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ABSTRACT 

We demonstrate that head acceleration improves state of vigilance discrimination when combined with 

electroencephalogram (EEG) measures. We wanted to replace what is normally done in polysomnogram 

(PSG) studies with just EEG and head acceleration. Therefore we designed a device that was used in the 

context of ongoing PSG studies that was compatible and synchronizable with the rest of the PSG 

measurements. Linear discriminant analysis of EEG features with and without accelerometer features 

was used to classify sleep states. The addition of head acceleration significantly improves the 

discriminative capability in most cases. This has potential application in automated sleep scoring which 

could prove useful in an implantable neural device for seizure control in epileptic patients. 
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1. INTRODUCTION 

We demonstrate that head acceleration improves state of vigilance discrimination when combined with 

electroencephalogram (EEG) measures. We wanted to replace what is normally done in polysomnogram 

(PSG) studies with just EEG and head acceleration. Therefore we designed a device that was used in the 

context of ongoing PSG studies that was compatible and synchronizable with the rest of the PSG 

measurements. Linear discriminant analysis of EEG features with and without accelerometer features 

was used to classify sleep states. The addition of head acceleration significantly improves the 

discriminative capability in most cases. This has potential application in automated sleep scoring which 

could prove useful in an implantable neural device for seizure control in epileptic patients. 

 In this section, I present the motivation behind this project. First, I discuss epilepsy and the 

different types of seizures associated with it. I then talk about how to quantify brain activity with EEG. 

We are interested in the relationship between epilepsy and sleep, so I give an overview of the stages of 

sleep and then discuss the role sleep has on epilepsy. Then I provide a brief summary of the current 

state of automated seizure prediction, the use of implantable neural devices for this purpose, and why 

we believe that addition of head acceleration has the potential to accomplish it. In section 2, I explain 

what linear discriminant analysis is and why it was used in this project. In section 3, I present the 

prototype device design and describe the sleep studies from which the measurements were obtained. 

The analysis steps will be explained in section 4, with results and discussion following in section 5. Finally 

in section 6 I conclude with a brief outlook on future projects that would follow this one. 

1.1  Epilepsy 

Epilepsy is a neurological disease that affects 1-2% of the population and can have devastating, life 

altering effects. It is characterized by recurrent, unprovoked seizures. Seizures are spontaneous, 

uncontrolled paroxysmal neuronal discharges in the brain [4]. With the exception of a few distinct types 

of epilepsies, such as reflex epilepsies [16], the exact mechanism by which seizures occur is largely 
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unknown. Some typical signs and symptoms include chaotic muscle movement, incontinence, 

tachycardia, hyperventilation, intense salivation, apnea, strange sensations, and loss of consciousness. 

During a seizure, the vigorous twitching of the muscles uses a lot of oxygen and glucose. As a result, 

there is a buildup of acids in the bloodstream (i.e. acidosis), the patient can turn cyanotic due to 

hypoxia, and hypoglycemic if the patient is diabetic. Apnea, or loss of breathing, is common during a 

seizure, making these problems life threatening. 

 Seizures can be caused by a number of different factors including congenital deformities, 

vascular lesions, head injury, drug or alcohol abuse, infections, tumors, and high fever (temperature 

over 104°F, particularly in children). There have been many theories proposed to explain the initiation of 

seizures [5]. They may be caused by changes in membrane permeability or ion distribution across the 

membranes. Another theory is a decreased inhibition of cortical or thalamic neuron activity. Or perhaps 

it has to do with neurotransmitter imbalances such as an acetylcholine excess or GABA deficiency. 

 There are two types of epilepsy. In primary epilepsy, also known as idiopathic epilepsy, there is 

no known cause. Seizures first occurring from the age of 2 through 18 may have a genetic predisposition 

or have something to do with an undeveloped nervous system. In older patients, the seizures may be 

due to structural damage, trauma, tumor, or stroke. The second type is secondary epilepsy, also known 

as structurally induced epilepsy, which has a known cause. These seizures may result from cerebral 

scarring, cerebral vascular accident (CVA), infection, degenerative CNS disease, or recurrent childhood 

febrile seizures. 

