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ABSTRACT 

 

Memory in materials—or the ability to encode, subsequently read-out, and ultimately 

erase information about a system’s history at will—is of value in probing and programming 

matter, but it is not yet fully understood. Previous work showed that shearing a jammed packing 

of colloids—a 2D amorphous solid—could encode multiple amplitudes from past deformations, 

via a generic behavior known as return point memory (RPM). However, features of these 

materials suggest that RPM cannot be a complete description of their memory behavior. We 

study a simple model of rearranging regions (“soft spots”) in these materials. Unlike in past 

work, we shear the system in asymmetric cycles of negative strain amplitude only, which 

prevents encoding of RPM. Despite this, we show that memories can still be encoded and 

recovered. We discuss differences between these memories and those in past work, and propose 

experiments to study this new form of memory directly.  
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Chapter 1  
 

Introduction 

 Many forms of matter exhibit mechanical hysteresis—a way that the state of a system can 

depend on its history of deformations. The simplest ‘units’ of hysteresis we consider are 

individual 2-state hysteretic subsystems, also known as “hysterons”. Hysterons are systems that 

respond to a scalar field H, and are always in either the “up” or “down” state (sometimes also 

referred to as “+1” and “-1” states). Which state the subsystem is in at a given time depends 

primarily on two values, γ + and γ -, thresholds of γ that indicate the energy barriers when a 

subsystem being driven in the positive or negative directions, respectively, will switch from “-1” 

to “+1” or vice versa. As a rule, γ - < γ +. When γ + < γ, the system will always be in the +1 state; 

when γ < γ -, the system will be in the -1 state. For γ - < γ < γ +, the system will retain whatever 

state it was last in.  

 

 When a system is composed of multiple hysterons, a richer memory behavior known as 

return-point memory (RPM) arises. RPM is the ability for the system to restore its previous state 

upon the field H returning to a prior value. RPM encodes memories of extrema during driving—

in practice, this corresponds to memories not strictly of a given shear amplitude, but of the 

turning points at ± γo. If a memory of turning points at ± γo is encoded, then while -γo < H < γo 

the state of the hysteron is dependent on its history since the turning points at ± γo were last 

visited. Upon H returning to either ± γo, the system will again be in its state when it was last at ± 

γo. Exceeding ± γo will wipe out any history of the system’s state prior to returning to ± γo. 
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However, memories of multiple pairs of turning points can be encoded if they are nested such 

that each subsequent memory is of an amplitude smaller than the previous one. This effect is 

captured by the Preisach model of hysteresis in ferromagnets, where each hysteron represents a 

magnetic domain coupled to an external magnetic field, with disorder modeled by varying values 

of the thresholds (in an amorphous solid, γ + and γ -) [1].  

 

 

Figure 1: Example of interacting soft spots in a cyclically sheared 2D jammed packing from Keim and Paulsen 

[5]. Particle displacements around two rearranging soft spots, with centers roughly indicated by concentric circles. 
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Figure 2: An example of fractional difference in hysteron states versus readout strain from Lindeman and Nagel 

[6]. The y-axis label ‘d’ is analogous to ‘fdiff’ used in later figures. This readout curve is for a non-interacting system of 

hysterons trained at γ1 = 8. Because it is a non-interacting system, this is an example of perfect return-point memory—

note the non-monotonic readout curve. 

  

 Here we are motivated by experiments with jammed packings of particles subject to 

cyclic quasistatic shear. Memories of shear amplitude are encoded as ‘steady states’ in which in 

localized rearranging regions of particles (soft spots) in the jammed packing reorganize in a 

periodic orbit. The memories can then be retrieved by applying cycles of increasing strain 

(Figures 3 and 4 below show the encoding and readout protocols for symmetric and asymmetric 

systems, respectively), with the displacement of particles from their initial state indicating when 

they are in precisely the original positions as when the training amplitude was first applied 

