8]. On the basis of these five properties and modeling experiments, Halbourn 

concluded that the amount of pulling apart of the brain particles during impact was 

proportionally related to the shear-strain occurring within the brain [8]. This directly leads to the 

discovery that shear-strains are the cause of injury to the brain. Halbourn found that brain injury 

naturally falls into two categories due to mathematical theory: localized injury due to skull 

distortion, and injury due to rotation [8]. As one can imagine, if the skull is distorted or fractured, 

major shear-strains can develop in the brain around the fracture causing massive damage. In this 

case, hemorrhaging is common and can cause internal bleeding and quickly become life 

threatening [8].  

In the case of non-distortion of the skull, brain injuries are rooted in the rotational 

acceleration of the brain/skull. The reason that rotational acceleration is the cause of injury is 
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because the shear-strains produced by linear acceleration are relatively small and can be 

neglected [8]. This can easily be seen by filling a flask with water where moving it linearly 

produces little effect on the water whilst rotating the flask tends to leave the water behind as 

water particles attached to the surface of the flask separate from neighboring particles not 

attached to the flask [8]. This is obviously an exaggerated model but holds true to the effects on 

the brain. Halbourn went on to actually run experiments on the shear-strain concentrations in the 

brain due to different rotations caused by different blows to the head. The most striking aspect of 

this study is the large shear-strain concentrations in the anterior temporal lobe compared to the 

absence in the cerebellum. This can be explained by the fact that the skull is somewhat attached 

to the brain at this location and causes massive shearing when rotating at a high enough velocity 

[8]. Additionally, a force impulse on the head creates non-linear shear waves which propagate at 

different speeds in different regions therefore creating localized strain concentrations in different 

regions [7].  

The development of these shear-strains can be applied to many different types of brain 

injuries and their causation. Although the physics discussed above was for direct impacts on the 

head, it can still be applied for indirect pressures on the head, such as an explosion/blast. Blast 

pressure waves act slightly different then the shock waves produced from direct blows and 

therefore must be modeled differently within the brain. 

2.1.3 Intracranial Wave Mechanics Due to Blasts 

For blast pressure waves, the mechanism is less understood, but can be related to the 

Friedlander waveform which causes rapid rise in pressure to a peak over-pressure, followed by a 
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negative pressure drop period of under-pressure. After passing through the skull, this negative 

pressure drop can lead to cavitation within the head/brain tissues [6]. This over to under pressure 

can be seen in Figure 1 along with the Friedlander equation.  

 

Figure 1: Pressure versus time curve of a typical Friedlander blast wave model. 

𝑃𝑃𝑠𝑠(𝑡𝑡) =  𝑃𝑃𝑠𝑠𝑠𝑠 �1 − 𝑡𝑡
𝑡𝑡0
� 𝑒𝑒−𝑏𝑏

𝑡𝑡
𝑡𝑡0  (1) 

 In the Friedlander equation, there is a decay coefficient b defined which is very important 

to how these waves function in different materials [10]. Blast waves vary depending upon the 

material they are in or if they are incident or reflected, and the coefficient b allows this equation 

to be dynamic for different cases [10]. For the case of blast waves, brain shear-strains develop 

not only from rotational acceleration but also from the interaction of these blast waves with brain 

composition.  

 Paul Taylor, a researcher at the Sandia National Laboratories, created a model of these 

blast waves within the brain in order to test this interaction [11]. The brain model was much 

more complex and realistic than Halbourns model in the 1940s. It included cerebrospinal fluid 

and air in the sinuses in addition to the skull and brain for more accurate results [11]. The model 

was run through three different orientations of blast exposure simulations with a time interval of 

only 2 ms as the majority of the intracranial wave mechanics was observed to occur almost 
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immediately [11]. For the tests, blasts were placed in the front, back, and right side of the model. 

The pressure within the brain closest to the blasts was recorded the highest and the opposite end 

of the brain correlated to the highest volumetric tension [11].   

This study confirmed the fact that blast waves have an extreme effect on the brain before 

any brain acceleration even occurs. Due to this, the initial blast wave interaction within the brain 

must be included with the shear-strains developed from rotational acceleration. This helps 

researchers and doctors diagnose TBI with more specificity to the amount of shear-strain and 

what is causing it.  

2.2 Diagnostics of Traumatic Brain Injury 

A commonly used diagnostic scale for TBI is the Glasgow Coma scale. The scale is 

weighed upon three aspects of responsiveness: motor, verbal, and eye-opening responses [12]. 

The levels of each respective parameter are scored from a minimum value of 1 (no response) up 

to a maximum value of 4 for eye-opening response, 5 for verbal response, and 6 for motor 

response [12]. Thus, the Glasgow Coma scale has values between 3 (worst) and 15 (best) [12]. 

Each numbered score for each parameter has a descriptive category that allows for ease of 

scoring. In addition to this scale, TBI can be categorized by the cause of injury. The three main 

categories of TBI are closed head (CHTBI), penetrating (PTBI), and explosive blast (EBTBI) 

[6]. Within these groupings, a range of severity is noted ranging from mild (GCS13-15) to 

moderate (GCS9-12) to severe (GSC3-8) with mild meaning just a brief change of consciousness 

(concussion), severe meaning a significant period of unconsciousness/memory loss, and 

moderate lying everywhere in between the two [3], [12]. Although the Glasgow Coma scale can 
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get specific, categorizing and diagnosing of TBI can be further broken down by the use of ICP 

monitoring. 

2.3 History of Intracranial Pressure Monitoring Technology 

Intracranial pressure (ICP) monitoring has been theorized and tested for decades. In 1951, 

the first data set published on ICP measurement was by two French doctors named Guillaume 

and Janny [13]. They were able to create continuous ICP monitoring through an electronic 

magnetic transducer (EMT) [13]. This allowed them to measure the changes in ventricular fluid 

pressure within the brain. Their findings directly led to the first comprehensive analysis of ICP in 

patients using curve morphology in 1965 [2]. In both cases, a transducer coupled to an external 

ventricular drain (EVD) was used to measure ICP with great accuracy [2]. This is an invasive 

monitoring device that is inserted into the brain at location A shown in Figure 2. This device 

works to measure the pressure within the brain by connecting a drainage tube from the inside of 

the brain to the outside of the head to measure the difference between atmospheric pressure and 

intercranial pressure. It simultaneously drains cerebrospinal fluid (CSP) in order to manage 

intracranial hypertension, which is basically just an increased overall pressure in the skull [2].  

 

Figure 2. Different ICP Monitoring device insertion locations. Source is open-access. 
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Due to the extremely invasive nature of the EVD, an overall complication rate of 20-25% 

has been estimated for it which includes infection, hemorrhage, misplacement, and malfunction 

[2]. With this in mind, other methods of ICP monitoring have been developed. Parenchymal 

monitoring is another means of measuring ICP in a less invasive way. It can take on many 

different forms including fiber optic sensors (Camino ICP Monitor) which transmits light via a 

fiber optic cable towards a displacement mirror, strain gauge devices (Codman MicroSensor ICP 

sensor) which measure the resistance change in an inserted transducer correlating to ICP, and 

pneumatic sensors which make use of a small balloon connected to a catheter placed within the 

brain to register changes in pressure [2], [14]. Each of these monitoring techniques are used in 

different parts of the brain and at different depths. The most commonly used are the strain gauge 

devices which are still inserted into the brain like the EVD, but is instead placed within the 

frontal lobe at a depth of only 2cm at location B shown in Figure 2 [2].  