 Simple partial seizures, also known as focal seizures, typically involve just one cerebral 

hemisphere without a loss of consciousness. Patients may feel a sensory warning of an imminent seizure 

known as an aura. But it is possible that these auras are not warnings of a seizure, but rather they are 

simple partial seizures that shortly progress to other types of seizures. A complex partial seizure does 

result in an impairment of consciousness. These seizures begin in one area, like a simple partial seizure, 
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but then may rapidly progress to both hemispheres. Because they often start in the temporal lobe, they 

may be called temporal lobe seizures. Automatisms, or repetitive random activities, such as lip-smacking 

or rubbing clothing, are common. Also common are overwhelming fear, uncontrolled forced thinking, 

and feelings of detachment. A complex partial seizure can make it seem like psychiatric disorder instead. 

 Generalized epilepsy involves unconsciousness and involvement of both cerebral hemispheres 

without localization to either. Absence seizures, or petit mal seizures, generally last a few seconds 

without recollection and typically include automatisms. Myoclonic, tonic, clonic, and tonic-clonic 

seizures involve vigorous motor convulsions. A myoclonic seizure involves muscles jerking on both sides. 

They can be generalized or specific to the face, trunk, or any of the extremities. Tonic seizures fix the 

limbs in a strained position by violently contracting those muscles. Clonic seizures involve repeated 

contraction and relaxation of the major muscle groups. The tonic-clonic seizure, also known as grand 

mal seizure, is the most common major motor seizure. These often begin with an aura, or a simple 

partial seizure, then a sharp tonic contraction and loss of consciousness. Next the clonic phase follows. 

As the clonic phase comes to an end, the patient slowly regains consciousness during a postical state, 

which can last anywhere from 5 to 30 minutes. During this time, the patient is often confused and is 

breathing heavily to correct the pH imbalance and hypoxia. Hypoxic hemiparesis, or a weakening on one 

side of the body, can resemble a stroke, but typically resolves itself pretty quickly. A class of seizures 

that lasts longer than 30 minutes or recurs every few minutes without regaining consciousness is called 

status epilepticus and can result in respiratory failure and death if untreated immediately. 

1.2 Electroencephalography  

The quantification of seizure activity can be manifested with an electroencephalogram, or EEG.  

Electrical brain activity from the superficial layers of the cerebral cortex can be recorded from electrodes 

on the scalp. Changes in states of vigilance (SOV) can be correlated with changes in the EEG. There are 

four main types of brain waves [6, 12] (figure 1.1). 
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Figure 1.1 Brain Waves from EEG [12] 

Alpha waves have a frequency between 8 to 13 Hz. They are predominant when the person is awake and 

resting with eyes closed. They are absent during sleep. Beta waves have a frequency between 13 to 30 

Hz. They occur in the frontal and parietal regions and are predominant during active concentration. 

Theta waves have a frequency between 4 to 8 Hz. They are normal in children and mostly seen in adults 

when they are drowsy. Delta waves are high-amplitude slow waves with a frequency less than 4 Hz. 

They are seen in deep sleep in adults, and are commonly found in infants even when awake. 
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1.3 Sleep 

Sleep is fundamentally important for all life, but there are a lot of unanswered questions regarding it. 

We still don’t know much about the function of sleep and dreaming, for instance.  

 There are five stages of sleep [6]. In stage 1, the EEG is predominantly alpha waves. During this 

stage, we may feel a drifting sensation as we relax with our eyes closed and feel drowsy. Being woken 

up in this stage is very easy. Stage 2 is light sleep. The frequency of EEG waves decreases, but amplitude 

increases. Characteristic sleep spindles, or spikes, occur during this stage resulting from interactions 

between neurons of the thalamus and cerebral cortex. Next is stage 3, which is moderate to deep sleep. 