[4,14,15]. Figure 1 gives an example of particle displacements around two rearranging soft spots 

in a cyclically sheared 2D jammed packing. 
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 The Preisach model does not allow for interactions between hysterons within a given 

system. Despite this, systems can still exhibit RPM in the presence of interactions which are 

strictly ferromagnetic, or cooperative (a hysteron changing state encourages other hysterons to 

make the same change) [2]. However, return-point memory is not compatible with anti-

ferromagnetic (also known as frustrated) interactions. The quadrupolar form of particles’ 

displacement fields, experimental observations like Figure 1, and molecular dynamics 

simulations [17,18], in which neighboring rearrangements appear to oppose each other, strongly 

suggest that in jammed packings, hysterons can have anti-ferromagnetic interactions. Previous 

work by Lindeman and Nagel suggests that including these interactions—an essential feature of 

other glassy materials such as spin ice [3]—leads to additional higher-order memory capabilities, 

even as (now imperfect) RPM remains the leading-order contribution [6]. 

 

 

Figure 3: Example of training (dashed red) and readout (solid black) protocol for symmetrically sheared 

systems from Lindeman and Nagel [6]. 
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Figure 4: Example of training (red: γ1, green: γ2) and readout (black) protocol for negative asymmetrically 

sheared systems with two training amplitudes where γ1 < γ2. 

 

 The memories observed in systems of cyclically sheared jammed packings resemble 

those seen due to RPM, but the presence of anti-ferromagnetic interactions prompts us to dig 

deeper [5,16]. Here, we further explore the memory capabilities of such systems, shearing only 

with asymmetric cycles of negative strain amplitude. This prevents the encoding of RPM, 

removing the leading order effect. Despite this, cusp-like memories of strain amplitude similar to 

those given by RPM (see Figure 2) are still being encoded in the system. What’s more, we find 

signals of overwritten trained amplitudes in the form of transient memories which would not be 

present with RPM, which encodes only extremal values and wipes out a systems history after 

exceeding its previous shear strain. However, this is not the first example of memory that retains 

traces of training amplitudes that are smaller than those subsequently applied; such behavior has 

also been investigated in other systems exhibiting multiple transient memories, such as charge-

density waves [12,13], non-Brownian suspensions [8,9,10], and the park-bench model [11]. 
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 We also explore the impact of the number of training cycles used to encode a memory. In 

RPM, only a single cycle of writing is needed to encode, but other examples of hysteresis in 

cyclically driven systems have shown that additional cycles of training can result in stronger 

memories, or that a single cycle of training is insufficient to encode a memory at all [6].  

 

 A feature of the model used here is that the system is prepared with the participating 

hysterons first all in the same state, either +1 or -1 (up or down). Most simulations were run 

using systems prepared from hysterons in the -1 state, but a few simulations were also conducted 

from hysterons in the +1 state. Interestingly, changing the direction of initialization (whether the 

system is driven to zero from the positive or negative direction, corresponding to all hysterons in 

the +1 or -1 state) from negative to positive results in readout curves of memories that resemble a 

different system entirely. 
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Chapter 2  
 

Methods 

 My simulations utilize the hysterons Python package (https://github.com/nkeim/hysteron) 

written by Nathan Keim and Joseph Paulsen [5]. Although the package has many functions for 

exploring 2-state hysteretic subsystems, I primarily utilized evolve_event.  

Background 

Because the Preisach model of memory is based on the domains of magnetic fields in 

ferromagnets, the simulation works analogously to the magnetic field. The actual memories the 

simulations are encoding are of the location of turning points ± γo, the amplitude to which the 

system is driven. The value of the field at the location of a given hysteron is given by Hlocal, the 

sum of the global H field and Hinterfield, where Hinterfield is the contribution to the field at that 

hysteron based on the strength of its interactions with the other hysterons in the system. 