Another monitoring method, telemetric ICP monitoring, is an even less invasive device 

that uses a parenchymal strain gauge sensor coupled to a wireless transcutaneous data transmitter 

in order to wirelessly collect pressure data [2]. The telemetric device is inserted at location C 

shown in Figure 2. Even though the parenchymal and telemetric devices are less invasive and 

still very accurate, they also have high complication rates [2]. Due to the invasiveness and high 

risk of these devices, researchers and doctors are currently looking for more accurate and 

preferably non-invasive ways to monitor ICP. The recent development of blast gauges is a 

promising way to monitor overpressures without being inserted in the brain and could be used 

for future ICP monitoring.  
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2.4 History of Blast Gauges 

Wearable blast gauges for soldiers have had a semi short history. Towards the end of US 

involvement in the Iraq War, 200,000 US soldiers came home with TBI related injuries without 

proper data in-battle to know the causes [15]. In light of this, the Defense Advanced Research 

Projects Agency (DARPA) enlisted the help of the Rochester Institute of Technology (RIT) to 

develop the Blast Gauge [16]. In 2011, the team developed the Blast Gauge and formed a 

business called BlackBox Biometrics to manufacture and sell them. This device allowed for 

measurement of blast overpressures to be analyzed for blast propagation and traumatic brain 

injury. Today, BlackBox Biometrics have sold 550,000 Blast Gauges [15].  

2.4.1 How do Blast Gauges Work? 

The Blast Gauge developed by BlackBox Biometrics works in a multi-sensor set meaning 

one is placed on the back of the helmet, the chest, and a shoulder [15]. It has the ability to record 

pressure and acceleration data in real-time. There are seven parts worth noting on the Blast 

Gauge as seen in Figure 3. The main component of the gauge is the sensor dome which has an 

accelerometer for acceleration data and takes in blast pressure waves to store pressure data. It has 

a recessed activation button to make sure it doesn’t activate/deactivate unwanted and indicator 

lights of red, green, and yellow to provide instant exposure data [15]. Although it has wireless 

technology to transfer data, it has a micro-USB port for full time-based data analysis [15]. The 

Blast Gauge also has an impact resistant casing, a heavy-duty attachment cord for seamless body 

connections, and a color-coded body placement mark for each respective body part. This device 

works by tracking triage data from the three body locations through proprietary software which 
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is very helpful in tracking pressure data near the head/face, but does not track the direct pressures 

on it. [15]. 

 

Figure 3: The Blast Gauge System by BlackBox Biometrics [15]. 

2.4.2 Blast Gauge Positioning Data Gap 

The Blast Gauge is the current best blast pressure tracking system for soldiers, but still 

has a gap from its data to real facial pressures. Due to the fact that the Blast Gauge is set up on a 

soldier’s chest, head, and shoulder, it tracks pressure data at those exact locations. This data set, 

called triage data, can help estimate facial overpressures but is far from an exact facial pressure 

measurement. Currently, there is no accurate transfer function from body sensor to face and no 

real way to get accurate data on the face from Blast Gauges for brain analysis.  

2.5 Past Thesis Work 

 Lauren Katch, a Schreyer alumnus, previously wrote a thesis on this topic to help 

determine this transfer function. She focused on developing a geometric transfer function that 
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would triangulate the data from the chest, shoulder, and helmet to identify the magnitude and 

location of the blast source [17]. This was called inverse-source localization and was the focus of 

her thesis. She ran simulations through a blast simulation software known as Kodiak CTH and 

tracked pressure data on the shoulder, head, and helmet of a soldier model. She fit a geometric 

model to the data to try and predict the locations of the blast explosions, but this fit model had an 

average error of 71.23% [17]. She concluded that blast explosions at close-range were too 

complex for a geometric algorithm. Katch then went on to attempt a different route of data 

transfer, through machine learning. Instead of predicting the location of the blast, this time she 

used chest, helmet, and shoulder data to predict nose data. Since most of the thesis work was 

spent on the geometric algorithm for inverse-source localization, the machine learning approach 

is limited. However, with just a limited number of simulations, she was able to predict nose 

pressure data with relatively high accuracy and proved that machine learning could be a viable 

option [17]. My thesis work aims to build off of Katch’s, and create an accurate machine 

learning algorithm through an immense variety of blast simulations instead of using already 

developed algorithms like she did.  

 

2.6 What is Machine Learning (ML) and Computational Modeling? 

Machine learning is essentially computer programming directly rooted in artificial 

intelligence (AI). It allows computers to ‘learn’ and change things without being directly coded 

to do so [18]. Utilizing machine learning algorithms enables computers and AI to predict things, 

which can be an extremely useful tool. How machine learning works in theory is simple but in 
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application requires large and complicated algorithms. Basically, computers are able to learn, 

predict, and improve by experience through large amounts of tasks, simulations, and data runs. It 

is quite similar to statistical algorithms by fitting to data [18]. Machine learning is generally 

classified into two groups: “supervised” and “unsupervised” learning. Supervised learning occurs 

when the value of the dependent variable is known for each observation [18]. Unsupervised 

learning occurs when the outcome or value of the dependent variable is not known, and the 

algorithm attempts to fit data for it through identified natural relationships [18]. One of the most 

popular machine learning algorithms is decision trees. Decision trees create a series of rules 

based upon continuous input variables to predict outputs variables through decisions [18].  

Figure 4 shows an example of a breakdown of a basic decision tree machine learning algorithm. 

 

Figure 4: Basic breakdown of a decision tree showcasing root, interior, and leaf nodes used to make decisions. 

Decision tree algorithms are generally easy to understand and used frequently. The type 

of machine learning algorithm that Katch used in her thesis was the random forest which is a 

type of decision tree algorithm. In any case, the benefit of using machine learning is that it can 

analyze “Big Data” or extremely large data sets, tasks, simulations, or computational models 

which computers can run through extremely fast [18]. 
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Computational modeling is the simulation and study of complex systems using computers 

[19]. This is another extremely useful tool which allows scientists and researchers to simulate 

thousands of experiments extremely fast through a multi-variable model. Through these 

computer-generated results, laboratory or field experiments can be identified to be most effective 

in solving the problem being studied through modeling [19]. This is how Taylor, and the Sandia 

National Laboratories, was able to run blast simulations on a brain model to determine that blast 

waves have an effect on ICP in addition to brain rotational acceleration. They modeled a realistic 

brain in a computer and created a code to run blast simulations to collect ICP data. Katch also 

made use of computational models of soldiers to collect overpressure data on the chest, head, and 

shoulder of a soldier for analysis. There are many useful computational modeling applications 

for blast simulations including the Kodiak CTH used by Katch. For my own work, I will be 

using a computational modeling platform known as Viper::Blast.  

2.7 AWS Computing and Viper 

Viper::Blast is a weapon effects simulator used to create computer models to run 

simulations on. In brief, the application takes an STL file of a Computer Aided Design (CAD) 

model (of a soldier) then uses set inputs such as boundary conditions, initial blast location, 

sensor locations, and potential obstacle locations to output pressure data at the sensor locations. 

The interface for this application is shown in Figure 5.  
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Figure 5. Interface of Viper::Blast, a weapons effect simulator utilized for close proximity blast explosions. The software 
imports CAD models of soldiers and uses sensors (yellow dots) placed all around their heads to track pressure data from 

blast explosion sites (red dot). 

Every simulation ran on Viper automatically creates an overpressure data output file 

which compiles all the pressure vs. time data at every sensor location for the simulation run. This 

application also has a feature called Monte-Carlo (as seen in one of the tabs in Figure 5) which 

allows for the setup of multiple different simulation runs at once. For example, this feature 

allows the user to run hundreds of blast simulations in succession with each run having a 

different input value such as the blast location or an obstacle location. This feature allows for 

mass simulating to collect tons of different overpressure data files. The Monte-Carlo feature is 

important because if you were to input these overpressure data files into a machine learning 

algorithm, the algorithm would be able to predict certain outputs with higher accuracy the more 

data it collects and uses. The downside of Viper and this feature is that it takes a lot of computing 

power and usually cannot be done on common laptops and computers. 