Sleep spindles are less frequent and the EEG waves take the form of theta and delta. Body temperature, 

blood pressure, heart rate, and respiration rate fall. Stage 4 is known as slow-wave sleep (SWS) because 

of the prominent slow delta waves. It is difficult to wake the sleeper in this stage. Their vital signs are at 

their lowest, and the muscles are very relaxed. This is critical for detecting sleep states. The final stage of 

sleep is REM, or rapid eye movement, appropriately named since the eyes are moving rapidly from side 

to side. The EEG waves of REM resemble those of a waking state, yet it is the most difficult stage of 

sleep from which to wake the sleeper. The vital signs increase and the brain uses more oxygen than if 

the person were awake. For these reasons, REM is also known as paradoxical sleep. For unknown 

reasons, REM sleep seems to have a vital restorative effect on the brain. Without adequate REM sleep, 

memory and concentration are usually impaired. Figure 1.2 shows what the EEG typically looks like for 

the different stages. 
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Figure 1.2 EEG Waves for Different Sleep States [12] 

1.4 Sleep and Epilepsy 

There is a strong relationship between epilepsy and sleep. There are many types of epilepsies that can 

occur during sleep or just after awaking [17]. Awakened grand mal epilepsy, frontal lobe seizures, 

juvenile myoclonic epilepsy, and benign rolandic epilepsy are just a few.  

 Sleep deprivation can be a powerful initiator for a seizure. Unfortunately, a seizure caused by 

sleep deprivation can, in turn, greatly affect the complicated cycles of sleep. Its most profound effect is 

on REM sleep. A seizure early on in the night can greatly reduce or eliminate altogether REM sleep for 

the rest of the night. Those who experience this may feel well rested and yet still have impaired memory 

and concentration. Even a daytime seizure can affect REM sleep, though generally not as greatly. 
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1.5  Seizure Prediction 

Many suffering from epilepsy live in constant fear of having a seizure, which can have a strong impact on 

their quality of life [18]. Although there are long-term preventative strategies, such as anti-epileptic 

medications, a more on-demand therapy to prevent seizures as they are occurring would be better. 

However, to date, seizure prediction algorithms simply cannot outperform chance level [1]. In theory, 

there are two ways a seizure can occur. Either it can occur abruptly without detectable dynamic changes 

in EEG or the seizure can be preceded by a cascade of dynamic changes in EEG which can be detected 

[19]. The seizure prediction community has restricted itself to invasive and non-invasive EEG without 

regard to state. It does not first stage SOV and then discriminate normal from abnormal dynamics within 

these states. A greater understanding of abnormal pre-seizure dynamics with regard to state has the 

potential to increase seizure prediction. 

1.6 Implantable Neural Devices and Acceleration 

Implantable EEG electrodes, called ECoG (electrocorticogram) electrodes, have the potential for long 

term use [20]. Those suffering from epilepsy would want 24/7 seizure prediction outside of the lab 

setting, i.e. in their everyday living. Sleep state classification is relatively accurate with the help of 

electrooculogram (EOG) electrodes, which measure eye movement, and electromyogram (EMG) 

electrodes, which measure muscle tone. EMG is important because as the sleeper goes into deeper 

sleep, muscle tone decreases. EOG can easily discriminate REM sleep from non-REM sleep. Neither EMG 

nor EOG, however, would be appropriate for an implantable neural device. ECoG electrodes are placed 

on the exposed surface of the brain via a craniotomy. But both EMG and EOG would be exposed on the 

outer surface of the patients’ head and would therefore be very cumbersome. Without EMG and EOG, 

sleep state classification is very difficult. 

 Sunderam et al. [2] showed that, in rats, the addition of head acceleration measures in addition 

to EEG increased SOV staging compared to EEG alone. Head acceleration measures effectively replaced 
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EOG and EMG in SOV staging. Unlike EMG and EOG, the accelerometer is non-intrusive and can be easily 

added to an implantable neural device. The purpose of this research was simply to investigate if these 

findings can be reproduced in a clinical setting. 
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2. LINEAR DISCRIMINANT ANALYSIS 

Linear discriminant analysis (LDA) [3] is a method that finds the linear combination of features that 

maximally separate groups. Originally developed by Fischer in 1936 [21] to classify plants based on petal 

and sepal sizes, LDA was used in this research to classify sleep states. A visual example will help to 

describe LDA. Let’s say there are two groups, red stars and blue diamonds, with features A and B (figure 

2.1). The two feature axes create a plane in which the groups lie. 

 

Figure 2.1 Two Groups with Features A and B: these two groups, red stars and blue diamonds, lie in a plane created 

by their features A and B 

Trying to classify these groups with either feature individually will not result is the best separation. 

