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ABSTRACT 

 

 Computational models are effective tools in widespread use for studying knee mechanics. 

However, there is currently a need for fast and computationally efficient methods for rapidly 

evaluating how changes to the geometry of natural and artificial knees affect joint and muscle 

function. This thesis presents three planar equilibrium models of the human knee. The models 

were based on systems of nonlinear equations, which described the static equilibrium and 

geometry of the knee. The first model, the Natural Knee Model, was used to study the impact of 

Osgood-Schlatter disease on the knee extensor mechanism. The second model, the Hinged TKR 

Model, was used to study design considerations in a hinged knee implant. The third model, the 

Hinged TKR Model with Knee Simulator Input, was used to augment the Penn State Knee 

Simulator and predict measurements in a real-world mechanical simulation. These three analyses 

uncovered structure-function relationships in natural and artificial knees, demonstrating the 

utility of the models. Ultimately, the planar equilibrium modeling paradigm proved to be a 

computationally efficient method for studying knee mechanics. 
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Chapter 1  
 

Introduction 

 In 2010, an estimated 693,400 total knee arthroplasty (TKA) surgeries were performed in 

the United States, a figure that almost doubled from 2000 [1]. TKA is a common procedure 

employed when the knee joint is severely damaged and cannot be repaired using alternative 

surgeries or therapies. More than 95% of TKAs are done to treat osteoarthritis, a disease that 

leads to severe bone degradation within joints [2]. Before undergoing a TKA, patients tend to 

report consistent pain and difficulty performing everyday activities, such using stairs and rising 

from a chair. The number of TKA procedures in the United States is expected to increase to 1.27 

million in 2025, 1.92 million in 2030, and 3.42 million in 2040 [3]. As a result, there is increased 

demand for more effective and longer lasting knee replacement implants. For those who suffer 

from osteoarthritis, TKA is a procedure that promises to significantly reduce pain and allow a 

comfortable return to everyday activity. Innovation in TKA requires balancing the needs of 

surgeons and their patients against manufacturing and economic considerations. In addition, pre- 

and post-operative factors play an important role in TKA outcomes [2]. As the industry 

continues to expand, medical device companies are developing new implants and surgical 

procedures that they believe will produce the best patient outcomes possible.  

 Computer modeling is an essential step in the design process of knee replacement 

implants because it allows for the rapid evaluation of potential designs without having to build 

physical prototypes. The most common approach to computational knee models is the finite 

element method (FEM) [4]. This method begins with a continuous 3D model of the knee, then 
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divides it into discrete elements, then solves differential stress and strain equations at each 

element. FEM models are powerful tools that can reveal the biomechanics of the knee on the 

cell, tissue, and joint levels. Modern FEM models accurately simulate the material properties of 

knee components like bone, ligaments, and the meniscus, making them valuable but also 

computationally expensive. Dynamic, time-dependent simulations that involve knee motion are 

particularly expensive because stress and strain equations must be solved at each time step. The 

limitations of FEM models arise from this computational complexity and that their solutions 

represent approximations according to set tolerances. 

 Another type of knee model employs a system of equations that describes the dynamics 

of the knee joint. Unlike FEM models, which are based on constitutive relations and geometric 

compatibility at the level of small elements, these dynamic (or “static” if no accelerations are 

present) mathematical models solve equations that describe the motions and interactions of 

whole bodies. Such models are commonly used in biomechanics research. Often we seek to 

make measurements that would be impossible in human subjects and impractical in mechanical 

models, such as the exact location of a contact point, tension within a ligament, or contact force 

deep within a joint. In addition to making difficult measurements, computer models allow us to 

perform analyses that would otherwise be impossible in human subjects, such as a sensitivity 

analysis that studies how changes in the geometry of the knee affect its function. 

 While static and dynamic knee models are commonly used in biomechanics research, 

current models do not fully address the needs of implant engineers. Existing models allow for a 

better understanding of the dynamics of the knee joint, but they are seldom used to evaluate 

potential knee replacements designs and compare the impact of certain design criteria against 
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others. Therefore, there is need for a mathematical knee model that can rapidly evaluate potential 

implant designs.  

 The purpose of this thesis is to expand upon the current research by developing a two-

dimensional modeling paradigm of the human knee. For this study, three distinct mathematical 

models will be developed, and sensitivity analyses will be performed to evaluate the impact of 

various design criteria on the performance of hinged knee replacement implants. The three 

models are described as follows: 

1. “Natural Knee Model” – The Natural Knee Model is a two-dimensional 

mathematical simulation that models the natural human knee in the sagittal plane. 

The model is described by nine equations originally derived by Yamaguchi and 

Zajac [5]. These equations describe the static equilibrium and geometric 

compatibility of the tibia, femur, and patella. After the initial verification of the 

model, a sensitivity analysis will be performed that explores the impact of Osgood-

Schlatter (OS) on the knee joint extensor mechanism. OS is a common disease 

characterized by the lengthening of the tibial tubercle. This analysis will help 

evaluate the robustness of the model and determine its ability to simulate the impacts 

of structural changes in the knee. 

2. “Hinged TKR Model” – The Hinged TKR Model is a two-dimensional 

mathematical model that simulates a commercially available hinged knee 

replacement in the sagittal plane. The model is described by seven equations that 

describe the static equilibrium and geometric compatibility of the tibia, femur, and 

patella. A generalized approach to knee geometry is used that models contact 

surfaces as splines that can be adjusted to model various implant geometries. After 
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the initial verification of the model, a sensitivity analysis will be performed that 

explores the impact of the anterior-posterior position of the hinge. 

3. “Hinged TKR Model with Knee Simulator Input” – The Hinged TKR Model 

with Knee Simulator Input will augment the second model by including data 

collected by the Penn State Knee Simulator (PSKS). The data collected from this 

benchtop testing will then be fed into the mathematical model to make it more 

realistic. The output of the subsequent simulation trials will be compared against the 

output of the PSKS to determine the correspondence between the computer model 

and benchtop testing rig.  
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Chapter 2  
 

Literature Review 

2.1 Overview of Total Knee Replacement 

 

Figure 1. Anatomy of the human knee.  

"File:Blausen 0597 KneeAnatomy Side.png" by BruceBlaus is licensed with CC BY 3.0. 

 

 We begin our discussion with a review of basic knee anatomy. As seen in Figure 1, The 

knee joint is made of the femur, tibia, and patella, which are held together by tendons and 

ligaments[6]. The femur extends from the hip to the knee, while the tibia extends from the knee 

to the ankle. The patella sits on top of the tibia and is held in place by the patellar tendon and the 

patellar ligament. The patellar tendon, also called the quadriceps tendon, links the quadriceps to 

the patella, and the patellar ligament links the patella to the tibia. The knee joint is constrained 

and stabilized by four main ligaments: the posterior cruciate ligament (PCL), anterior cruciate 

ligament (ACL), lateral collateral ligament (LCL), and medial collateral ligament (MCL). The 

PCL is of particular interest in TKR because some implant designs retain the PCL while others 

remove it [7]. Between the femur and tibia lies the medial and lateral menisci, which act like 
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cushions, preventing the tibia and femur from contacting each other. When the menisci begin to 

deteriorate, friction develops between the femur and tibia, leading to the bone degradation 

disease osteoarthritis, which is the root cause of 95% of TKR surgeries [2]. 

 The first TKRs were developed during the 1960’s and featured relatively simple designs. 

They were hinged prostheses that allowed motion about a single axis, typically made of stainless 

steel. These implants were revolutionary for their time but often succumbed to infection and 

mechanical failure in the long term [8]. Nevertheless, as the orthopedic industry realized the 

potential of TKR surgery, knee replacements became more common, and their designs evolved 

dramatically.  