 

𝐻𝑖𝑛𝑡𝑒𝑟𝑓𝑖𝑒𝑙𝑑 = ∑ Jij
𝑁
𝑖=0 × Sj                                        Equation (1) 

𝐻𝑙𝑜𝑐𝑎𝑙 = 𝐻𝑔𝑙𝑜𝑏𝑎𝑙 + 𝐻𝑖𝑛𝑡𝑒𝑟𝑓𝑖𝑒𝑙𝑑                                     Equation (2) 

 

First, a state vector S of length N is created (here, N=9), where each entry represents the 

local state of a given hysteron, Si. It starts with each entry equal to -1, a normalized equivalent to 

a field of negative infinity. This ensures that all hysterons begin in an identical state. To initialize 

the system, it is driven to γo = 0. Whether the system is driven to γo = 0 from a starting field of 
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positive infinity (all hysterons in the +1 state) or from negative infinity (all hysterons in the -1 

state) is referred to as the direction of initialization. Similarly, two additional vectors of length N, 

γ+ and γ-, are made by choosing a pair of values from a uniform distribution with the rule that 

each entry of γ+ is greater than the corresponding entry of γ-. The entries of these vectors indicate 

the field values at which the corresponding hysteron will flip up or down, changing state.  

 

Next, an NxN interactions matrix is generated. In simulations where interaction between 

hysterons is prohibited, this matrix is all 0s. When interactions are allowed, as they are here, each 

entry of this matrix is determined by picking a random floating-point value from a uniform 

distribution ranging from -1 to 1. This step of randomization, along with the generation of the γ+ 

and γ- vectors, is what makes the outcomes of a given simulation vary. After the field vector 

Hinterfield has been calculated, the entries of the state vector S can be populated with each being 

their respective value of Hlocal. When using parallel readout, many copies of this state vector are 

made for later use. 

Calculating the Field Vector 

 The Hysteron simulation package usually calculates Hinterfield through direct matrix 

multiplication of the length N state vector with the NxN interactions matrix, Jij, as in Equation 1. 

In other words, every hysteron is interacting with every other hysteron, regardless of how far 

removed they may be from one another. This may be not an issue in small systems, but when 

simulating a larger system, its more realistic that each hysteron interacts strongest with those 

immediately around it. 
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In my simulations, the field vector Hinterfield is a vector of length N where each entry is the 

sum of the H field contributions from interactions with only the nearest adjacent hysterons. 

Periodic boundary conditions are employed so that hysterons located on the “edge” (arranging 

the vector in 2D space as a 3x3 lattice) of the physical arrangement are still the sum of the 

nearest eight hysterons, wrapping around to the opposite side or corner as appropriate. Using 

nearest neighbor interactions is intended to make the results of the simulation more physically 

realistic when dealing with a larger system in future tests, so that soft spots which are far 

removed do not have as large an impact on the local field as those nearby. 

Encoding Protocol 

Once the system has been initialized and the field, state vectors prepared, the system can 

then be driven with cyclic shear to encode memories. We are focusing systems of hysterons 

where two distinct amplitudes are encoded, with the first encoded being the smaller memory (γ1) 

and the second encoded being the larger memory (γ2), unless otherwise stated. Since the prepared 

system starts at an amplitude of zero, we start by driving from 0 down to - γ1, then back up to 0 

(0 → -γ1  → 0). Depending on the test being run, this cycle may be repeated. Once the first 

memory has been encoded, we drive down from 0 to - γ2, then back up to 0 (0 → -γ2 → 0). 

Again, depending on the test being run, this may be repeated more than once. 
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Readout Protocol 

A parallel readout protocol is used. With parallel readout, an interactions matrix is 

randomly generated and the field vector of the hysterons is prepared as usual. Memories of the 

desired shear strain are then encoded by driving the system with negative asymmetric shear (see 

Figure 4) for each cycle of writing. Once encoded, many copies of the system are made. To read 

the memories, each copy is driven to strains γ = 0 → - γo → 0, at a different, increasing shear 

strain amplitude γo (the first at γo = 0, second at γo = 0.002, third at γo = 0.004…).  