Graphically, this can be shown by projecting onto the respective axis (figures 2.2 and 2.3). 
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Figure 2.2 Classification Based on Feature A: projecting the groups onto Axis A show a significant overlap 

 

Figure 2.3 Classification Based on Feature B: projecting the groups onto Axis B show a significant overlap 
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Much more useful would be to find a linear combination of features A and B to create a new axis 

(denoted as axis C) that would provide the greatest separation (figure 2.4). 

 

Figure 2.4 Classification Based on a Linear Combination of Features A and B: projecting onto Axis C clearly shows a 

better separation of the groups compared to projecting to either Axis A or Axis B 

Mathematically, the steps are as follows. First, extract features from the data and store them in Y. Next, 

compute the total covariance, ‪ȟ and the group covariances, ‪, for each of the j groups, x. Covariance is 

defined as,  

ʕ % 9 ʈ 9 ʈ Ø Ê,                                                       (1) 

where E is the expectation value, defined as, 

ὉὪὼ  В Ὢὼὖὼȟ                                                              (2) 

where P(x) is the probability density function.  Also calculate mean for each group. Now compute the 

within group variance, ʕ ,   (variance is the average squared deviation of each number from its mean) 

and the between group variance, ʕ , (figure 2.5) via the following relationship, 
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‪  ʕ  ʕ .                                                                     (3) 

Now perform singular value decomposition (SVD) to find H and Λ such that, 

ʕ ( (zᴂ,                                                                       (4) 

and, ʕ ( ɤzz ( Ȣ                                                                (5) 

Next define, 

ῲ Ὄ  ,                                                                      (6) 

and use the first “number of features – 1” columns of ῲ as the coefficients, a, for the equation, 

 Z = a’Y,                                                                            (7) 

 where Z is the linear combination of features Y that maximally separates the groups. Note that Z is one 

dimension less than the number of features. For example, a line is required to separate groups in a 

plane, whereas a plane (two dimensions) is needed to separate groups in three dimensional space. To 

summarize, LDA is a method that finds the linear combination of features to maximize the ratio of 

between group variance to within group variance, i.e. to maximize group separation. 

           

Figure 2.5 Within Group Variance and Between Group Variance 
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3. DESIGN AND EXPERIMENTAL SETUP 

3.1  Accelerometer Chip 

The accelerometer chip used was VTI’s CMA3000 A01 [7] (Figure 3.1).  

 

Figure 3.1 Accelerometer Chip. Top view (left) and bottom view (right) 

The microelectromechanical system, or MEMS, accelerometer measures 2 x 2 x 0.95 mm, detects 

acceleration up to 8g in all three axes, requires a voltage supply of 1.7V to 3.6V, and has a current 

consumption of 180µA. Although the chip was not powered by a battery, it can be. For a Duracell 3V 

2450 Li Battery [8] (button cell shape), which has a current capacity of 620mAh, the accelerometer can 

be powered continuously for over 4 months. For a Duracell 3V Li battery [8+ (the equivalent of 2 AA’s), 

which has a current capacity of 3500mAh, the accelerometer can be powered continuously for about 27 

months. This is important since this device is ultimately intended for long term use. 

 The signal bandwidth is 106Hz, calculated from, 

Ὢ
    

 ,                                                              (8) 

where R, the internal resistance, is 32kΩ, and CL, the load capacitance, is 47nF. Three 47nF capacitors 

were placed between each output (one for each axis) and ground. 1µF and 100nF capacitors were 

connected in parallel between the voltage supply pin and ground as recommended in the CMA3000 A01 

data sheet [7]. 

3.2 The Device 

It was important, for the accelerometer to be useful clinically, that the device be as small and minimally 

intrusive as possible. The components that were placed on the device were the accelerometer chip, the 
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three 47nF, 1µF, and 100nF SMD 0805 capacitors, and pads for connecting a ribbon cable so that the 

device can communicate with a data acquisition box. The device was designed using OrCAD [10] (figure 

3.2). 