 In his 2012 journal article “The history of total knee arthroplasty” [9], Ranawat recounts 

the breakthroughs that lead to modern TKR implants. In the early 1970’s, condylar designs were 

developed that more closely mimicked the natural anatomy of the knee. These designs offered 

far more range of motion than the earlier hinged implants and vastly improved patient outcomes. 

As novel iterations of the condylar design emerged during the 1980’s, 1990’s, and 2000’s, 

certain design criteria became ubiquitous such as deformity correction, modularity, and surgical 

instrumentation. More recently, advances in material science and design methodology have 

produced high-performance, long-lasting implants. The development of titanium and cobalt-

chromium alloys have led to femoral components that accelerate the healing process and increase 

wear resistance [10], while the use of functionally graded materials in the tibial tray has reduced 

the strain on implant components [11]. 

 Currently, TKR implants can be divided into two main categories- hinged and non-

hinged. As the name suggests, hinged implants feature a hinge that connects the femur and tibia. 

Some additional mobility is built into the hinge, allowing for more natural movement that was 
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greatly lacking in early hinged designs [12], [13]. Hinged implants are primarily used in elderly 

and revision cases where significant stability is desired, and some natural knee motion must be 

constrained. On the other hand, non-hinged TKR implants are more common and offer a greater 

range of motion [9], [14]. Some designs retain the cruciate ligaments, while others elect to 

remove them and mechanically stabilize the implant. Both categories of implants tend to reduce 

pain and increase quality of life, but non-hinged condylar implants often allow patients to resume 

normal activity with significantly reduced pain, making them the more popular of the two 

categories. This study will focus on how hinged implants can be improved to produce excellent 

outcomes in elderly and revision cases. 

 Post-operative patient satisfaction is how implant manufacturers and designers measure 

success. In 2018, a team of researchers conducted a comprehensive review of patient satisfaction 

after TKR, synthesizing the outcomes of over 90,000 patients [15]. The team found that post-

operative satisfaction levels ranged from 80 to 100%, and studies that featured a 0-10 satisfaction 

scale reported means above 7.0. The best predictors of patient satisfaction were reduction of pain 

and improved range of motion, while the best predictors of dissatisfaction were preoperative 

anxiety, persistent pain, and requiring revision surgery. This study highlighted how far knee 

arthroplasty had come since its inception and highlighted the areas where the procedure could 

continue to improve. 

 Another goal of modern knee replacement is to improve implant longevity. As 

osteoarthritis incidence increases, more patients look to knee replacements to mitigate their pain. 

As a result, rates of TKR continue to increase and demographics are shifting younger. Implant 

engineers now face the challenge of creating implants that can last up to 30 years and beyond 

[16]. Currently, 82% of TKRs last 25 years, meaning patients who receive them in their late 50’s 
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and early 60’s risk implant failure during the latter years of their life [17]. Sustained 

advancements in implant design and surgical techniques are necessary to continue the success of 

TKRs and reduce revision surgery rates as demographics shift.  

2.2 Technical Design Considerations in TKR 

 As engineers and surgeons work together to improve current implants and surgical 

procedures, they must balance a variety of design criteria. The modern TKR implant has a 

complex construction that can be modified in a variety of ways, while modern surgical 

techniques allow for excellent precision when positioning and installing the implant. The design 

considerations most relevant to our discussion of hinged implants are the location of the position 

of the hinge, location of the joint line, and position of the patella. These three criteria must be 

intricately balanced during implant design and surgery to produce the best patient outcomes. 

 The most pertinent design consideration for hinged implants is the location and 

construction of the hinge itself. In particular, the anterior-posterior position of the hinge greatly 

influences implant functionality [18]. It is assumed that a more posterior hinge increases the 

moment arm, and hence the leverage, of the quadriceps, but this phenomenon is not well 

documented. Furthermore, a more posterior hinge can reduce the need for bone resection but 

may also cause abnormal patella motion [18]. Today, modern hinged implants allow for slight 

rotation about the long axis of the tibia, and this added degree of freedom allows for more natural 

knee motion. However, the degree to which this freedom impacts implant performance is not 

well understood. The position and construction of the hinge impacts implant performance, but 

this impact has not been thoroughly explored in the existing literature. 



9 

 Another relevant design criterion is the location of the joint line, which refers to the 

proximal-distal position of the axis of rotation of the knee. When performing knee arthroplasty, 

surgeons can alter the position of the joint-line through resection of the tibia and femur surfaces. 

Particularly during revision surgery, significant portions of the femur and tibia must be resected 

to allow healthy bone surfaces to accommodate the implant. Regarding surgical procedures, 

multiple researchers [19], [20] suggest the joint line should be maintained at its natural position 

to avoid increased patellofemoral contact forces, which can lead to pain and degradation of the 

implant. However, bone deformity due to osteoarthritis and implant wear also plays a role in 

determining tibia and femur resection, which in turn affects joint line position. In summary, the 

issue of where to place the joint line during revision surgery remains unresolved, and further 

investigation is necessary to determine which surgical approach produces the best results in the 

long-term. 

 The location of the joint line is intimately linked to the position of the patella— a more 

proximal joint line leads to a more distal patella, and vice versa [21]. An abnormally proximal 

patella is called patella alta, while an abnormally distal patella is called patella baja. Patella alta 

and baja are often studied outside the context of knee arthroplasty because of their impact on 

knee mechanics [22]. Specifically, patella alta is associated with increased quadriceps moment 

arm, while patella baja tends to decrease moment arm but to a lesser extent [23]. The location of 

the joint line, along with the lengthening or shortening of the patellar ligament, can influence 

knee mechanics by altering the position of the patella. Surgeons must take great care to balance 

the positions of the femur, tibia, and patella, which can be accomplished using appropriately 

designed instruments [24]. In addition, a more thorough understanding of structure-function 
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relationships in the knee will help surgeons make these decisions with greater confidence and 

produce consistently positive outcomes.  

2.3 Overview of Mathematical Knee Models 

 Mathematical models are a powerful tool commonly used in biomechanics research. 

Mathematical models simulate the biomechanics of human motion by studying components of 

the body as mechanical systems. Equations are developed to describe the system according to 

given criteria, assumptions, and limitations. Depending on the nature of the system of equations 

it may be solved explicitly or numerically. In the case of the knee, 3D mathematical models often 

produce an underdefined system of equations, making them difficult to solve. In 1980, Wismans 

et al. remedied this by modelling only the tibia-femoral joint and assuming no deformation at the 

contact point [25]. Despite these simplifications, their work proved revolutionary and became the 

foundation of countless future models. Later on, mathematical models were developed that 

simulated tibia-femoral deformation [26] and patella-femoral dynamics [27].  

 Yamaguchi and Zajac pioneered the framework for 2D mathematical knee models in their 

1989 paper “A Planar Model of the Knee Joint to Characterize the Knee Joint Extensor 

Mechanism” [5], which featured a sagittal-plane model based on static equilibrium and the 

geometric compatibility of the femur, tibia, and patella. The two authors used measurements 

made in human subjects to formulate their equations and make them as accurate as possible. In 

particular, the Yamaguchi and Zajac model prescribed the location of the tibiofemoral contact 

point at every angle of knee flexion. This ensured that the motion of the 2D model would reflect 

the actual 3D motion of the knee in the sagittal plane. By using 3D measurements to inform their 
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2D model, Yamaguchi and Zajac created a powerful, efficient tool that characterized structure-

function relationships in the knee. This study will build on their work by applying their 

methodology to knee replacement implants and using a mechanical knee simulator to augment 

the mathematical model. 