Amazon Web Services (AWS) is a platform that allows users to gain local access to 

powerful computers that amazon owns. These supercomputers are more than capable of running 
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mass simulation programs such as Viper. The way AWS works is through cloud computing, 

which is basically a wireless connection to IT resources over the internet [20]. So instead of 

physically owning data centers, servers, computing power, massive storage, and databases, you 

can simply “connect” to a needed technology service through AWS on a pay-as-you-go basis 

[20].  

In essence, this thesis aims to use computational modeling to simulate blast overpressure 

scenarios through the application Viper on an AWS computer and then use machine learning to 

predict and analyze facial overpressures from these simulations. This will allow us to apply our 

machine learning algorithm to real blast gauge data from BlackBox Biometrics to better estimate 

human facial overpressures from blasts. With this, researchers and doctors will be able to better 

track ICP non-invasively to find ways to treat and prevent TBI.  
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Chapter 3  

 
Materials and Methodology 

3.1 Viper CFD Simulation Software 

 All simulations and collection of overpressure datum in this thesis were ran and extracted 

from Viper. In order to fully understand the methodology of Viper used in this thesis, a deeper 

explanation of its functionality must be introduced. 

3.1.1 Viper Inputs and Considerations 

 In order to properly execute CFD blast simulations in Viper, a great deal of inputs and 

boundary conditions need to be manually set. The most important input is the geometry for 

which the blast is being set around, which in these cases is .stl files of soldiers in different 

scenarios. These geometry models will be discussed with more detail in Section 3.2. Besides the 

model input, there are three other important input categories. For starters, the domain of the blast 

simulation area must be manually set with considerations of real life applications and what’s 

necessary for proper overpressure data collection. Additionally, the makeup of the explosive 

charge must be inputted with considerations for composition, mass, density, energy, locations, 

and shape. For all scenarios, the composition was set to be TNT, the density was kept constant at 

1600 kg/m^3, and the energy produced was set to 4.52e+06 J/kg. The mass, location, and charge 

shape were all varied in different ways to produce large sets of different scenarios. An example 

of these inputs directly in the Viper interface can be seen in Figure 6.  



18 

 

Figure 6. User input data example in the Viper interface for the Domain and Charge for CFD blast simulations 

The third important user input is the time history output locations, or just simply the 

overpressure sensor locations. This is what allows us to set sensors on the body of the soldier 

geometries. In short, these sensors are created and placed on the geometries directly in Blender, a 

CAD software that the soldier models were created in. Again, this will be further discussed in 

Section 3.2. For understanding of Viper user input, these sensors are extracted from Blender in a 

text file giving label and coordinate information which is then inputted directly into Viper. For 

all soldier geometries, there are a total of thirteen sensors placed on each soldier. Their locations 

respective to each person is as follows: left eye, right eye, forehead, nose, left ear, right ear, chin, 

right cheek, left cheek, chest, back of the helmet, left shoulder, and right shoulder. This is a large 
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upgrade from the four sensor locations that were used in the simulations that Katch ran in her 

thesis. The reason for the addition of nine new sensors was to create a more accurate sensor field 

over the face of the soldier in order to better collect and train data to predict the overpressures 

across the face, rather than just at the tip of the nose. An example input table of the time history 

output locations can be seen in Figure 7. These can be visualized on a solider model in Figure 8 

below.  

 

Figure 7. Time history output locations example table for the Sniper geometry model with all thirteen sensors labeled 

 

Figure 8. All thirteen overpressure time history output sensor locations on an open-field model. 
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 Besides these inputs, there are other constants and considerations to be noted. All 

scenarios set the atmospheric pressure and temperature to 101325 Pa and 288 K, respectively. 

All boundaries of the simulation domain were set to be perfectly transmissible, and all obstacles 

(including the ground) were set to be perfectly reflective. Creating realistic destruction of 

obstacles which would allow for some transmissibility is outside the scope of Viper simulations.  

3.1.2 Monte Carlo 

 As mentioned in Section 2.7, the Monte-Carlo feature allows for automated running of 

variations of inputs in order to create different simulation scenarios. It is the reason why Viper is 

so good at batch processing and running large amounts of simulation scenarios. In essence, the 

more data you run through a machine learning algorithm to train it, the more accurate it will 

become, making the Monte-Carlo feature extremely valuable for this thesis. The focus for 

different scenarios simulated was varying the charge locations as well as its mass, primarily. This 

is in addition to other variations such as movable objects, walls, etc. All other variables were 

kept constant in this feature. In order to vary an input, a mean, standard deviation, and number of 

scenarios were set for a uniform distribution. An example input interface for the Monte-Carlo 

feature can be seen in Figure 9.  
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Figure 9. Monte Carlo example user input for the Breacher geometry.  

 This will create a randomized distributed table of blast scenario runs with the prescribed 

inputs. The inputs that we wish to vary, explosive mass and location, will be generated in a 

distribution while all other inputs will remain constant, as shown in Table 1. Two things to note 

is that the blast location must be within the set domains, and obviously, mass cannot be negative. 

 State Mass X_3d Y_3d Z_3d HOB_2d dx_1d dx_2d dx_3d E Density AB_e AB_t AtmosP AtmosT 

1 0 7.864 -0.76 -11.0 3.95 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288 

2 0 4.823 -1.09 -2.44 1.11 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288 

3 0 3.176 -1.23 0.37 0.72 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288 

4 0 1.107 1.57 -8.34 2.71 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288 

5 0 10.823 -4.72 2.17 4.45 0.3 0.001 0.005 0.08 4.5e6 1600 1 0 101325 288 

Table 1: Monte-Carlo generated distribution example for five scenarios for the breacher model with variation of explosive 
mass and location. 

 After randomized uniform scenarios are created with this feature, Viper allows you to run 

all scenarios in succession. Since Viper creates output files automatically, this feature creates 

folders for all output files as well. The only file we are interested in in these folders is the 
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overpressure files, so in order to easily extract these files for collection from a large amount of 

scenario files, a small code is needed. This code, seen in Figure 10, just simply extracts all files 

from all Viper created scenario folders with the name ‘viper3d_th_overpressure.txt’ (which is the 

automatic name given to overpressure output files from Viper) and then transfers them to a 

newly created folder for ease of access. Unfortunately, the downside of this code is that each 

different geometry model needs its own variation.  

 

Figure 10. Example file collection code for the Sniper geometry model.  

3.2 Models 

In order to generate an exhaustive data library with many different scenarios for better 

machine learning training, four completely different CAD designs were created. All four were 

designed by two freelance workers on UpWork that Dr. Kraft hired, Ahmed Aly and Mykhailo 

Havrylets, as mentioned in the Acknowledgements section in this thesis. They utilized a CAD 

application called Blender, a comprehensive modeling platform that allows for creating 2D and 

3D models. Not only were they able to design and mesh extremely detailed soldier geometries, 

but they also created sensor tracers in Blender which were used in Viper for simulations. These 

four CAD models were then used to create 12 distinct testing model variations by addition of 

obstacles and items. This was done to increase depth of scenarios covered to hopefully create a 

more accurate and wider scoped ML algorithm. These 12 models are the basis for all 2400 

simulation scenarios created for analysis through this thesis.  
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3.2.1 Open-Field Geometry 

The first geometry that was created (and utilized by Katch in her honors thesis) has been 

labeled as the open-field geometry. This is a basic standing single soldier geometry with a 2m x 

2m x 2.5m (height being 2.5m) box obstacle included. The open-field geometry can be seen in 

Figure 11. 