 

Figure 3.2 PCB Artwork Designed on OrCAD for Accelerometer Device 

Both images are of the same printed circuit board. The left shows the bottom side connections in red 

and soldermasks in green. The right shows the top layer pads and connections in yellow. To save on 

costs, two large boards were ordered, each of which had 14 printed circuit boards on them (figure 3.3). 

They were then individually milled apart using a milling machine, a Roland EGX-300. Each board 

measures approximately 14 x 12 x 1.5 mm. 

 

Figure 3.3 Fabricated PCBs 



 

15 
 

The accelerometer chip, being too small to solder by normal means, had to be mounted via reflow 

soldering. Under a microscope, on top of a hot plate, equal amount of solder was applied to each of the 

eight small circular pads from figure 3.2. Next, soldering paste was applied on top of the solder and the 

accelerometer chip was placed on top of that. A small circle is marked on one of the corners of the 

accelerometer for orientation purposes; the accelerometer was placed so that the small circle was on 

the upper left corner. The hot plate was turned on to 80°C for five minutes, then turned up to 250°C. As 

soon as there was visual proof of the solder melting underneath the accelerometer, it was turned off 

immediately to prevent damage to the accelerometer. The capacitors and ribbon cable connections 

were mounted afterward by normal means. Figure 3.4 shows the constructed device.  

Figure 3.4 Constructed Accelerometer Device 

The small circle mark on the accelerometer chip is represented by the black circle on the chip in the 

figure. The pads for range and power down, or PD, (inputs for the accelerometer [7]) were physically 

connected with a wire to the lower pad of the 100nF capacitor which was connected to ground. The 

pads for voltage supply and ground remained opened; they were there for any modifications that may 
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have needed to be made. An approximately 2 m x 8 mm x 1 mm ribbon cable has five connections, 

which connect to other equipment away from the patient. These five connections are for ground, 3.3V 

power supply, and the outputs for the three axes’ acceleration.  

3.3 Data Acquisition Component 

The data acquisition (DAQ) hardware used was a National Instruments USB-6211 [10]. Its 16 bit analog 

inputs sample at 250kS/s (kilosamples per second). It provides 5V output, so a voltage divider was used 

to drop the voltage to 3.3V for the accelerometer’s power supply. The DAQ was connected to a laptop, 

which used LabVIEW [11] to record and save the data in binary files at 1kS/s. The LabVIEW executable to 

accomplish this was previously written and readily available within the Center for Neural Engineering. 

 The laptop’s power adaptor, which was plugged into a wall outlet, was only two-pronged and 

therefore not grounded by a third prong. 60Hz noise from the main AC power supply corrupted the 

data. Originally believed to be the cause of the 5V power coming from the DAQ unit, the 

accelerometer’s power supply was disconnected from the DAQ unit and was connected to a 3V button 

cell battery. This did not solve the problem, so the accelerometer power supply was reconnected to the 

DAQ unit. Many attempts were made to remove the noise without success. Ultimately, it was 

determined that the laptop, DAQ unit, or accelerometer chip needed to be physically grounded to 

remove the noise. The laptop power adaptor was plugged into a three-prong to three-prong extension 

cord. One end of a 1/8’’ stereo audio jack was connected into the audio port of the laptop and the other 

was inserted into the third socket of the extension cord. With the extension cord plugged into the wall 

socket, this effectively grounded the laptop and removed the 60Hz noise from the data. 
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Figure 3.5 DAQ, Voltage Divider, and Accelerometer Components 

3.4 Experimental Setup 

Acceleration measurements are only one component of this project; EEG recordings and corresponding 

scored sleep states were also required. These other two components were provided by Dr. Edward 

Bixler, Professor of Psychiatry and Vice-Chair of Research at the Penn State College of Medicine, in the 

course of his ongoing sleep studies conducted at the Sleep Research and Treatment Center at the Penn 

State Milton S. Hershey Medical Center. During his sleep studies, participants slept from approximately 

10:00 PM to 7:00 AM. Each wore four EEG electrodes: C3, C4, F3, and F4 (figure 3.6), which had a 

sampling rate of 200S/s. 
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Figure 3.6: EEG Electrode Placement [12] 

There were many other measurements obtained from the participants for Dr. Bixler’s research, but only 