 The utility of computer models depends on our ability to verify and validate them [28], 

[29]. Verification ensures that the algorithms and code used to solve the model are implemented 

correctly. Before any data or insight can be gleaned from a model, researchers much confirm that 

it functions exactly as intended; otherwise, the results will not be meaningful. Once a model is 

verified, it can offer significant insight into the biomechanics of a system; however, the model 

must be validated to determine if these insights are representative of actual phenomena that occur 

in vivo. Models are validated by comparing their results to independent datasets and to 

previously validated models, which ensures they are an accurate representation of actual 

biomechanical systems. Currently, knee models cannot be completely validated because in vivo 

measurements are exceptionally difficult to make; however, rigorous verification allows knee 

models to still be valuable [4]. This study will seek to validate a computer model of the knee by 

comparing it to outputs obtained using a physical knee simulator. 

2.4 Overview of Oxford Rig-Style Knee Simulators 

 A knee simulator is an in vitro testing apparatus used to study the human knee and test 

knee implants. There are two main types— Oxford simulators and robotic simulators, both of 

which may use artificial knee components or cadaver specimens [30]. Oxford simulators 

originate from the work of Zavatsky [31] and generally have 6 degrees of freedom. They 
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simulate a squatting motion by exerting a quadriceps force on the system and collect data by 

measuring loads and tracking segment positions. On the other hand, robotic simulators simulate 

knee flexion by securing the tibia in place and applying a varying force to the femur along a 

prescribed path. The force applied by the robot has six degrees of freedom and as a result is more 

customizable than the Oxford rig. While both paradigms have their limitations, they have proved 

valuable to our understanding of knee kinematics [30].  

 Since the original work of Zavatsky [31], many researchers have developed more 

advanced Oxford rig simulators. Long et al. [32] used an Oxford rig to study structure-function 

relationships in hinged knee replacements. After measuring the quadriceps and patellar tendon 

moment arm in five commercially available implants, they determined the design criteria that 

most affect quadriceps force. In addition, Maletsky et al. used the Purdue Knee Simulator in 

conjunction with a mathematical model to explore the dynamics of the knee [33]. Their Oxford 

rig simulator measured tibiofemoral compressive force and quadriceps tension, but they did not 

use this methodology to study knee implants. 

 Although they are a powerful tool for biomechanics research, Oxford rig simulators have 

limitations. One limitation is that the data collected relies heavily on the prescribed force applied 

by the quadriceps actuator, as the magnitude of this loading can significantly affect knee 

kinematics [30]. Another limitation of Oxford rig simulators is the difficulty of collecting data. 

Quadriceps force, patellofemoral contact force, and kinematic data are frequently measured, but 

data such as the tibiofemoral contact force, contact point location, and reaction force of the hinge 

are all useful metrics remain impossible to measure using current approaches. This thesis will 

seek to address these limitations by using the Penn State Knee Simulator in conjunction with a 
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mathematical model to evaluate a hinged knee implant. We suspect that using the two in concert 

will provide a more nuanced and well-rounded understanding of knee implant dynamics.   
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Chapter 3  
 

Methods 

 Three mathematical knee models were developed and used to study structure-function 

relationships in the knee joint extensor mechanism. The three models were termed the “Natural 

Knee Model”, the “Hinged TKR Model”, and the “Hinged TKR Model with Knee Simulator 

Input”. All three models were developed in MATLAB and featured input parameters, a system of 

equations that was solved numerically, and postprocessing that analyzed each model’s output. 

Each model had distinct features and was used to study specific aspects of the knee. The first 

model focused on structure-function relationships in the natural knee, the second focused on 

structure-function relationships in a hinged knee replacement, and the third focused on using the 

Penn State Knee Simulator to augment the previous model’s output. 

 The three models were based in the Cartesian coordinate system and located in the 

sagittal plane. Each model had a global coordinate system whose origin was defined at the tibia, 

which was assumed to be fixed. Each model also had a local coordinate system defined at the 

femur, which rotated with the femur. This local coordinate system was created to simplify 

calculations and avoid computational errors during the simulation. A transformation matrix was 

developed in each model that transformed vectors from the femoral coordinate system to the 

global tibial coordinate system, and all calculations were performed with respect to the global 

coordinate system. 
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3.1 Natural Knee Model 

 The Natural Knee Model was developed using the methodology of Yamaguchi and Zajac 

in their 1989  paper “A Planar Model of the Knee Joint to Characterize the Knee Extensor 

Mechanism” [5]. The input parameters and system of equations were obtained from their paper, 

and their analysis of structure-function relationships was replicated. Then, this structure-function 

analysis was applied to study Osgood-Schlatter disease (OS). OS occurs in 10% of adolescents 

and causes a bump to form where the patellar ligament attaches to the tibia, making it a useful 

model for studying structure-function relationships in the knee.  

 The Natural Knee Model was based on a system of nine equations; three equations 

described the equilibrium of the patella, three equations described the patellofemoral (PF) 

contact point, and the equations described the tibiofemoral (TF) contact point. The system of 

equations was solved at each angle of knee flexion from 0 to 90 degrees, and all outputs were 

stored in 91-element vectors that corresponded with the knee flexion angle. 

 

 

 

 

 

 

 

 

Figure 2. Parameters and angular definitions used in the two-dimensional model. 
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 As demonstrated by Figure 2, the geometry of the knee was simplified to a two-

dimensional model in the sagittal plane featuring the femur, tibia, and patella. The articulating 

surfaces of the femur were modeled by elliptical curves, each with two parameters describing 

their major and semimajor axes. Ellipse 1 modeled the femoral condyle, and Ellipse 2 modeled 

the median anterior groove of the femur. That is, the TF contact point occurred on Ellipse 1, and 

the PF contact point occurred on Ellipse 2. These ellipses were formulated as continuous curves 

described by the following equation: 

𝑥2

𝐴2
+

𝑦2

𝐵2
= 1 (1) 

 

where A and B describe the major and semimajor axes respectively. In parametric form, this 

equation became: 

𝑥 = 𝐴𝑐𝑜𝑠(Φ) (2𝑎) 

𝑦 = 𝐵𝑠𝑖𝑛(Φ) (2𝑏) 

where Φ represents the ellipse parameter. Φ can be thought of the angle (x, y) makes with the 

positive x-axis. Mathematically, both ellipses were centered about the origin and fixed in the 

femoral coordinate system, rotating with the femur as a single rigid body. The center of Ellipse 1 

was the origin of the femoral coordinate system, and the center of Ellipse 2 was described by 

point (Cx, Cy) in the femoral coordinate system, where 𝐶 is the vector that pointed from the 

center of Ellipse 1 to the center of Ellipse 2. 

 The tibia was modeled as a straight line sloped downward at a specified angle, and the 

patella was modeled as a rectangle. The PF and TF contact points were mathematically described 

as the tangential intersection of the femur articulating surface with the patella and tibial slope 
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respectively. In addition, the quadriceps muscle force was modeled by a single force acting at a 

specified “q-angle”; this force was assumed to act along the long axis of the femur. 

 In order to define a system of equations that could be solved at each angle, it was 

necessary to prescribe the movement of the TF contact point along the tibial plateau. Following 

the methodology of Yamaguchi and Zajac [5], the findings of Nisell et al. [34] were applied to 

solve this problem. A plot was obtained that described the position of the TF contact point along 

the tibial plateau as a function of knee flexion angle. Specifically, the position of the TF contact 

point was given as a percentage, where 100% represented the anterior border of the plateau. 

 After obtaining this plot, it was necessary to transform the data into a form that could be 

interpreted by MATLAB. To extract numerical data from the plot, the GRABIT app in 

MATLAB was used. The GRABIT app was developed independently and accessed through the 

MATLAB File Exchange. First, the figure was imported into GRABIT and the axis dimensions 

were calibrated. Then, forty points were precisely selected along the curve and exported as a 

MATLAB array. Once these forty data points were obtained, a spline was interpolated between 

them, forming a continuous mathematical representation of the data. 