 

Figure 11. Open-field geometry model and box obstacle model shown in Blender. 

 A large quantity of simulation scenarios was run for this model with variations in charge 

location, charge mass, and obstacle location. Utilizing the existence of the block obstacle, a total 

of five different models for this soldier geometry was created. Exact scenarios will be further 

covered in Section 3.3, Computational Run Scenarios, and obstacle model variations will be 

shown in Section 3.3.2, Obstacles.  
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3.2.2 Sniper Geometry 

To add some more realism to these simulations, a model of a laying down soldier firing a 

sniper rifle was designed. For this scenario, instead of an explosive bomb going off near the 

soldier, the blast is located at the tip of the sniper rifle to model a sniper rifle backfiring and 

exploding. The sniper geometry can be seen in Figure 12.  

 

Figure 12. Sniper geometry model shown in Blender 

 The initial plan was to keep with the realism of this model, which would mean there 

wouldn’t be much variation in regard to blast mass or location as its supposed to be a gun 

exploding. However, for the sake of mass data collection for ML training, we also created 

simulation scenarios with randomized blast location and mass around the sniper. This will be 

further covered in Section 3.3, Computational Run Scenarios.  
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3.2.3 Breacher Geometry 

 Another model that was created was the Breacher geometry which is a collection of eight 

soldiers in a line. This geometry was trying to model the scenario of a group of soldiers moving 

forwards together in close quarters to try and minimize exposure and damage from the front. 

This model can be seen in Figure 13. 

 

Figure 13. Breacher geometry model shown in Blender. 

 Since this was our largest model and had eight different sets of sensors for each soldier, 

we decided to run lots of different scenarios for it. Variations with blast location, blast mass, wall 

obstacles, as well as the addition of a riot shield for the first soldier were created. With the 

existence of a wall obstacle and riot shield, four different models were created for this soldier 

geometry. These obstacle model variations will be covered in Section 3.3.2, Obstacles. 
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3.2.4 Crouched Geometry  

 The last model that was created was the crouched geometry which is a single soldier. 

This geometry aimed to model a soldier crouching down and putting their hands over their head 

for protection from an incoming explosive. As this model represents a very likely scenario for a 

soldier in combat with an explosive going off, this was a welcomed addition for simulations. 

This geometry can be seen in Figure 14 below. 

 

Figure 14. Crouched geometry model and wall obstacle shown in blender.  

 Due to the realism of this geometry, this model was also utilized with a breadth of 

simulation scenarios. The charge location and mass were varied greatly, and the addition of a 

wall obstacle was created. The idea for the wall geometries orientation was that in this model 

scenario, the soldier was crouching up against a wall to try and protect themselves from a blast 

behind them. With the addition of the wall, there were two different models created for this 

soldier geometry. 
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3.3 Computational Run Scenarios 

Utilizing Viper, we ran a total of 2400 simulation scenarios. The idea behind the 

breakdown was to run an even 200 scenarios for each model created. This can be broken down 

into 800 for the breacher geometry (four models), 1000 for the open-field geometry (five 

models), 200 for the sniper geometry (one model), and 400 for the crouched geometry (two 

models). Computational run scenarios for all geometries simultaneously varied explosive mass 

and location which was done through the Monte Carlo feature. An important tool we utilized for 

creating a data library to store all these run simulation scenarios was Amazon’s S3 Bucket.  

3.3.1 Amazon S3 Bucket Transfer Code 

 The Amazon S3 Bucket is a great tool to use for compiling large data libraries for ease of 

access. Due to the sheer number of simulations, i.e., data files, that this research calls for, we 

decided to make use of this AWS service. In order actually move our data to the S3 Bucket, a 

series of steps needed to be taken. As discussed in Section 3.1.2, a small code was created to 

extract and compile the overpressure files created by Viper. In order to run this code and then 

send the compiled data to the Amazon S3 Bucket, certain commands need to be inputted into 

Cygwin64 Terminal, a Windows command application. These commands can be seen in Figure 

15 and 16 below.  

 

Figure 15: Cygwin64 Terminal commands for running the File Collection Code. 
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 The above two lines of command in Figure 18 show the process of locating a certain 

directory (which houses the compilation code file) on the computer using the command cd and 

then simply running the code by utilizing the command ./ followed by the name of the code (An 

example collection code can be seen in Figure 10). One thing to note is the file collection code is 

unique and needs to be changed depending on the situation, therefore, there were 12 different 

codes created for all 12 model variations. For ease of this code and ease of running through data 

in the machine learning code, all files were inputted into the same folder on the S3 Bucket, but 

we did separate them on the computer directory for our own reference.  

 

Figure 16: Cygwin64 Terminal commands for exporting files to AWS S3 Bucket 

 The single command line shown above in Figure 16 (first cd command line just finds 

directory as already stated, which in this case is different from previous directory) is the most 

important command line for this process. Utilizing the imported command aws, we are able to 

send all the overpressure files collected straight to the AWS S3 Bucket. This concludes the 

process of extraction, collection, and transfer of the overpressure files.  
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3.3.2 Obstacles  

 To increase variation and realism of data, we added obstacles surrounding the breacher, 

crouched, and open-field models. Since the obstacle created for the crouched geometry has 

already been covered and shown in Section 3.2.4, it will be excluded from this section. The focus 

for this section will be to show the obstacle variations for the breacher and open-field models as 

they have the most sub-models. For the open-field geometry, a box obstacle was included into 

the blast area, as already mentioned in Section 3.2.1. This obstacle was positioned in four 

different locations all evenly spaced 2 m in the x and 2 m in the y away from the soldier. This 

was the basis for the first four models of the open-field geometry. The fifth model was simply 

the soldier geometry surrounded by four box obstacles in all four locations to simulate a small 

two way corridor. All four obstacle locations can be seen in Figure 17.  

 

Figure 17: Isotropic view of Open-Field soldier geometry for clear view of the box obstacle and its four distinct locations 
in blender. 
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 Since viper does not support textures or compositions of objects, the box was set to be an 

ideal and perfectly reflective object, which holds true with all objects/obstacles used in this 

research. Obviously, this is not realistic, but will still give us good data to train a machine 

learning algorithm with.  

 Furthermore, two different obstacles were created for the breacher geometry, as 

previously mentioned, resulting in a total of four different breacher models to run scenarios on 

(one with none, one with both). In one instance, a riot shield type obstacle was added to the front 

soldier of the breacher line. The other obstacle we decided to add was a two sided wall 

surrounding the breacher line. These obstacles can be seen in Figure 18. 

 

Figure 18: Breacher geometry model with the additional riot shield obstacle.  

 The only model that an obstacle was not added to was the sniper geometry. The reason 

for this was because the sniper model was based upon a very specific scenario of a bullet 

exploding. Since the blast here is on a smaller scale than the other model scenarios, the addition 

of obstacles wasn’t of importance.  
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3.3.3 Blast Variation of Location and Magnitude for Scenarios 

As mentioned in Section 3.1.2, two inputs for the explosive, mass, and location, were 

varied simultaneously to create a large quantity of unique blast scenarios. The software Viper 

seemed unable to handle any explosive mass close to or above 15 kg and would crash when 

initiated. To avoid this, all explosive masses for all models were generally set to be in a 

randomized range from 0-14 kg. The other variable was the blast location, which was varied in 

the x, y, and z directions. For all models, the z was randomized to be between 0-6 m and the x 

and y were varied differently for each case. The x and y location of the blast was randomized to 

be within the domain, which slightly differed from model to model. For example, the breacher 

geometry generally had a domain of -6 to 6 m in the x direction and -12 to 3 m in the y direction. 