EEG measurements were needed for this project. Every 30 second epoch was scored by experts with the 

aid of other information such as EOG, EMG, and video surveillance. The accelerometer prototype was 

added in with the other components. The participants wore the accelerometer device, covered in blue 

tape, on their foreheads. None of the participants expressed any discomfort from the device. In 

addition, it did not interfere with Dr. Bixler’s recordings. The laptop and DAQ component were kept 

inside the recording room while the ribbon cable passed through a small window into the participants’ 

rooms in which they slept. Figure 3.7 is a photograph of the recording room. 
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Figure 3.7 Recording Room in Sleep Lab at Penn State Milton S. Hershey Medical Center 

The clock on the laptop was synchronized within a second of the computer used to record the EEG 

measurements to ensure proper timing. Three nights of accelerometer recordings from three sleep 

participants were obtained. Dr. Bixler provided the corresponding four channel EEG recordings in 

European Data Format along with the scores for each 30 second epoch. 
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4. ANALYSIS 

All analysis steps were performed in MATLAB [13]. Note: all figures in this chapter will have an a, b, and 

c corresponding consistently to the three sleep study participants whom will be referred to as such. 

4.1 Acceleration 

The acceleration measurements were loaded 5 seconds at a time. The signal was high pass filtered at 2.5 

Hz using a Butterworth filter [14] to eliminate the DC component caused by gravitational orientation of 

the three axes. Head orientations could have easily been determined from the DC components of the 

signals, but was disregarded since I didn’t expect them to contribute to classification. For each 5 second 

window, the power spectral density was calculated using Welch’s method *15]. The three channels (x, y, 

and z) were then averaged together (figure 4.1).  

 

Figure 4.1a Acceleration Power Spectral Density for Participant A. On the y axis are the 5 second window samples 

moving down the axis. From lowest to highest, power intensity is represented by blue, green, yellow, and red. 
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Figure 4.1b Acceleration Power Spectral Density for Participant B 

 

 

Figure 4.1c Acceleration Power Spectral Density for Participant C 
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The accelerometer was taking measurements well before the scoring started, and so at this point the 

acceleration data was truncated to line up to the scored data. This could have been done before 

computing the power spectral density, but it proved easier to do it after instead. 

 Next, the scores were added into MATLAB. Each state was represented by a number: 7 for 

unscored; 0 for wake; 1 for stage 1 sleep; 2 for stage 2 sleep; 3 for stage sleep; 4 for stage 4 sleep; and 5 

for REM sleep. A vector of these numbers representing the states was constructed; each position in the 

vector represented a 30 second epoch. Each position in the average power matrix represented 5 

seconds of acceleration. In order to properly line up the two, the states vector was “stretched” so that 

each position in the old vector took up 6 positions in a new one. This was done so that the state of each 

position of the average power matrix could be determined simply by looking at the same position of the 

states vector, which is exactly what was done next. 

 The average power matrix was broken up into states and then averaged across samples to see 

any trends (figure 4.2). 

 

Figure 4.2a Acceleration Average Power Broken into States for Participant A 
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Figure 4.2b Acceleration Average Power Broken into States for Participant B 

 

 

Figure 4.2c Acceleration Average Power Broken into States for Participant C 
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The features used for LDA are band powers. The frequency bands chosen were: 0 – 4 Hz, 4 – 7 Hz, 7 – 13 

Hz, 13 – 30 Hz, and 30 – 80 Hz. The average power was broken up into band powers, and then the band 

powers were further broken up into states (figure 4.3). And lastly, the powers were converted to log 

powers to be used in LDA. 

 

Figure 4.3a Acceleration Band Powers Broken Up into States for Participant A. Band 1 is 0-4Hz, band 2 is 4-7Hz, 

band 3 is 7-13Hz, band 4 is 13-30Hz, and band 5 is 30-80Hz. On the y axis are the 5 second time windows, 

increasing down the axis. 
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Figure 4.3b Acceleration Band Powers Broken Up into States for Participant B 

 

 

Figure 4.3c Acceleration Band Powers Broken Up into States for Participant C 
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4.2 EEG 

Most of the analysis steps for the EEG data are identical to those for the acceleration. The four EEG 

channels were read in and the power spectral densities were computed for each 5 second window. 