 The Natural Knee Model required multiple input parameters that described the geometry 

and dynamics of the knee joint. Distances were measured in centimeters, angles in degrees, and 

forces in Newtons. Certain input parameters were changed as part of sensitivity analyses, but the 

nominal values were described as follows: 
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Table 1. Nominal input parameters of the Natural Knee Model. These inputs describe knee geometry and 

mathematical parameters necessary to develop the system of equations 

Symbol Definition Value Notes 

θ Flexion of the femur relative 

to the tibial axis. Referred to 

as “knee flexion angle”. 

0-90 degrees Varied at one-degree 

increments. 

θq Quadriceps-force angle with 

respect to the tibial axis 

(degrees) 

0-90 degrees We assume θq is equal to 

the flexion of the femur 

relative to the tibial axis. 

ϕ Slope of tibial plateau 8 degrees  

Fq Quadriceps force 250 N  

t Patellar thickness 1.63 cm  

Lp Patellar length 3.94 cm  

Lpl Patellar ligament length 6.52 cm  

Ltub Length of tibial tubercle 0 cm Nominal tubercle length 

was 0 cm. This was changed 

during the analysis of OS. 

Ltp Length of tibial plateau 5.57 cm  

Ptp Percentage of the tibial 

plateau 

0-100%  

D Distance from tibial 

tuberosity to anterior corner 

of tibial plateau 

5.26 cm  

A1, B1 Major and semimajor axis 

lengths of Ellipse 1 

3.54 cm, 2.18 cm  

A2, B2 Major and semimajor axis 

lengths of Ellipse 2 

2.86 cm, 1.90 cm  

Cx, Cy Vector components of 𝐶,  .25 cm, .79 cm  

  

 These input parameters were used to define the system of nine equations describing the 

Natural Knee Model. The nine equations collectively described the equilibrium of the patella, the 

geometry of the PF contact point, and the geometry of the TF contact point. After the nine 

equations were derived, they were set equal to zero so they could be solved simultaneously in 
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MATLAB using a minimizing function. The quantities minimized were referred to as 

“residuals”, represented by the vector �⃗⃗�. In essence, rather than solving the system for an exact 

solution, the solver minimized �⃗⃗� and outputted the answer with the least overall error.  

 The unknowns in the system included the angle of the patella, angle of the patellar 

ligament, locations of the contact points, the PF contact force, and the patellar ligament force. In 

total, there were nine unknown variables in the system of equations, defined as follows: 

Table 2. The nine unknown variables of the Natural Knee Model 

Symbol Definition 

α Patellar axis angle with respect to the tibial axis 

β Patellar ligament angle with respect to the tibial axis 

Φ1 Parameter of Ellipse 1 where TF contact occurs. 

Essentially, this is the angle swept out from the positive x-

axis to the TF contact point. 

Φ2 Parameter of Ellipse 2 where PF contact occurs. 

Essentially, this is the angle swept out from the positive x-

axis to the PF contact point. 

h Distance from the bottom right corner of the patella to the 

PF contact point.  

tx, ty Location of the femoral coordinate system origin in the 

global (tibial) coordinate system 

Fr Patellofemoral contact force 

Fpl Patellar ligament force 

 

After defining the assumptions, input parameters, and unknowns, the system of equations 

describing the Natural Knee Model was developed. In the following derivations, equations 

describing the residual vector �⃗⃗� will be bolded, as these were the precise equations minimized by 

the solver. 
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 The first three equations were developed using the static equilibrium of the patella. That 

is, at any given knee flexion angle, it was assumed that the forces on the patella were balanced 

according to the following free body diagram: 

 

Figure 3. Free body diagram of the patella, with the quadriceps force, patellar ligament force, and PF contact force. 

 

This equilibrium assumption yielded three equations, two describing static equilibrium in the x- 

and y- directions, and one describing the rotational static equilibrium. The first two equations 

were defined as follows: 

𝑭𝒓𝐜𝐨𝐬𝜶 + 𝑭𝒑𝒍𝒔𝒊𝒏𝜷 − 𝑭𝒒𝒔𝒊𝒏𝜽 = �⃗⃗⃗�(𝟏) (𝟑) 

−𝑭𝒓𝐬𝐢𝐧𝜶 + 𝑭𝒑𝒍𝒄𝒐𝒔𝜷 − 𝑭𝒒𝒄𝒐𝒔𝜽 = �⃗⃗⃗�(𝟐) (𝟒) 

The third equation, describing rotational equilibrium, was derived by summing the moments due 

to Fpl and Fq about the PF contact point. In this case, Fr was not considered in the calculation 

because it was applied at the contact point and did not produce a moment about that point: 

�⃗⃗⃗�𝑞 + �⃗⃗⃗�𝑝𝑙 = 0 (5) 

𝑟𝑞 × �⃗�𝑞  +  𝑟𝑝𝑙 × �⃗�𝑝𝑙 = 0 (6) 
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[
−𝒕

𝑳𝒑 − 𝒉

𝟎

] × [

𝑭𝒒 𝐬𝐢𝐧(𝜽 − 𝜶)

𝑭𝒒 𝐜𝐨𝐬(𝜽 − 𝜶)

𝟎

] + [
−𝒕
−𝒉
𝟎

] × [

𝑭𝒑𝒍 𝐬𝐢𝐧(𝜶 − 𝜷)

𝑭𝒑𝒍 𝐜𝐨𝐬(𝜶 − 𝜷)

𝟎

] = [

~
~

�⃗⃗⃗�(𝟑)
] (𝟕) 

 

Where “~” was used to indicate a vector element that is not included in the residual vector. The addition 

of these two cross products yielded a 3 by 1 vector whose third element represented the moment in the z-

direction, perpendicular to the sagittal plane, and formed the third element of the residual vector. 

 The next three equations described the geometric compatibility of the patella and femur 

at the PF contact point. In short, the equations stated that 1) The point defined on the patella had 

the same coordinates as the point defined on the femur and 2) The two segments could not pass 

through each other. These two statements were based on the assumption that the surface of the 

Ellipse 2 was tangent to the patella and that contact occurred at a single point. The close-up 

geometry of the PF contact point was as follows: 

 

Figure 4. Close-up view of the PF contact point. 

 

Where P represented the contact point, �⃗⃗�𝑝𝑎𝑡was the unit vector parallel to the surface of the 

patella, and �⃗⃗�𝑓𝑒𝑚2 was the unit vector tangent to the surface of the femur. The agreement of the 

location of the contact point on the patella and femur was described as follows: 
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𝑃𝑝𝑎𝑡(𝑥, 𝑦) − 𝑃𝑓𝑒𝑚2(𝑥, 𝑦) = 0 (8) 

Then, both Ppat and Pfem2 were mathematically defined in the global coordinate system using a 

transformation matrix Ttf that transformed points from the femur coordinate system to the global 

coordinate system. Because Ttf was a four by four matrix, the points were represented using four 

by one vectors. The first two elements of the resulting four by one vector formed the fourth and 

fifth elements of the residual vector. 