However, the crouched geometry, since it was centered, had a domain of -6 to 6 m in the x and y 

directions. Small variations of these domains were made to fit better with their corresponding 

sub-models. An image of a breacher model scenario mid-simulation can be seen in Figure 19. 

 

Figure 19. Viper blast simulation scenario for the breacher geometry with a double wall and shield obstacle showcasing 
the pressure waves from the blast.  
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3.4 Machine Learning Code 

The most important portion of this thesis is the machine learning algorithm developed to 

be trained with the extracted Viper overpressure data. Utilizing three different popular machine 

learning algorithms, linear regression, ridge regression, and a deep neural network model known 

as the Keras Regressor, we were able to assess the applicability of each regarding this research. 

All three of these algorithms are readily available in an open-source python library for machine 

learning models called scikit-learn. According to Jason Brownlee, the author of the book 

Machine Learning Mastery with Python, these three machine learning models are previously 

known to be quite effective in predicting continuously varying quantities, which in this case is 

the peak pressure at the facial sensor locations [21].  

To train and evaluate the validity of these three ML models for this thesis, the 2400 

overpressure files were split into two data sets, a training set, and a validation set. The machine 

learning algorithms were first trained with the training data set at all thirteen sensor locations to 

give it accurate prediction power of facial overpressures. Then the validation set was sent 

through the code to evaluate the efficiency of this prediction by matching the predictions with 

the simulated facial overpressure from the validity set files.  

The entire Python code can be seen in Appendix A of this thesis; however, this section 

will go over some important aspects of the code for better comprehension. To start out, a short 

yet important code is written out to define and read in the overpressure files from the S3 Bucket 

to be manipulated for the ML algorithms. This can be seen in Figure 20.  
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Figure 20. Lines of code to define the dataset from the s3 Bucket and read in the overpressure files.  

After all files have been read in, four important variables are defined. The first is 

nscenarios which is set to be equal to the number of files read in, i.e., 2400. Two sensor count 

variables are defined nspp and nsw which are set to be equal to the number of sensors per person 

in simulations (13) and the number of sensors worn by people in real life (3 – chest, shoulder, 

helmet), respectively. The final important variable defined is PeakDurationExtraction which, 

as its name states, is the duration of which pressure is known to be at its peak in the simulation 

and set to be 0.5.  

 To begin the process of manipulating these overpressure files to extract the peak 

pressures, the function create_df was defined to create a matrix of scenarios from the 

root_folder. This function is the basis for all manipulation and extraction of the overpressure 

files through a series of for loops. In order to make this code applicable to all scenarios, 

especially the ones with multiple soldiers compared to just one soldier, two lines of code were 

created to define the shape of df and create the variable npeople. This allowed the code to loop 

through extraction for loops by the number of people there were in the simulation model. This 

section of code can be seen below in Figure 21.  
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Figure 21. Code to define the number of people in the simulation model. 

 One of the most important for loops in this code is the computation and extraction of the 

peak overpressures, which is the varying quantity we want to evaluate with the ML algorithms. 

By considering the number of people, the number of scenarios, and the number of sensors, this 

for loop creates a matrix of MaxPressureValues through the append command. This for loop 

can be seen in Figure 22.  

 

Figure 22. For loop Python code that extracts the peak overpressure values from Viper simulation files. 

The next step in the process was to define what each column was in df and assign a name 

to them. Each column represents the overpressure data from each sensor, so the three relevant 

sensors to BlackBox Biometrics – chest, one shoulder, helmet – were defined with names while 

the rest were just given numbers. This allowed for the analysis of the predictive power of all 

other sensor locations with regard to these three. In other words, the overpressure data from just 

the chest, one shoulder, and the back of the helmet will be used to predict the overpressures at all 

other locations, since these are the three that Black Box Biometrics use. This for loop can be 

seen in Figure 23.  
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Figure 23. For loop to define names for sensor overpressure data from Viper simulation database. 

Once relevant data has been extracted and defined properly from the Viper overpressure 

files, the create_df function is executed and a series of data sets are created to store all peak 

pressure information such as maximum peak pressure and maximum peak duration of pressure. 

This execution code can be seen in Figure 24.  

 

Figure 24. Creation of three data sets containing a series of peak overpressure information by execution of the 
create_df function. 

 As mentioned earlier, the 2400 scenarios were randomly split into two different data sets: 

a training set and a validation set. In order for the machine learning algorithm to properly do this, 

it was informed that the target variables for predicting facial overpressures were the chest, 

shoulder, and helmet. The predictor variables for predicting facial overpressures (basically aids 

to the ‘target’ variables) were the rest of the facial sensors, as seen in Figure 25. 
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Figure 25. Python code to define target and predictor variables for the ML algorithms. 

 These two sets of variables (which are columns of a matrix) are then stored into data sets 

X and Y. These sets are split randomly into the training and validation data sets with a 67% to 

33% split, respectively. This split can be seen in the following Python code in Figure 26.  

 

Figure 26. Python code to split the overpressure data library into training and validation sets randomly. 

 To measure the performance of the machine learning algorithms numerically, the 

coefficient of determination (R2) was utilized between the prediction of the target variables from 

the training set directly from the Viper simulations and the prediction of the target variables from 

the validation set for the actual algorithms. This allowed us to quantitatively decipher our results 

and see how effective the different algorithms were at prediction. The R2 values can range from 

0 to 1 with 1 indicating that the algorithms perfectly predict the varying target quantities.  
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Chapter 4  

 
Results 

Viper not only outputs overpressure data files, but also gives a real time overpressure vs 

time data while the simulation is running. This showcases all thirteen sensors and their respective 

overpressures as the simulation runs through milliseconds. For reference and visual aid through 

what we are actually analyzing through the ML code, an example of this overpressure vs time 

graph can be seen in Figure 27 below.  

 

Figure 27. Viper Blast example Overpressure vs Time graph showcasing all thirteen sensors’ pressures in real time.  

 This data was then processed and ran through the three Machine learning algorithms as 

previously mentioned. To start out, an initial test of just the linear and ridge regression 
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algorithms were ran with no output of R2 to test feasibility and initial effectiveness. Only the 

peak pressure data extracted from the overpressure files was analyzed for predictive power. 

Additionally, only half the sensors were analyzed for prediction in order to save computational 

cost and time, since most come in sets of two anyway (i.e., left eye, right eye). All other graphs 

outputted straight horizontal lines as they were not tested. These initial tests can be seen in 

Figure 28.  

 

Figure 28. Series of peak overpressure prediction vs scenario count plots testing the feasibility of the linear and ridge 
regression ML models. 

The sensors above correlate to left eye, forehead, right ear, chin, and right cheek labelled 

as sensors 0 through 8. These graphs quantify the predictive power of the targeted sensors – 

chest, shoulder, and helmet– with regard to the other facial sensors. As seen in the above graphs, 

the linear regression algorithm overall performed quite well on all sensors at lower peak 

pressures. Sensor 0 and sensor 2 both performed at higher peak pressures as well, but the other 
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sensors seemed to miss the high spike peak pressures of some scenarios for the linear regression 

algorithm. The ridge regression model performed a lot worse and seemed to be off peak 

pressures by a large margin. One thing to note about this is that the ridge regression model did 

predict changes and spikes of peak pressure, just not at the right scale, which could be due to 

initial ridge regression code error.  