There is no timing issue since the scores are based off the EEG data. The power was averaged across all 

channels (figure 4.4). The average power was broken up into states (figure 4.5). The bands up to 30 Hz 

are already well defined for us: 0 – 4 Hz (delta), 4 – 7 Hz (theta), 7 – 13 Hz (alpha), 13 – 30 Hz (beta), and 

30 – 80 Hz (figure 4.6). And finally, powers were converted to log powers. 

 

Figure 4.4a EEG Power Spectral Density for Participant A 
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Figure 4.4b EEG Power Spectral Density for Participant B 

 

 

Figure 4.4c EEG Power Spectral Density for Participant C 
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Figure 4.5a EEG Average Power Broken into States for Participant A 

 

 

Figure 4.5b EEG Average Power Broken into States for Participant B 
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Figure 4.5c EEG Average Power Broken into States for Participant C 

 

Figure 4.6a EEG Band Powers Broken into States for Participant A. Note the high power for low frequency bands in 

the deep sleep stages 3 and 4, as expected. 
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Figure 4.6b EEG Band Powers Broken into States for Participant B 

 

 

Figure 4.6c EEG Band Powers Broken into States for Participant C 
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4.3 Linear Discriminant Analysis 

The features used in the LDA classifier were the band powers as a function of state. Only two states, or 

groups, were compared at a time, and only useful features for those two groups were used. These useful 

features were found by looking at the probability density function (pdf) and cumulative distribution 

function (cdf) for the two groups and using only the features which showed the best separation. Figure 

4.7 shows an example of a useful feature. 

 

Figure 4.7a PDF and CDF for EEG Band Powers of Wake (blue) and SWS (red) for Participant A 

To avoid a bias data set from LDA classification, which results from one group being much larger than 
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groups were randomly divided into halves: a training half and a testing half. The training half was used 

to create the LDA classifier for the two groups. The LDA classifier was then used on both the training half 

and the testing half to estimate the accuracy of the discrimination. The error rate obtained is a “leave-

half-out” error. This entire LDA process was done 100 times for each comparison; then errors averaged.  
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5. RESULTS AND DISCUSSION 

Each figure in this section will have an i and ii, representing LDA classification of EEG and EEG + 

acceleration respectively (the plots are also clearly labeled). In addition, an a, b, or c will continue to be 

used to denote which sleep study participant’s data is being looked at. As states in the last section, the 

entire LDA classification process was run 100 times per comparison. The error rates given are the 

averaged leave-half-out error rates. 

The objective is to figure out for which states, if any, head acceleration increases discrimination. 

Certain states do not show an improvement with the addition of acceleration. For example, figure 5.1 

compares wake vs. stage 1 sleep. The bands used are: 4 and 5 for EEG; 1 for acceleration.  

 

Figure 5.1ai Wake vs. stage 1 discrimination using EEG. Bands 4 and 5 are used for EEG. The average error rate of 

classifying the training set is 4.54%. The average error rate of classifying the testing set is 10.24%. 
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Figure 5.1aii Wake vs. Stage 1 Discrimination using EEG + acceleration. Band 1 is used for acceleration. The average 

error rate of classifying the training set is 4.94%, up from 4.59% for the EEG training set. The average error rate of 

classifying the testing set is 11.26%, up from 10.24% for the EEG testing set.  

The addition of head acceleration does not improve classification of wake vs. stage 1 sleep for any of the 

participants. Since the features from the acceleration measurements did not have good separation for 

these two states, the addition of them in the LDA classifier actually made classification worse. 

 Wake vs. stage 2 sleep has much better results (figure 5.2). The bands used are: 4 for EEG; 1 and 

2 for acceleration. The average testing set error rate drops from 42.97% to 19.83%, a remarkable 

improvement. 
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Figure 5.2ci Wake vs. Stage 2 using EEG. Band 4 was used for EEG. The average error rate of classifying the training 

set is 21.09%. The average error rate of classifying the testing set is 42.97%.  