[

−𝑳𝒕𝒖𝒃 + 𝑳𝒑𝒍 + 𝒕𝒄𝒐𝒔𝜶 + 𝒉𝒔𝒊𝒏𝜶

𝑳𝒑𝒍𝒄𝒐𝒔𝜷 − 𝒕𝒔𝒊𝒏𝜶 + 𝒉𝒄𝒐𝒔𝜶

𝟎
𝟎

] − 𝑻𝒕𝒇 [

𝑪𝒙 + 𝑨𝟐𝒄𝒐𝒔𝚽𝟐

𝑪𝒚 + 𝑩𝟐𝒔𝒊𝒏𝚽𝟐

𝟎
𝟎

] =

[
 
 
 �⃗⃗⃗�(𝟒)

�⃗⃗⃗�(𝟓)
~
~ ]

 
 
 

(𝟗) 

Where Ttf was defined as follows: 

𝑇𝑡𝑓 =  [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 𝑡𝑥
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 𝑡𝑦

0 0 1 0
0 0 0 0

] (10) 

The final equation derived at the PF contact point described the tangential contact between the 

patella and Ellipse 2. Mathematically, this meant that unit vectors �⃗⃗�𝑝𝑎𝑡 and �⃗⃗�𝑓𝑒𝑚2 were parallel 

and as a consequence, their cross product was equal to zero. This relationship was defined as 

follows: 

�⃗⃗�𝑝𝑎𝑡 × �⃗⃗�𝑓𝑒𝑚2 = 0 (11) 

Next, �⃗⃗�𝑝𝑎𝑡 and �⃗⃗�𝑓𝑒𝑚2 were defined mathematically in the global coordinate system: 

�⃗⃗�𝑝𝑎𝑡 =  [

𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛼

0
0

] (12) 

�⃗⃗�𝑓𝑒𝑚2 = 
1

𝐴2
2𝑠𝑖𝑛2𝛼 + 𝐵2

2𝑐𝑜𝑠2𝛼
𝑇𝑡𝑓 [

−𝐴2sinΦ2

𝐵2cosΦ2

0
0

] (13) 
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Combining (12), (13), and (14) produced the following equation, where the third element of the 

resulting vector formed the sixth element of the residual vector. 

[

𝒔𝒊𝒏𝜶
𝒄𝒐𝒔𝜶

𝟎
𝟎

] × 
𝟏

𝑨𝟐
𝟐𝒔𝒊𝒏𝟐𝜶 + 𝑩𝟐

𝟐𝒄𝒐𝒔𝟐𝜶
𝑻𝒕𝒇 [

−𝑨𝟐𝐬𝐢𝐧𝚽𝟐

𝑩𝟐𝐜𝐨𝐬𝚽𝟐

𝟎
𝟎

] =  [

~
~

�⃗⃗⃗�(𝟔)
~

] (𝟏𝟒) 

 The three remaining equations described the geometric compatibility of the tibia and 

femur at the TF contact point. As with the PF contact point, it was assumed that tangential 

contact between the two surfaces occurred at a single point. In this case, the surface of Ellipse 1 

was tangent to the tibial plateau. The close-up geometry of the TF contact point was described as 

follows: 

 

Figure 5. Close-up view of the TF contact point. 

 

Where P represented the contact point, �⃗⃗�𝑡𝑖𝑏  was the unit vector parallel to the tibial plateau, and 

�⃗⃗�𝑓𝑒𝑚1 was the unit vector tangent to the surface of the femur. The agreement of the location of 

the contact point on the tibia and femur was described as follows: 

𝑃𝑡𝑖𝑏(𝑥, 𝑦) − 𝑃𝑓𝑒𝑚1(𝑥, 𝑦) = 0 (15) 

Then, both Ptib and Pfem1 were mathematically defined in the global coordinate system using 

transformation matrix Ttf , yielding a vector whose first two elements formed the seventh and 

eighth elements of the residual vector. 
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[

𝑫𝒔𝒊𝒏𝝓 + (𝟏 − 𝑷𝒕𝒑)𝑳𝒕𝒑𝒄𝒐𝒔𝝓)

𝑫𝒄𝒐𝒔𝝓 + (𝟏 − 𝑷𝒕𝒑)𝑳𝒕𝒑𝒔𝒊𝒏𝝓

𝟎
𝟎

] − 𝑻𝒕𝒇 [

𝑨𝟏𝒄𝒐𝒔𝚽𝟏

𝑩𝟏𝒔𝒊𝒏𝚽𝟏

𝟎
𝟎

] =

[
 
 
 �⃗⃗⃗�(𝟕)

�⃗⃗⃗�(𝟖)
𝟎
𝟎 ]

 
 
 

(𝟏𝟔) 

Where Ttf was previously defined in (11). 

 The third equation derived at the TF contact point described the tangential contact 

between the tibial plateau and Ellipse 1. Mathematically, this meant that unit vectors , �⃗⃗�𝑡𝑖𝑏  and 

�⃗⃗�𝑓𝑒𝑚1  were parallel and as a consequence, their cross product was equal to zero. This 

relationship was defined as follows: 

�⃗⃗�𝑡𝑖𝑏 × �⃗⃗�𝑓𝑒𝑚1 = 0 (17)  

Next, �⃗⃗�𝑡𝑖𝑏  and �⃗⃗�𝑓𝑒𝑚1 were defined mathematically in the global coordinate system: 

�⃗⃗�𝑡𝑖𝑏 =  [

𝑐𝑜𝑠𝜙
−𝑠𝑖𝑛𝜙

0
0

] (18) 

�⃗⃗�𝑓𝑒𝑚1 =  𝑇𝑡𝑓 [

−𝐴1𝑠𝑖𝑛Φ1

𝐵1𝑐𝑜𝑠Φ1

0
0

] (19) 

Combining (17), (18), and (19) produced the following equation, where the third element of the 

resulting four by one vector formed the ninth element of the residual vector. 

[

𝒄𝒐𝒔𝝓
−𝒔𝒊𝒏𝝓

𝟎
𝟎

]  × 𝑻𝒕𝒇 [

−𝑨𝟏𝒔𝒊𝒏𝚽𝟏

𝑩𝟏𝒄𝒐𝒔𝚽𝟏

𝟎
𝟎

] = [

~
~

�⃗⃗⃗�(𝟗)
~

] (𝟐𝟎) 

  

 Ultimately, nine equations were developed that defined the nine elements of the residual 

vector �⃗⃗�. These equations described the static equilibrium of the patella, the geometry of the PF 
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contact point, and the geometry of the TF contact point. These nine equations were summarized 

as follows: 

𝐹𝑟cos𝛼 + 𝐹𝑝𝑙𝑠𝑖𝑛𝛽 − 𝐹𝑞𝑠𝑖𝑛𝜃 = �⃗⃗�(1) (3) 

−𝐹𝑟sin𝛼 + 𝐹𝑝𝑙𝑐𝑜𝑠𝛽 − 𝐹𝑞𝑐𝑜𝑠𝜃 = �⃗⃗�(2) (4) 

[
−𝑡

𝐿𝑝 − ℎ

0

] × [

𝐹𝑞 sin(𝜃 − 𝛼)

𝐹𝑞 cos(𝜃 − 𝛼)

0

] + [
−𝑡
−ℎ
0

] × [

𝐹𝑝𝑙 sin(𝛼 − 𝛽)

𝐹𝑝𝑙 cos(𝛼 − 𝛽)

0

] = [

~
~

�⃗⃗�(3)
] (7) 

[

−𝐿𝑡𝑢𝑏 + 𝐿𝑝𝑙 + 𝑡𝑐𝑜𝑠𝛼 + ℎ𝑠𝑖𝑛𝛼

𝐿𝑝𝑙𝑐𝑜𝑠𝛽 − 𝑡𝑠𝑖𝑛𝛼 + ℎ𝑐𝑜𝑠𝛼

0
0

] − 𝑇𝑡𝑓 [

𝐶𝑥 + 𝐴2𝑐𝑜𝑠Φ2

𝐶𝑦 + 𝐵2𝑠𝑖𝑛Φ2

0
0

] =

[
 
 
 �⃗⃗�(4)

�⃗⃗�(5)
~
~ ]

 
 
 

(9) 

[

𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛼

0
0

] × 
1

𝐴2
2𝑠𝑖𝑛2𝛼 + 𝐵2

2𝑐𝑜𝑠2𝛼
𝑇𝑡𝑓 [

−𝐴2sinΦ2

𝐵2cosΦ2

0
0

] =  [

~
~

�⃗⃗�(6)
~

] (14) 