Once the initial test was done and several rounds of debugging, we then added in the 

deep learning regression model (Keras Regression) to the python code and had it run through the 

overpressure data at a more precise scope for all 10 non-targeted sensors. This was run through 

in batches of 500 scenarios as running all 2400 at once was extremely time consuming and didn’t 

allow for troubleshooting or cleaning of data. All 10 peak output plots can be seen in Figure 29.  
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Figure 29. Output peak pressure prediction vs scenario count graph for all 10 non-targeted sensors for linear, ridge, and 
Keras regression ML algorithms.  
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Sensor 0, which refers to the left eye, exhibited a R2 value of 0.78 for the linear and ridge 

regression models and 0.68 for the deep learning model. It can be inferred that at a smaller scope 

like this the ridge model increases in predictive power greatly to the point of matching the linear 

model. The deep learning model did not perform quite as well. Sensor 1, which refers to the right 

eye, outputted a R2 value of 0.36 for all three models. This indicated an unnatural disagreement 

between the right and left eyes which seemed to be presented throughout the data.  

Sensor 2, which refers to the forehead, gave a R2 value of 0.42 for all three models. 

Sensor 3, which refers to the nose, exhibited a R2 value of 0.69 for the linear and ridge regression 

models and 0.84 for the deep learning model. The nose, which previously has been mentioned as 

an important sensor location, gives an incredibly high deep learning model R2 value, which is 

promising. Sensor 4, which refers to the right ear, showed a R2 value of 0.70 for the linear and 

ridge and a 0.76 for the deep learning. Sensor 5, which refers to the left ear, exhibited a R2 value 

of 0.82 for both the linear and ridge regression and 0.85 for the Keras regression. As previously 

seen, there was an unforeseen miscorrelation between the left and ride sets of sensors, this one 

was less severe, though, and both are quite accurate in prediction.  

Sensor 6, which refers to the chin, calculated a R2 value of 0.36 for the linear and ridge 

models and 0.51 for the deep learning model. Sensor 7, which refers to the right cheek, outputted 

a R2 value of -19.14 for both the linear and ridge algorithms while the deep learning algorithm 

had a R2 value of -6.50. This was the first extremely off case, which can only be accounted for 

through computational error. Sensor 8, which refers to the left cheek, showed a value of 0.68 for 

the linear and ridge regressions and -0.01 for the deep learning. The last sensor, sensor 9, which 

refers to the right shoulder, was another outlier with values of -0.19 for the linear and ridge and   

-0.12 for the Keras.  
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Chapter 5  
 

Discussion 

The results make it clear that the ridge and linear regression models both perform exactly 

the same for this research, which did not agree with our initial testing. This can be explained by 

the fact that ridge regression is just a slight augmentation of linear regression as linear is 

extremely basic and simply ‘fits’ the best straight line to the datum. The purpose for ridge or 

other linear regression variations is to make it less susceptible to outliers or overfitting. Since the 

data library used in this research is extremely extensive and similar to each other, there are not 

that many outliers, which explains why these two regression models tend to each other in this 

research. Table 2 below showcases all R2 values for all three machine learning algorithms for 

more concise access.  

Table 2. R2 values for linear, ridge, and deep learning Keras regression models for all 10 non-targeted sensor locations.  

Sensor Location Linear Regression Ridge Regression Deep Learning Keras 

Left eye 0.78 0.78 0.68 

Right eye 0.36 0.36 0.36 

Forehead 0.42 0.42 0.42 

Nose 0.69 0.69 0.84 

Right ear 0.70 0.70 0.76 

Left ear 0.82 0.82 0.85 

Chin 0.36 0.36 0.51 

Right cheek -19.14 -19.14 -6.50 

Left cheek 0.68 0.68 -0.01 

Right shoulder -0.19 -0.19 -0.12 
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 When comparing the three ML models, it can be seen that the linear and ridge regression 

both performed better than the Keras regression on the left eye and left cheek only, while in all 

other locations the deep learning Keras model performed the same or better. The entire reason 

we added the Keras regression model because it performs continuously better with large 

increases in data and isn’t such an ‘average’ fit as the linear and ridge are. With such a large 

quantity of overpressure files running through these algorithms, it makes sense that the deep 

learning model performs the best for the majority of locations. Additionally, the R2 value of 0.84 

for the deep learning model on the nose is extremely promising as the nose is quite important in 

datum locations for computational brain analysis.  

 One trend to note about the resulting R2 values is that in the cases of ears, cheeks, and 

eyes, the left locations have much higher values. An interesting factor, and one to be tested upon 

more in the future, is the fact that for this thesis, the left shoulder was the shoulder chosen as the 

targeted shoulder wearing a blast gauge, and the right shoulder was left to be a training sensor. 

We believe that since the overpressure data from the left shoulder was used to predict facial 

overpressures and not the right, the sensor locations that were closer to the left shoulder were 

more accurate due to distance and reported higher R2 values.  

 Another trend that needs to be addressed is the results of the bottom three sensor 

locations in Table 2, the right cheek, left cheek and right shoulder. All three display negative R2 

output values which can only be explained through computational error. This glitch can be 

credited to either an error in exact sensor node location (maybe inside of soldier’s cheek, for 

example) or an error in the implementation and processing of the data in the python code for 

those locations. This could either be in the manipulation of the data at the beginning of the code 

or the actual processing through the algorithms.  



44 

Chapter 6  
 

Conclusion 

Overall, it is clear that machine learning has extreme potential in prediction of facial 

overpressures to be used in computational biomechanics research, and this thesis reiterates that. 

The python code developed in this research that implements a linear regression, ridge regression, 

and deep learning regression model, shows good promise for use with BlackBox Biometrics 

three sensor gauge system. Unfortunately, the results of this thesis are not yet where they should 

be in order for this company to actually make full use of this approach. Although the R2 values 

for the non-targeted sensor locations show great qualities and tell us a lot about the next steps to 

take, they are a bit lower than expected and hoped for. The additions in this research and the 

resulting code are extremely helpful and a big step from previous work, however, there is still a 

lot of work to be done in the future. 
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Chapter 7  

 
Future Work 

Due to the scope and additive nature of this research, there is still a large amount of work 

to be done to increase its accuracy. This research is already years in the works, and can 

potentially go on for many more. For the purposes of this thesis, I only worked with 4 different 

soldier geometries with a total of 12 distinct models. The total count of overpressure file 

scenarios used to train the machine learning algorithms was 2400. Hypothetically, the accuracy 

of the algorithms predictive power for real life scenarios will increase as you increase the depth 

of simulation scenarios covered, and this accuracy can be continuously improved upon. Although 

the ML algorithms trained in this thesis could be used by BlackBox Biometrics to predict nose 

overpressure based upon their head, shoulder, and chest overpressures with decent accuracy, 

there is a lot of room for improvement. Moving forward, more soldier geometries and sub-

models with obstacles needs to be designed as well as a larger and more varied datum library of 

scenarios. In theory, there is an infinite number of scenarios and geometries you could cover to 

increase accuracy, so for future work, the breadth of datum needs be increased a lot. 