 

 

Figure 5.2cii Wake vs. Stage 2 using EEG + acceleration. Bands 1 and 2 are used for acceleration. The average error 

rate of classifying the training set is 9.84%, down from 21.94% for EEG. The average error rate of classifying the 

testing set is 19.83%, down from 42.97% for EEG. 
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Wake vs. SWS (stage 4) also has great classification (figure 5.3). The bands used are: 1 and 2 for 

EEG; 1 and 2 for acceleration. Average testing error rate drops from 7.89% to 5.30%. 

 

Figure 5.3ai Wake vs. SWS for EEG. Bands used are 1 and 2. Average error rate of classifying the training set is 

3.90%. The average error rate of classifying the testing set is 7.90%. 
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Figure 5.3aii Wake vs. SWS for Acceleration. Bands used are 1 and 2 for acceleration. The average error rate of 

classifying the training set is 2.50%, down from 3.90%. The average error rate of classifying the testing set is 5.30%, 

down from 7.90%. 

 

Acceleration for wake vs. REM doesn’t seem to improve classification (figure 5.4). The bands 

used here are: 3, 4, 5 for EEG; 1 and 2 for acceleration. Here, the average error rate of classifying the 

testing sets drop only slightly from 19.62% to 19.20%. With such a high error rate for EEG alone, it’s 

unfortunately that acceleration do much to improve it. But at least it doesn’t make it worse. 
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Figure 5.4ai Wake vs. REM for EEG. Bands used are 3, 4 and 5 for EEG. Average error rate of classifying training set 

is 9.64%. Average error rate of classifying testing set is 19.62% 

 

Figure 5.4aii Wake vs. REM for Acceleration. Bands used are 1 and 2 for acceleration. Average error rate of 

classifying training set is 9.54%, down from 9.64% from EEG. Average error rate of classifying testing set is 19.2%, 

down from 19.62% for EEG. 
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EEG alone does an amazing job for discriminated between SWS and REM (figure 5.5). The bands used 

are: 1, 2, and 3 for EEG; 1 and 2 for acceleration. The average error rate of classifying the testing sets 

drop from 0.36% to 0.26%.  

 

Figure 5.5ai SWS vs. REM for EEG: Bands used are 1, 2, and 3 for EEG. Average error rate of classifying training set 

is 0.16%. Average error rate of classifying testing set error rate is 0.36%. 
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Figure 5.5aii SWS vs. REM for Acceleration. Bands used are 1 and 2 for acceleration. Average error rate of 

classifying training set is 0.12%, down from 0.16% for EEG. Average error rate of classifying testing set is 0.25%, 

down from 0.36%. 

 

And one last comparison I’ll present is another non-REM vs. REM comparison, namely stage 2 vs. REM 

(figure 5.6). Once again, the acceleration increases classification. The bands used are: 3 and 4 for EEG; 1 

for acceleration. The average error rate of classifying the training sets drop from 19.46% to 15.26%. 
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Figure 5.6ci Stage 2 vs. REM for EEG. Bands 3 and 4 are used for EEG. The average error rate of classifying the 

training set is 9.77%. The average error rate of classifying the testing set is 19.46%. 

 

 

Figure 5.6cii Stage 2 vs. REM for Acceleration. Band 1 is used for acceleration. The average error rate of classifying 

the training set is 7.54%, down from 9.77% for EEG. The average error rate of classifying the testing set is 15.27%, 

down from 19.46% for EEG.  
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6. CONCLUSIONS AND FUTURE WORK 

In most cases, the addition of head acceleration significantly improves sleep state classification. There 

are a few things to note, however. For one, only band powers were extracted from the data and used in 

the LDA classifier as features. There may well be other useful features that can be extracted, which may 

further improve the discriminative capability. Also, there are many other methods of classification, such 

as state-space modeling, that weren’t put to use in this project. Although the results are great, they 

have the potential to be even better. 

This is just a small, albeit important, step to improving automated seizure prediction. The next 

major goal would be to create a device that can provide accurate real-time classification and with 

smaller epochs. The ultimate goal is to be able to incorporate the accelerometer component into an 

implantable neural device in order to stage SOV in real time without needing EOG or EMG electrodes in 

place. EEG measures can then be interpreted more meaningfully knowing the SOV. With that advantage, 

seizures potentially can be predicted and prevented before they occur in epileptic patients who have 

implantable neural devices in place. 
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