[

𝐷𝑠𝑖𝑛𝜙 + (1 − 𝑃𝑡𝑝)𝐿𝑡𝑝𝑐𝑜𝑠𝜙)

𝐷𝑐𝑜𝑠𝜙 + (1 − 𝑃𝑡𝑝)𝐿𝑡𝑝𝑠𝑖𝑛𝜙

0
0

] − 𝑇𝑡𝑓 [

𝐴1𝑐𝑜𝑠Φ1

𝐵1𝑠𝑖𝑛Φ1

0
0

] =

[
 
 
 �⃗⃗�(7)

�⃗⃗�(8)
0
0 ]

 
 
 

(16) 

[

𝑐𝑜𝑠𝜙
−𝑠𝑖𝑛𝜙

0
0

] × 𝑇𝑡𝑓 [

−𝐴1𝑠𝑖𝑛Φ1

𝐵1𝑐𝑜𝑠Φ1

0
0

] = [

~
~

�⃗⃗�(9)
~

] (20) 

 

 After developing the system of equations, a custom solving and postprocessing script was 

written in MATLAB. First, the input parameters were defined. Next, the solving algorithm 

computed the solution to the system of equations and further processed the solution; this 

occurred once for each value of theta. Finally, after all solutions were computed and stored, the 
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results of the simulation were displayed via an animation. These steps are summarized in the 

following flowchart: 

 

Figure 6. Overview of Natural Knee Model code. 

 

MATLAB offered multiple built-in functions capable of solving systems of non-linear 

equations, and the function used in this model was lsqnonlin. lsqnonlin is a nonlinear least-

squares solver that solves systems by minimizing the squared elements of the residual vector. In 

our case, the residual vector �⃗⃗� was calculated by a residual function that contained the previously 

developed system of equations. This residual function was an input into lsqnonlin, which would 

use the function to solve the system of equations. In addition to the residual function, lsqnonlin 

had multiple input arguments, including “x0”, “lower bound”, “upper bound”, and “options”. x0 
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was an initial guess provided to the solver so it could perform its analysis more efficiently. Each 

time the system of equations was solved, the solution vector would become the initial guess for 

the subsequent frame of the simulation. In addition, the “lower bound” and “upper bound” were 

vectors that provided a range of values for each unknown. x0 and the bounds worked to increase 

efficiency and narrow the scope of the potential solutions considered by the solver. The final 

input into lsqnonlin was “options,” which allowed more specific solver preferences to be 

specified. Within “options”, the residual tolerance was set to 1e-6. This tolerance specified how 

close the solver had to get to a solution before moving onto the next frame. In this case, each 

element of �⃗⃗� had to be less than 1e-6 in order for the solution to be valid. When this tolerance 

was reached, the corresponding solution vector was stored in a matrix for later use.  

For each frame of the simulation, after the solution vector was calculated, the quadriceps 

effective moment Meff was calculated. Meff was a metric developed by Yamaguchi and Zajac [5] 

to describe the overall leverage and mechanical advantage of the extensor mechanism. The force 

that extends the knee begins in the quadriceps, is transmitted by the patella, and ultimately 

applied by the patellar ligament. Therefore, it was useful to have a moment arm that, when 

multiplied by the quadriceps force, yielded the moment about the joint. The definition of Meff 

was based on this moment balance about the TF contact point: 

𝐹𝑞𝑀𝑒𝑓𝑓 =  𝐹𝑝𝑙𝑀𝑎𝑐𝑡 (21) 

Where Fq and Fpl are the quadriceps and patellar ligament forces, and Mact is the “actual” 

moment arm of the patellar ligament force about the TF contact point. Therefore, Meff was 

defined as follows: 

𝑀𝑒𝑓𝑓 = 
𝐹𝑝𝑙𝑀𝑎𝑐𝑡

𝐹𝑞
  (22) 



28 

Meff was computed at every frame of the simulation during the post-processing of each solution. 

Fq was an input to the model, Fpl was an unknown determined by lsqnonlin, and Mact was 

calculated as the perpendicular distance between the patellar ligament and TF contact point.  

After post-processing the model’s output, the results of the simulation were displayed by 

an animation. The animation used the aforementioned solution matrix to draw the patella, femur, 

tibia, and other knee elements at each frame. The resulting animation was a useful tool for 

verifying that the model was functioning as intended and producing physically meaningful 

results. In addition, the animation feature helped to visualize how structural changes to the knee 

affect its function. 

 

Figure 7. Image from an animation of the Natural Knee Model. 

 

 Once the Natural Knee Model was verified to be performing as intended, it was 

implemented to study Osgood Schlatter (OS) Disease. Two characteristic structural changes that 

accompany OS are a lengthening of the tibial tubercle and patella alta. Tubercle length was 

already an input parameter to the model, and patella alta was simulated by adjusting the length of 

the patellar ligament. A sensitivity analysis was employed in which the model was run multiple 
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times, varying the two parameters of interest. The tubercle length was varied from 0 to 10mm in 

steps of 1mm, in accordance with measurements by Lee et al. [35], and the patellar ligament 

length was varied from 6.5cm to 7.2cm in steps of 0.07cm, a range of values obtained from 

Grelsamer et al. [22]. 

3.2 Hinged TKR Model 

The Hinged TKR Model shared many similarities with the Natural Knee Model but had 

certain key distinctions. Like the previous model, the Hinged TKR Model was two dimensional 

and modeled rigid bodies in the sagittal plane. As the name suggests, this model simulated a 

commercially available hinged knee replacement, the type of implant that is commonly used in 

revision surgery. Once the model was developed, a sensitivity analysis was performed to assess 

the impact of various design criteria. Like in the Natural Knee Model, a system of equations was 

developed to describe the equilibrium and geometry of the knee. A more generalized approach 

was taken for these equations, in which the patella and femoral condyle surfaces were modeled 

as parameterized splines based on data from the real-world implant. The tibia was not modeled 

beyond the hinge, which was fixed in the sagittal plane and took the place of the TF contact point 

described in the Natural Knee Model. 

 The Hinged TKR Model was based on a system of seven equations, three describing the 

equilibrium of the patella, three describing the PF contact point, and one describing the constant 

length of the patellar ligament. The system was solved from 0 to 90 degrees in increments of 0.2 

degrees, and solutions at every frame were stored for subsequent processing. 
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Figure 8. Simplified representation of the Hinged TKR Model, with the major components labeled. 

 

 As demonstrated by Figure 8, the geometries of the knee and implant were greatly 

simplified and only included elements necessary for the simulation. The patella and femoral 

condyle surfaces were representative of the real-world implant, as point coordinates along the 

surfaces were selected in the implant CAD file and imported into MATLAB where they were 

interpolated to create two continuous splines. Locations along the patellar and femur splines 

were specified by the parameter t, where a point P(x,y) along either spline was described simply 

as (x(t), y(t)). Derivatives of the splines were also obtained, and the line tangent to a spline at a 

given parameter t was given by (x’(t), y’(t)).  

 The origin of the global coordinate system was defined at the insertion point of the 

patellar ligament on the tibia, which remained fixed, while the origin of the local femoral 

coordinate system was defined at the center of the hinge. Additionally, a local patellar coordinate 
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system was established; its origin did not have particular anatomical significance, but its location 

was recorded to allow transformations between coordinate systems. These three coordinate 

systems were summarized as follows: 

 

Figure 9. Diagram representing the global, femoral, and patellar coordinate systems. 

 

Like the Natural Knee Model, the Hinged TKR Model required multiple input parameters to 

describe the precise geometry of the knee joint. Much of the input data was obtained by making 

measurements on the physical implant using a motion capture system. In this case, measurements 

were made in each point’s local coordinate system and transformed to the global coordinate 

system as necessary. Distances were measured in centimeters, angles in degrees, and forces in 

Newtons. The input parameters were as follows: 
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Table 3. Nominal input parameters of the Hinged TKR Model. These inputs described knee geometry and mathematical 
parameters necessary to develop the system of equations. Coordinate system is abbreviated “CS”. 