Additionally, only three machine learning algorithms were trained for this thesis. Testing and 

training a large variation of machine learning algorithms could provide for more predictive 

power with certain ones. More in depth research on what kind of ML algorithm would work best 

for this research would have to be conducted. Ultimately, the reason for this research and thesis 

was to provide a fully trained machine learning algorithm for BlackBox Biometrics to use on 

their real overpressure datum, so the next big step would be to actually test these trained 

algorithms on their data. We believe that the code developed for this thesis isn’t at that stage yet 

and still needs to be tweaked and debugged further as well as potentially added to.  
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Appendix A 

 
Python Code for Machine Learning Algorithms 

 

import s3fs 
import matplotlib as plt 
import numpy as np 
import math 
import pandas as pd 
import os 
import h5py 
 
#Define root path 
fs = s3fs.S3FileSystem() 
root = "s3://blast-sim-data/" 
 
# Define first set of data to read 
dataset = "SCENARIO_TRAINER_THESIS/" 
root_folder1 = os.path.join(root, dataset) 
print('Dataset Location = ',root_folder1) 
files = fs.ls(root_folder1); 
nfiles = len(files); 
 
#import glob 
#files1 = glob.glob("s3://blast-sim-data/breachers/*.txt"); 
files1 = files[1:nfiles]; 
files1 = files[1:2]; 
files1[:nfiles] 
 
# Important Variables  
# number of scenarios that will be processed. Each scenario should be  
# a different file from viper. 
nscenarios = files1 
print('nscenarios = ',len(nscenarios)) 
# number of sensors per person 
nspp = 13 
# Number of Sensors Worn (nsw) by person 
nsw = 3 # chest, shoulder, helmet for B3 
# Peak duration extraction (time for which pressure is above x% of max) 
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PeakDurationExtraction = 0.5 
def create_df(scenarios,root_folder): 
    all_max_values = [] 
    all_max_durations = [] 
    AllPeakInformation = [] 
    StartEndIndices= {} 
    OverPressureDuration = [] 
    combinedNames = [] 
    NewColumnNames = [] 
    npeople = [] 
    OverPressureDurationAll = pd.DataFrame() 
    MaxDurations = pd.DataFrame() 
    MaxPressureValuesAll = pd.DataFrame() 
    MaxDurationValuesAll = pd.DataFrame() 
    combinedDf = pd.DataFrame() 
    ScenarioCounter = 0 
     
    # each file represents a different scenario. each scenario could have  
    # multiple people (npeople) with with multiple tracer locations or 
    # number of sensors per person (nspp) 
    for scenario in scenarios: 
        ScenarioFileName = os.path.basename(scenario) 
        ScenarioFilePath = os.path.join(root_folder,ScenarioFileName) 
        df = [] 
        df = pd.read_csv(ScenarioFilePath, delim_whitespace=True, header=None) 
        # remove time (the first column) 
        df = df.drop(df.columns[[0]], axis=1)  # df.columns is zero-based pd.Index 
        #print('df = ',df) 
        # read only 1st column to store time trace  
        time = pd.read_csv(ScenarioFilePath,delim_whitespace=True,usecols=[0], header=None) 
        #convert array to list 
        #time = time.values.tolist() 
        time = np.array(time) 
        
        row, col = df.shape 
        #print(row, col) 
        npeople.append(int(col/nspp)) 
        #print(npeople[ScenarioCounter]) 
     
        #print(df.shape) 



48 
        #print(df) 
        # makes single array with chest thresholds for each person, each sensor 
        # basically half value of maximum in each column in df 
        thresholds=PeakDurationExtraction*df.max(axis=0)         
        # number of timepoints (number of rows in viper file) 
        #print(time) 
        ntimepoints=len(time) 
        #print('ntimepoints = ',ntimepoints) 
     
        # Initalize OverpressureDuration 
        OverPressureDuration = [] 
        OverpressureDurationAll = [] 
        MaxPressureValues = [] 
        MaxDurationValues =[] 
        frames = [] 
     
        print('npeople in Scenario ',ScenarioCounter,' = ',npeople[ScenarioCounter]) 
        # FIRST COMPUTE MAX PRESSURES 
        for j in range(0,int(npeople[ScenarioCounter])): 
            tmp = [] 
            for k in range (0,nspp):    
                # Compute the max pressure values for this column,store only the pressures for this 
person 
                tmp.append(df.iloc[:,j*nspp+k].max()) 
            # Add pressures from this person to the total pressure list 
            MaxPressureValues.append(tmp) 
             
        ### NOW COMPUTE DURATIONS 
        for j in range(0,int(npeople[ScenarioCounter])): 
            tmp = [] 
            for k in range (0,nspp):    
                start_index = -1 
                end_index   = -1 
                for i in range(0, ntimepoints): 
                    if (df.iloc[i,j*nspp+k]>thresholds.iloc[j*nspp +k] and start_index == -1): 
                        start_index=i   
                        #break 
                for i in range(start_index, ntimepoints):    
                    if df.iloc[i,j*nspp+k]<thresholds.iloc[j*nspp +k] and end_index == -1: 
                        #print('min detected !','sensor ',k+1, ' i index = ',i) 
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                        end_index=i   
                        #break 
                #print('start_index = ', start_index) 
                #print('end_index = ', end_index) 
                StartEndIndices[j*nspp+k+0] = start_index 
                StartEndIndices[j*nspp+k+1] = end_index 
                tmp.append(time[end_index][0] - time[start_index][0]) 
            MaxDurationValues.append(tmp) 
            #print('MaxDurationValues = ', MaxDurationValues) 
             
        print('finished processing scenario ',ScenarioCounter,'...') 
        # save pressures into single arrary, first convert to dataframe 
        MaxPressureValuesDF = pd.DataFrame(MaxPressureValues) 
        MaxPressureValuesAll = 
pd.concat([MaxPressureValuesAll,MaxPressureValuesDF],ignore_index=True) 
        # save pressures into single arrary, first convert to dataframe 
        MaxDurationValuesDF = pd.DataFrame(MaxDurationValues) 
        MaxDurationValuesAll = pd.concat([MaxDurationValuesAll, 
MaxDurationValuesDF],ignore_index=True) 
        #print('MaxPressureValuesDF = ', MaxPressureValuesDF) 
        ScenarioCounter = ScenarioCounter + 1 
    #print('MaxPressureValuesAll = ', MaxPressureValuesAll) 
    #print('MaxDurationValuesAll = ', MaxDurationValuesAll) 
 
         
    #create column names for pressure df 
    for k in range (0,nspp): 
        # these numbers 0 1 2 may need to be modified based on nsw 
        if k == 0: 
            NewColumnNames.append('Chest-P') 
        elif k == 1:  
            NewColumnNames.append('Shoulder-P') 
        elif k == 2: 
            NewColumnNames.append('Helmet-P') 
        elif k > nsw-1: 
            NewColumnNames.append('Sensor-'+str(k)+'-P') 
    MaxPressureValuesAll.columns=NewColumnNames 
    NewColumnNames = []  
 
    for k in range (0,nspp): 
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        #print(str(col)+'P') 
        # these numbers 0 1 2 may need to be modified based on nsw 
        if k == 0: 
            NewColumnNames.append('Chest-D') 
        elif k == 1:  
            NewColumnNames.append('Shoulder-D') 
        elif k == 2: 
            NewColumnNames.append('Helmet-D') 
        elif k > nsw-1: 
            NewColumnNames.append('Sensor-'+str(k)+'-D')            
    MaxDurationValuesAll.columns=NewColumnNames 
     
    AllPeakInformation=pd.concat([MaxPressureValuesAll, MaxDurationValuesAll], axis=1) 
    #print(AllPeakInformation) 
    l1 = MaxDurationValuesAll.columns 
    l2 = MaxPressureValuesAll.columns 
    #print('l1',l1) 
    #print('l2',l2) 
    colNames = zip(l2, l1) 
    #print(colNames) 
    combinedNames = [name for pair in colNames for name in pair] 
    AllPeakInformation = AllPeakInformation[combinedNames] 
    #print(AllPeakInformation) 
    return AllPeakInformation, MaxPressureValuesAll, MaxDurationValuesAll 
 