 

After each readout cycle, the state of each hysteron is compared to its value in the initial 

state of the system, Strained. The number of hysterons in different states i is divided by the total 

number of hysterons N and this value contributes to an average over all trials of the system for 

each strain amplitude in the readout. This gives the average fractional difference in hysteron 

states at each point, which is then plotted against γreadout. This process is repeated millions of 

times, creating an ensemble where each shear strain visited in γreadout has a corresponding 

fractional difference in hysteron states calculated with millions of different sets of interaction 

strengths. 
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Chapter 3  
 

Results 

Impact of Interactions Between Hysterons 

 

Figure 5: Readout curves of single memories encoded with asymmetric negative shear at |γ|=0.7, with 

interactions allowed (blue) and prohibited, as in the Preisach model (orange). 

  

 Modifying the Preisach model to permit interactions between hysterons within the system 

expands its memory capabilities of the system significantly [5,6]. In the Preisach model, driving 

with negative asymmetric shear strain would not encode a memory at all, as demonstrated in 

Figure 5. However, allowing interactions gives rise to nonmonotonic cusp-like memories similar 

to those seen from RPM.  

 

Although much work based on hysteretic models has looked at RPM as the only result of 

cyclically sheared jammed solids, in reality it is just the leading order effect. Just as in the 
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simulations performed by Lindenman and Nagel [6], permitting interactions for a system trained 

first with multiple cycles of γ1 and then a single cycle at γ2, γ1 < γ2, allows the encoding of a 

transient memory of the smaller amplitude γ1. In the absence of interactions (the Preisach 

model), a single cycle of γ2 would be all that is necessary to erase the system’s history and any 

trace of encoding at a previous shear strain.  

 

However, unlike in Lindenman and Nagel, these memories are all encoded and read out 

using asymmetric shear only, which explicitly prevents the encoding of RPM. The fact that 

memories are still being encoded by asymmetric shear shows that RPM is not the only memory 

mechanism to be examined here, and what we are looking at is something distinct entirely. 
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Impact of Direction of Initialization 

 

Figure 6: Readout curves of single memories with negative asymmetric encoding and readout and positive 

asymmetric encoding and readout for a system initialized from the positive direction (all hysterons starting in the +1 

state). The legend indicates how the systems for the readout curves were prepared, and is read in the following way: 

“cycles of γ1:cycles of γ2,  γ1: γ2”. 

 

 

Figure 7: Zoomed-in version of the previous figure, showing the readout curves in more detail. Unlike systems 

initialized from the negative direction, the readout curves here are monotonically increasing. 
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 Interestingly, initializing the system from the positive direction (field starts at positive 

infinity, with all hysterons in the +1 state) gives an entirely different shape of readout curve. 

Rather than the nonmonotonic cusped memories reminiscent of RPM seen in negatively 

initialized systems, as in Figure 9 below, the readout curves here are monotonic increasing.  

Impact of Location of “Overwritten” Memory 

 

Figure 8: Magnitude of fdiff at γ2 as a function of γ1. Data for this graph was pulled from the readout curves of 

Figure 9 below. 

 

For systems encoded with γ1 < γ2, there is a roughly linear negative relationship between 

the magnitude of fdiff at γ2 and the location of γ1, shown in Figure 5. As γ1 approaches γ2, 

fractional difference in hysteron states in the system at γ2 decreases steadily. 
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Figure 9: Readout curves for interacting systems encoded and read with negative asymmetric shear. 5 cycles of 

training are performed for each γ1, with a single cycle of encoding for γ2. Tails have been cut off here to better show 

detail between curves. 

 

 Figures 9 displays the data used to make Figure 8. Together, they show how the location 

of the “overwritten” memory (γ1 for γ1 < γ2) influences the shape of the readout curve, 

suppressing the fractional difference in hysteron states more and more as γ1 approaches γ2. 

Interestingly, the location of the peak shifts backwards as γ1 increases, and the size of Δfdiff 

measured from a curves peak to its value at γreadout = 0.7 increases in magnitude, resulting in a 

‘sharper’ memory. 
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Impact of Multiple Training Cycles 

 

 

Figure 10: Readout curves of fractional difference in hysteron states for memories γ1=0.3, γ2=0.7, γ1 encoded 

before γ2, with increasing numbers of training cycles for γ1. 