Symbol Definition Value Notes 

θ Flexion of the femur relative 

to the tibial axis. Referred to 

as “knee flexion angle”. 

0-90 degrees Varied at one-degree 

increments. 

Fq Quadriceps force 250 N  

Lpl Patellar ligament length 6.52 cm  

�⃗⃗⃗�𝒑𝒍𝒐𝒓𝒊𝒈  Origin of patellar ligament in 

patellar CS 

(-0.401, 3.31, 0) 

Each of these points were 

recorded in a certain CS 

depending on if the point 

was on the patella, femur, or 

tibia.   

�⃗⃗⃗�𝒑𝒍𝒊𝒏𝒔  Insertion of patellar ligament 

in global CS 

(0, 0, 0) 

�⃗⃗⃗�𝒉𝒊𝒏𝒈𝒆 Location of hinge in global 

CS 

(3.45, 6.00, 0) 

�⃗⃗⃗�𝒒𝒐𝒓𝒊𝒈  Origin of quadriceps in 

femoral CS 

(-4.10, 58.22, 0) 

�⃗⃗⃗�𝒒𝒊𝒏𝒔  Insertion of quadriceps in 

patellar CS 

(-0.36, 3.31, 0) 

 

 These input parameters were used to define the system of seven equations describing the 

Hinged TKR Model. The seven equations described the equilibrium of the patella, the geometry 

of the PF contact point, and the constant length of the patellar ligament. As with the previous 

model, each of the equations was set equal to a residual, and the set of seven residuals formed the 

residual vector �⃗⃗�. The solver lsqnonlin solved the system at each flexion angle by minimizing �⃗⃗�. 

The unknowns in this system included the angle of the patella, origin of the patellar coordinate 

system, PF contact point parameters on the patella and femur splines, as well as the PF contact 

force and patellar ligament force. These unknowns are summarized as follows: 
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Table 4. The seven unknown variables of the Hinged TKR Model. 

Symbol Definition 

tp Parameter of patellar spline at which PF contact point 

occurs. 

tf Parameter of femoral spline at which PF contact point 

occurs 

α Patellar CS orientation with respect to global vertical axis 

px, py Location of patellar CS origin in global CS 

Fr Patellofemoral contact force 

Fpl Patellar ligament force 

 

After defining the assumptions, input parameters, and unknowns, the system of equations 

describing the Hinged TKR Model was developed. Keeping with the same format as the Natural 

Knee Model, equations describing elements of �⃗⃗� will be bolded. 

 First, two transformation matrices were defined in order to transform points in the 

femoral and patellar coordinate systems to the global coordinate system. The matrices were 

named Ttf  and Ttp, respectively. 

𝑇𝑡𝑓 = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 𝑃ℎ𝑖𝑛𝑔𝑒𝑥

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 𝑃ℎ𝑖𝑛𝑔𝑒𝑦

0 0 1 0
0 0 0 0

] (23) 

  

𝑇𝑡𝑝 = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 𝑡𝑥
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 𝑡𝑦

0 0 1 0
0 0 0 0

] (24) 
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In addition, the three forces, Fq, Fr, and Fpl, were defined using vectors in the global coordinate 

system. Each vector was formed by multiplying the magnitude of the force by a unit vector in the 

direction of the force. The unit vectors for 𝐹𝑞
⃗⃗ ⃗⃗  and 𝐹𝑝𝑙

⃗⃗ ⃗⃗ ⃗⃗  were found using the coordinates of the 

origins and insertions of the quadriceps force and patellar ligament. In the case of  𝐹𝑟
⃗⃗⃗⃗ , the unit 

vector was defined as inward normal to the spline at the PF contact point. All coordinates were 

first transformed to the global coordinate system using the aforementioned transformation 

matrices. The vectors were defined as follows: 

𝐹𝑞
⃗⃗ ⃗⃗ = 𝐹𝑞 (

�⃗⃗⃗�𝒒𝒐𝒓𝒊𝒈
− �⃗⃗⃗�𝒑𝒍𝒊𝒏𝒔

 

‖�⃗⃗⃗�𝒒𝒐𝒓𝒊𝒈
− �⃗⃗⃗�𝒑𝒍𝒊𝒏𝒔

 ‖
) (25) 

𝐹𝑝𝑙
⃗⃗ ⃗⃗ ⃗⃗ = 𝐹𝑝𝑙 (

�⃗⃗⃗�𝒑𝒍𝒊𝒏𝒔
− �⃗⃗⃗�𝒑𝒍𝒐𝒓𝒊𝒈

 

‖�⃗⃗⃗�𝑝𝑙𝑖𝑛𝑠
− �⃗⃗⃗�𝒑𝒍𝒐𝒓𝒊𝒈

 ‖
) (26) 

 

𝐹𝑟
⃗⃗⃗⃗ = 𝐹𝑟 [

−𝑦′(𝑡𝑝)

𝑥′(𝑡𝑝)
] (27) 

 The first three equations of the system were developed by invoking the static equilibrium 

of the patella. That is, at any given knee flexion angle, it was assumed that the forces on the 

patella were balanced according to Figure 3, the only difference being the curvature of the 

patella. This equilibrium assumption yielded three equations, two describing static equilibrium in 

the x- and y- directions, and one describing the rotational static equilibrium. The first two 

elements of �⃗⃗� were defined as follows: 

𝑭𝒒
⃗⃗ ⃗⃗ ⃗ +  𝑭𝒑𝒍

⃗⃗⃗⃗ ⃗⃗⃗ +  𝑭𝒓
⃗⃗ ⃗⃗⃗ =  [

�⃗⃗⃗�(𝟏)

�⃗⃗⃗�(𝟐)
~

] (𝟐𝟖) 
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 The third element of �⃗⃗�, describing rotational equilibrium, was then derived as follows: 

�⃗⃗⃗�𝑞 + �⃗⃗⃗�𝑝𝑙 + �⃗⃗⃗�𝑟 = 0 (29) 

[

𝑷𝒒𝒊𝒏𝒔𝒙

𝑷𝒒𝒊𝒏𝒔𝒚

𝟎

] × �⃗⃗⃗�𝒒  +  [

𝑷𝒑𝒍𝒐𝒓𝒊𝒈𝒙

𝑷𝒑𝒍𝒐𝒓𝒊𝒈𝒚

𝟎

] × �⃗⃗⃗�𝒑𝒍 + [

𝒙𝒑𝒂𝒕(𝒕𝒑)

𝒚𝒑𝒂𝒕(𝒕𝒑)

𝟎

] ×   𝑭𝒓
⃗⃗ ⃗⃗⃗  = [

~
~

�⃗⃗⃗�(𝟑)
] (𝟑𝟎) 

Where all coordinates were first transformed to the global coordinate system and “~” is used to 

indicate a vector element that is not included in the residual vector. 