#df1, peak_df1, max_values_df1, max_durations_df1 = create_df (files1,root_folder1) 
AllPeakInformation, MaxPressureValuesAll, MaxDurationValuesAll = create_df 
(files1,root_folder1) 
#print(AllPeakInformation) 
 
hf = h5py.File('ProcessedData.h5', 'w') 
hf.create_dataset('AllPeakInformation', data=AllPeakInformation) 
hf.create_dataset('MaxPressureValuesAll', data=MaxPressureValuesAll) 
hf.create_dataset('MaxDurationValuesAll', data=MaxDurationValuesAll) 
hf.close() 
 
#Linear regression for peak pressure and peak duration (separately) 
import sklearn 
#from matplotlib import pyplot 
import matplotlib.pyplot as plt 
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from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn import model_selection 
from sklearn.linear_model import LinearRegression 
from sklearn.linear_model import Ridge 
from sklearn.linear_model import Lasso 
from sklearn.linear_model import ElasticNet 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.svm import SVR 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import r2_score 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
from math import sqrt 
import pickle 
 
# used for DL 
import tensorflow as tf 
import os 
tf.get_logger().setLevel('WARNING') 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  
print(tf.__version__) 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.wrappers.scikit_learn import KerasRegressor 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
 
# define base model 
def baseline_model(): 
    # create model 
    model = Sequential() 
    model.add(Dense(3, input_dim=3, kernel_initializer='normal', activation='relu')) 
    model.add(Dense(1, kernel_initializer='normal')) 
    # Compile model 
    model.compile(loss='mean_squared_error', optimizer='adam') 
    return model 
 
# Regression Models for Pressure 
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PredictorColumnNames = MaxPressureValuesAll.columns[0:nsw] 
TargetColumnNames = MaxPressureValuesAll.columns[nsw:nspp] 
SaveYTest = [] 
SaveYPred_LinReg = [] 
SaveYPred_rr = [] 
SaveYPred_DL = [] 
NumTests = 0 
#for j in range(0,nspp-nsw): 
for j in range(0,2): 
    print('Sensor: ',j) 
    X = AllPeakInformation[PredictorColumnNames]  
    y = AllPeakInformation[TargetColumnNames[j]]  
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=40)  
    # save the y testing data to compare the predictions to 
    SaveYTest = np.append(SaveYTest, y_test) 
     
    # Set the number of tests...will be used for plotting. 
    if j==0: 
        NumTests = len(X_test) 
    if j>0 and NumTests != len(X_test): 
        print('Number of training tests are different! Will cause issues when plotting')  
 
    # Linear Regression    
    linreg = LinearRegression().fit(X_train, y_train) 
    y_pred_LinReg = linreg.predict(X_test) 
    SaveYPred_LinReg = np.append(SaveYPred_LinReg, y_pred_LinReg ) 
    print('Lin. Reg. MSE = %.2f' % np.sqrt(mean_squared_error(y_test,y_pred_LinReg))) 
    print('Lin. Reg. R2 = %.2f' % r2_score(y_test, y_pred_LinReg)) 
    print(' ') 
 
    # Ridge Regression 
    rr = Ridge(alpha=0.01) 
    rrf = rr.fit(X_train, y_train)  
    y_pred_rr = rrf.predict(X_test) 
    SaveYPred_rr = np.append(SaveYPred_rr, y_pred_rr ) 
    print('Ridge Reg. MSE = %.2f' % np.sqrt(mean_squared_error(y_test,y_pred_rr))) 
    print('Ridge Reg. R2 = %.2f' % r2_score(y_test, y_pred_rr)) 
    print(' ') 
     
    # Deep Learning - evaluate DL model 
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    estimator = KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0) 
    kfold = KFold(n_splits=10) 
    results = cross_val_score(estimator, X, y, cv=kfold) 
    estimator.fit(X_train, y_train) 
    y_pred_dl= estimator.predict(X_test) 
    print('ML y_train Mean Squared Error: %.2f' % np.sqrt(mean_squared_error(y_test, 
y_pred_dl))) 
    print('ML y_train R2 score: %.2f' % r2_score(y_test,  y_pred_dl)) 
    SaveYPred_DL = np.append(SaveYPred_DL, y_pred_dl) 
    print( '--------------------------- ') 
 
 
print('Length of SaveYTest = ',len(SaveYTest)) 
print('Length of SaveYPred_rr = ',len(SaveYPred_rr)) 
print('Length of SaveYPred_LinReg = ',len(SaveYPred_LinReg)) 
print('Length of SaveYPred_DL = ',len(SaveYPred_DL)) 
 
from matplotlib.backends.backend_pdf import PdfPages 
import matplotlib as mpl 
mpl.rcParams.update(mpl.rcParamsDefault) 
 
pdf_pages = PdfPages('Training-Results.pdf') 
print('NumTests =',NumTests) 
PlotPairs = int((nspp-nsw)/2) 
#print(PlotPairs) 
print 
for j in range(0,PlotPairs): 
    fig, axs = plt.subplots(1, 2,figsize=(10,5)) 
    iterator = (nsw-1)*j 
    tmp_plot1 = [] 
    tmp_plot2 = [] 
    tmp_plot3 = [] 
    tmp_plot4 = [] 
    for i in range(0,NumTests):  
        tmp_plot1 = np.append(tmp_plot1,SaveYTest[iterator*NumTests + i]) 
        tmp_plot2 = np.append(tmp_plot2,SaveYPred_LinReg[iterator*NumTests + i]) 
        tmp_plot3 = np.append(tmp_plot3,SaveYPred_rr[iterator*NumTests + i]) 
        tmp_plot4 = np.append(tmp_plot4,SaveYPred_DL[iterator*NumTests + i]) 
    axs[0].plot( tmp_plot1, label="Test" )   
    axs[0].plot( tmp_plot2, label ="Liner Reg." ) 
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    axs[0].plot( tmp_plot3,'--b' , label ="Ridge Reg.") 
    axs[0].plot( tmp_plot4,'--x' , label ="Deep Learning") 
    axs[0].set_xlabel("Test Data Counter") 
    axs[0].set_ylabel("Peak Pressure Prediction") 
    axs[0].set_title('Sensor = '+str((nsw-1)*j)) 
    axs[0].legend(loc="upper right") 
    plt.tight_layout(pad=8.0) 
     
     
    iterator = (nsw-1)*j+1 
    tmp_plot1 = [] 
    tmp_plot2 = [] 
    tmp_plot3 = [] 
    tmp_plot4 = [] 
    for i in range(0,NumTests): 
        tmp_plot1 = np.append(tmp_plot1,SaveYTest[iterator*NumTests + i]) 
        tmp_plot2 = np.append(tmp_plot2,SaveYPred_LinReg[iterator*NumTests + i]) 
        tmp_plot3 = np.append(tmp_plot3,SaveYPred_rr[iterator*NumTests + i])   
        tmp_plot4 = np.append(tmp_plot4,SaveYPred_DL[iterator*NumTests + i]) 
    axs[1].plot( tmp_plot1, label="Test" )   
    axs[1].plot( tmp_plot2, label ="Liner Reg." ) 
    #axs[1].set_xlabel("Test Data Counter") 
    axs[1].set_ylabel("Peak Pressure Prediction") 
    axs[1].plot( tmp_plot3,'--b' , label ="Ridge Reg.") 
    axs[1].plot( tmp_plot4,'--x' , label ="Deep Learning") 
    axs[1].legend(loc="upper right") 
    axs[1].set_title('Sensor = '+str((nsw-1)*j+1)) 
    t = "An item is found at i" 
    #axs[1].text(0, 0, t, wrap=True) 
    axs[1].set_xlabel(r"Test Data Counter" 
                     "\n" 
                     "hi3") 
    pdf_pages.savefig(fig) 
 
 
pdf_pages.close() 
print('Training Complete. Images saved.') 
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