 

Figure 11: A zoomed-in version of the previous figure, centered on the apex of the readout curves. The state of 

hysterons (measured by fdiff) in systems trained at both γ1 and γ2, γ1 < γ2 do not appear to have a clear relationship with 

the number of training cycles performed to encode γ1. 
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Previous work on systems of hysterons has shown that the number of cycles of writing 

used when preparing a sample has an impact on the ‘strength’ of the memory [11]. Here, Figure 

11 suggests that a single cycle of training at γ1 is all that is necessary to encode a memory of it, 

which is retained despite the prediction of RPM that it should be erased by the subsequent γ2. 

Varying the number of training cycles used for encoding the γ1 (Figures 10, 11) had unusual 

effects. I expected that the number of training cycles of γ1 would have a more easily discernable 

impact, but there doesn’t seem to be a relationship between the shape of the readout curves and 

the number of cycles used to encode the memory. Although encoding the first memory does have 

an influence on the readout of the system, the number of training cycles of the first memory does 

not seem to have an impact. Further analysis could include comparing the state between cycles of 

training, for example comparing the state after two training cycles to the state it was in after the 

first. 
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Figure 12: For a single memory, multiple training cycles at a given strain γ results in a smaller fractional 

difference readout curve than that of a memory of γ encoded with a single cycle of training. 

 

 

Figure 13: A zoomed-in version of the previous figure, focusing on the apex of the readout curves. Despite being 

encoded with the most cycles of training, the purple readout curve is consistently greater than those encoded with 3, 4, or 

5 cycles of training when encoding γ. 
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In the case of a single memory γ, shown in Figures 12 and 13 above, encoding a memory 

of a shear strain using more than one training cycle clearly impacts the shape of the readout 

curve relative to a system prepared with a single cycle of training. However, there does not seem 

to be a relationship between the number of additional cycles and the magnitude of the fractional 

difference in hysteron states of the system. 

 

Impact of Encoding Protocol 

 

Figure 14: Comparing readout curves made with symmetric shear strain to those made with negative 

asymmetric shear strain. 
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The most important distinction that can be drawn is that between systems encoded and 

read with symmetric shear strain and systems encoded and read with negative asymmetric shear 

strain. Figure 14 shows that the disorder displayed in the readout curve of a symmetric system is 

orders of magnitude larger than that of an asymmetrically sheared system. Also of interest is that 

for symmetric systems, encoding a γ1 before γ2, γ1 < γ2, results in a readout curve with a greater 

fdiff than that of a system trained with a single shear strain γ. This result is opposite the case of 

systems prepared with negative asymmetric shear strain, seen in Figure 10. 

 

 

Chapter 4  
 

Discussion 

By driving only with asymmetric shear, the impact of the leading order effect, RPM, is 

eliminated—we propose that what remains is something else entirely, due to an aspect of the 

system’s physics that is incompatible with RPM: anti-ferromagnetic interactions between 

hysterons. Furthermore, this alternate type of memory can retain memories that would always be 

wiped out in a system with pure RPM: the memory of driving with a smaller amplitude γ1 

survives the application of a larger amplitude γ2, while in RPM it would not. It is difficult to 

quantify this memory of small strain amplitude γ1, since there is no local feature in the readout 

graph at γ1. However, there is no denying that it has a measurable impact on the expression of the 

larger memory; this is seen in Figure 11, where it is shown that encoding an additional smaller 

memory γ1 before γ2 suppresses the disorder (fractional difference in hysteron states) shown in 
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the readout curve. In this way, the training at γ1 leaves a vestige of its presence, encoding a 

memory of its own. 

 

While it remains an open question how best to measure the impact of frustrated 

interactions on a system of hysterons, it is clear that we are only just beginning to scratch the 

surface of understanding their role in hysteretic systems. Other papers examining hysteretic 

systems have utilized asymmetric driving in the past, but they rarely discuss the reasoning 

behind their choice and its theoretical implications. This is an underappreciated question, 

especially in systems which exhibit memory behavior when driven both symmetrically and 

asymmetrically, but have only been investigated in depth for one protocol or the other.  

 

Figure 5 shows the fundamental result of this work; without frustrated interactions, there 

are no observable memories in a system encoded and subsequently read out using negative 

asymmetric shear. In the presence of frustrated interactions, negative asymmetric shear 

successfully encodes and reads out memories of a system’s history of deformation. This 

unambiguously demonstrates the impact of frustration on memory formation, providing a new 

stratagem for observing these otherwise elusive interactions. 

 

 Figure 14 further highlights the importance of the choice of protocol; encoding and 

reading out memories using only negative asymmetric shear nullifies the influence of leading-

order effects such as return-point memory. This is plainly seen by the difference in order of 

magnitude between the readout curves for symmetrically driven systems and those for (negative) 

asymmetrically driven systems.  
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Chapter 5  
 

Future Work 

Possible Experiments 

These simulations were inspired by work on cyclically sheared jammed packings [4,5] in 

which a 2D layer of jammed PS microparticles is driven with symmetric shear strain. It was my 

hope to perform an analogous experiment examining asymmetric shear strain, as I did in the 

simulations described here, but it was not permitted by time. Another possible way to realize an 

experimental test of the ideas here would be to devise a system where driving is not by direction, 

and the system is instead compressed from one side. Simulations of similar systems have been 

performed, and indicate that memories of both translational and rotational displacements are 

present—but those studies did not compare different driving protocols and explore the role of 

interactions, as I have done here [7]. 

More Simulations 

 Both simulation and experiment have shown that an amorphous solids response to cyclic 

driving can change drastically based on the regime of strain used to encode and read the 

memories [7]. Here I have only explored rather large values of strain which were chosen 

arbitrarily; this very well may have limited the scope of my findings. Further simulations of 

systems trained with cyclic asymmetric shear strain of smaller regimes (γo < 0.1) are needed to 

shed light on whether this lightweight model will also produce systems which reflect the changes 

in plasticity seen in other cyclically driven hysteretic systems [7,17].  
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 Also of interest would be testing specific arrangements of cooperative and frustrated 

interactions, for example so that hysterons at (2n+1) *45° angles from one another are anti-

ferromagnetic/frustrated and those at n*90° angles are ferromagnetic/cooperative, as has been 

observed experimentally in cyclically sheared 2D solids [5]. An example of this is shown in 

Figure 1. Studying systems with fixed geometries, for example in which all interactions are 

strictly anti-ferromagnetic/frustrated, also would have been good to simulate to further explore 

the role of frustrated interactions in the robustness of a systems memory capabilities. 
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Appendix A: Code 

Calculating the Field Vector (inter_field in hysteron.py) 

def lookup_index(e, f, system_width):  # calculates the index of interest from the state vector 

        return f * system_width + e 

    interaction = np.zeros((9))  # empty vector, entries are sums of interactions with neighbors 

    system_width = 3  # no. columns 

    system_height = 3  # no. rows 

    for e in range(system_width): 

        for f in range(system_height): 

            k = lookup_index(e, f, system_width)  # entry of the state vector being constructed AKA “11” 

            north = (f - 1) % system_height  # used to calculate the indices of the neighbors as they are cycled 

            south = (f + 1) % system_height 

            east = (e + 1) % system_width 

            west = (e - 1) % system_width 

            l = lookup_index(west, north, system_width)  # 00 

            interaction[k] += state[l] * interactions[l, k] 

            l = lookup_index(e, north, system_width)  # 01 

            interaction[k] += state[l] * interactions[l, k] 

            l = lookup_index(east, north, system_width)  # 02 

            interaction[k] += state[l] * interactions[l, k] 

            l = lookup_index(west, f, system_width)  # 10 

            interaction[k] += state[l] * interactions[l, k] 

            l = lookup_index(east, f, system_width)  # 12 

            interaction[k] += state[l] * interactions[l, k] 

            l = lookup_index(west, south, system_width)  # 20 

            interaction[k] += state[l] * interactions[l, k] 

            l = lookup_index(e, south, system_width)  # 21 

            interaction[k] += state[l] * interactions[l, k] 

            l = lookup_index(east, south, system_width)  # 22 

            interaction[k] += state[l] * interactions[l, k] 

    inter_field = interaction 
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Simulation Code

import numpy as np 

import hysteron as hyst 

def encode(state, amp1, amp2): #writes the memories 

    s = state.copy() #working copy of the state vector--changes to it are persistent 

    amp1_cycles = 0 

    while amp1_cycles < 5: #Performs training cycles of gamma1 

        hyst.evolve_event(s, -amp1, 0, interactions, Hon, Hoff, rec) 

        #hyst.evolve_event(s, amp1, 1, interactions, Hon, Hoff, rec) #commented out because we are 

encoding asymmetrically 

        hyst.evolve_event(s, 0, 1, interactions, Hon, Hoff, rec) 

        amp1_cycles += 1 

    amp2_cycles = 0 

    while amp2_cycles < 1: #Performs training cycles of gamma2 

        hyst.evolve_event(s, -amp2, 0, interactions, Hon, Hoff, rec)  

        #hyst.evolve_event(s, amp2, 1, interactions, Hon, Hoff, rec) #commented out because we are 

encoding asymmetrically 

        hyst.evolve_event(s, 0, 1, interactions, Hon, Hoff, rec) 

        amp2_cycles += 1 

    return s 

def fdiff(state, s): # calculates fdiff, fraction of hysterons that have changed state 

    i = 0 # similar to y axis of fig 4f in 'global memory from local hysteresis' 

    k = 0 

    for k in range(len(state)): 

        if (s[k] - state[k]) != 0: #checks for a difference between current state of hysterons and previous 

states 

            i += 1 

        else: 

            pass 

    return float(i / N) #fractional difference in hysteron states 
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N = 9 

b = 0 

i = 0 

j = 0 

for b in range(4000000): 

    try: 

        interactions = np.random.uniform(-1, 1, (N,N)) #generates random J_ij matrix of interaction 

strengths between hysterons. This is then used to calculate the field vector 

        for i in range(N-1): #Here we impose the restriction that transpose entries must be of like sign 

            if np.sign(interactions[i,j]) != np.sign(interactions[j,i]): 

                interactions[j,i] *= -1 

                i += 1 

            else: 

                i += 1 

            for j in range(N-1): 

                if np.sign(interactions[i,j]) != np.sign(interactions[j,i]): 

                    interactions[j,i] *= -1 

                    j +=1 

                else: 

                    j += 1 

 

        rnd = np.random.random((N, 2)) * 2 – 1 #Other parameters needed for evolve_event are made here 

        Hon = np.max(rnd, axis=1) #Hon and Hoff are the threshold values which determine when hysterons 

flip 

        Hoff = np.min(rnd, axis=1) 

         

        state0 = np.ones(N) * -1 #system starts with all hysterons in the -1 state ~ at a field of -infinity 

        hyst.evolve_event(state0, 0, 1, interactions, Hon, Hoff, rec) # Bring field from -infinity to 0 

         

 
 



27 

 

        state = state0.copy() #initialized state vector 

        s = encode(state, 0.5, 0.7) 

 

        fdif = [] 

        fdif.clear() 

        #u = s.copy() #If reading out in parallel, this line is uncommented and the one below is struck 

        for m in np.arange(0, 0.8, 0.002): #readout sequence 

            u = s.copy() 

            hyst.evolve_event(s, -m, 0, interactions, Hon, Hoff, rec) 

            #hyst.evolve_event(s, m, 1, interactions, Hon, Hoff, rec) #commented because we are reading out 

asymmetrically 

            hyst.evolve_event(s, 0, 1, interactions, Hon, Hoff, rec) 

            l = fdiff(s, u) #calculates difference in hysteron states after each strain amplitude is applied 

            fdif.append(l) #this is the list of differences which will be averaged over all trials and then plotted 

against gamma 

        addtl.append(fdif) 

        count += 1 

        pass 

 

    except RuntimeError:  

       continue 
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