 The next three elements of �⃗⃗� described the geometric compatibility of the patella and 

femur at the PF contact point. Using the same assumptions of contact points in the Natural Knee 

Model, the equations stated that 1) The point defined on the patella spline had the same 

coordinates as the point defined on the femur spline and 2) The two segments could not pass 

through each other. The agreement of the location of the contact point on the patella and femur 

splines was described as follows: 

𝑃𝑝𝑎𝑡(𝑥, 𝑦) − 𝑃𝑓𝑒𝑚(𝑥, 𝑦) = 0 (31) 

[
𝒙𝒑𝒂𝒕(𝒕𝒑)

𝒚𝒑𝒂𝒕(𝒕𝒑)
] − [

𝒙𝒇𝒆𝒎(𝒕𝒇)

𝒚𝒇𝒆𝒎(𝒕𝒇)
] = [

�⃗⃗⃗�(𝟒)

�⃗⃗⃗�(𝟓)
] (𝟑𝟐) 

The other equation derived at the PF contact point described the tangential contact between the 

patella and femur. Mathematically, this meant that the derivatives of the splines were parallel at 

the contact point and the third element of their cross product was equal to zero. Understanding 

this relationship, the sixth element of �⃗⃗� was defined as follows: 

[

𝒙𝒇𝒆𝒎′(𝒕𝒇)

𝒚𝒇𝒆𝒎′(𝒕𝒇)

𝟎

] × [

𝒙′𝒑𝒂𝒕(𝒕𝒑)

𝒚′𝒑𝒂𝒕(𝒕𝒑)

𝟎

] = [

~
~

�⃗⃗⃗�(𝟔)
] (𝟑𝟑) 
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 The seventh and final element of �⃗⃗� described the constant length of the patellar ligament, 

which was necessary to further constrain the knee joint and model the desired motion. This 

equation was defined as follows: 

‖[
𝑷𝒑𝒍𝒐𝒓𝒊𝒈𝒙

𝑷𝒑𝒍𝒐𝒓𝒊𝒈𝒚

] − [
𝑷𝒑𝒍𝒊𝒏𝒔𝒙

𝑷𝒑𝒍𝒊𝒏𝒔𝒚

]‖ − 𝑳𝒑𝒍 = �⃗⃗⃗�(𝟕) (𝟑𝟒) 

With that, seven equations had been developed, summarized as follows: 

𝐹𝑞
⃗⃗ ⃗⃗ +  𝐹𝑝𝑙

⃗⃗ ⃗⃗ ⃗⃗ +  𝐹𝑟
⃗⃗⃗⃗ =  [

�⃗⃗�(1)

�⃗⃗�(2)
0

] (28) 

 [

𝑃𝑞𝑖𝑛𝑠𝑥

𝑃𝑞𝑖𝑛𝑠𝑦

0

] × �⃗�𝑞  +  [

𝑃𝑝𝑙𝑜𝑟𝑖𝑔𝑥

𝑃𝑝𝑙𝑜𝑟𝑖𝑔𝑦

0

] × �⃗�𝑝𝑙 + [

𝑥𝑝𝑎𝑡(𝑡𝑝)

𝑦𝑝𝑎𝑡(𝑡𝑝)

0

] ×  𝐹𝑟
⃗⃗⃗⃗  = [

~
~

�⃗⃗�(3)
] (30) 

[
𝑥𝑝𝑎𝑡(𝑡𝑝)

𝑦𝑝𝑎𝑡(𝑡𝑝)
] − [

𝑥𝑓𝑒𝑚(𝑡𝑓)

𝑦𝑓𝑒𝑚(𝑡𝑓)
] = [

�⃗⃗�(4)

�⃗⃗�(5)
] (32) 

[

𝑥𝑓𝑒𝑚′(𝑡𝑓)

𝑦𝑓𝑒𝑚′(𝑡𝑓)

0

] × [

𝑥′𝑝𝑎𝑡(𝑡𝑝)

𝑦′𝑝𝑎𝑡(𝑡𝑝)

0

] = [

~
~

�⃗⃗�(6)
] (33) 

‖[
𝑃𝑝𝑙𝑜𝑟𝑖𝑔𝑥

𝑃𝑝𝑙𝑜𝑟𝑖𝑔𝑦

] − [
𝑃𝑝𝑙𝑖𝑛𝑠𝑥

𝑃𝑝𝑙𝑖𝑛𝑠𝑦

]‖ − 𝐿𝑝𝑙 = �⃗⃗�(7) (34) 

 

 As with the Natural Knee Model, a custom solving and postprocessing script was written 

in MATLAB that defined inputs, solved the system at each flexion angle using lsqnonlin, 

processed the solution, and displayed the results using an animation. In addition, a residual 

function that contained the above equations computed �⃗⃗� and served as an input to lsqnonlin. 

Other inputs included “x0”, “lower bound”, “upper bound”, and “options”, which were 

previously discussed.  
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 At each frame of the simulation, the quadriceps effective moment arm, Meff, was 

calculated using the following equation, which was previously defined in the discussion of the 

Natural Knee Model: 

𝑀𝑒𝑓𝑓 = 
𝐹𝑝𝑙𝑀𝑎𝑐𝑡

𝐹𝑞
  (22) 

Where Fq was an input to the simulation, Fpl was calculated at each frame, and Mact was the 

perpendicular distance from the hinge to the patellar ligament. To review, Meff  was a metric 

developed to measure the overall mechanical advantage of the quadriceps force, taking into 

account the leveraging action of the patella. As with the Natural Knee Model, an animation was 

generated at the conclusion of the simulation to visualize the model’s output and verify it was 

functioning as intended.  

 After the Hinged TKR Model was verified, it was implemented to study two technical 

design considerations pertaining to hinged knee replacements— the location of the joint line and 

the anterior-posterior (A-P) position of the hinge. The location of the joint line was varied by 

adjusting the length of the patellar ligament, Lpl. In practice, the joint line is determined by the 

resections of the tibia and femur; however, for the purposes of this 2D simulation, it was 

assumed this structural change could be modeled by varying Lpl. In addition, the A-P position of 

the hinge was varied by adjusting the x-coordinate of Phinge, that is, the location of the hinge in 

the global coordinate system. Phinge_x was increased and decreased by 0.5cm in steps of 0.5cm 

from its nominal value of 3.45cm, which was an arbitrary choice based on the hinge diameter. Lpl 

was varied from 0.5cm to 7.2cm in steps of .07cm, a range of values obtained from Grelsamer at 

al. [22]. As these two quantities were varied, their impact on Meff and PF contact force Fr was 

studied. 
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3.3 Hinged TKR Model with Knee Simulator Input 

 The third and final 2D model developed for this study was an extension of the Hinged 

TKR Model that included input from the Penn State Knee Simulator (PSKS), which obtained 

realistic input data for the model. In addition, the PSKS was used to evaluate the agreement 

between the computer model and benchtop testing data. The PSKS was a non-cadaveric Oxford 

Rig-style knee simulator that modeled knee extension under load. Driven by a linear actuator that 

acted as the quadriceps, the PSKS featured a commercially available hinged knee replacement 

and two load cells that measured the quadriceps force and three-dimensional PF contact force. 

 

Figure 10. Overview of the Hinged TKR Model with Knee Simulator Input. 

 

An overview of the Hinged TKR Model with Knee Simulator Input is given as follows: 

As shown in Figure 10, the PSKS measured quadriceps force Fq at each flexion angle, and this 

data was fed into the Hinged TKR Model. The PSKS also measured PF contact force Fr, patellar 

angle α, and patellar ligament moment arm MApl, referred to as MAact in prior calculations. 

Informed by the knee simulator input, the Hinged TKR Model was run, calculating values for Fr, 

α, and MApl. The agreement between the experimental and predicted values was quantified using 

a Root Mean Square Error (RMSE) calculation, a statistical tool that represents the standard 
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deviation of the prediction errors. In total, five simulation trials were performed using the PSKS 

and five corresponding simulations were performed using the Hinged TKR Model.   
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Chapter 4  
 

Results 

4.1 Natural Knee Model 

 

Figure 11. Quadriceps effective moment arm as a function of tibial tubercle length and patellar ligament length, 

shown at knee flexion angles of 0, 30, 60, and 90 degrees. 

 

The quadriceps effective moment arm increased with tubercle length and patellar 

ligament length at flexion angles of 30° and greater (Figure 11). The magnitude of the effect of 

these structural changes was indicated by the slope of each surface plot, and the most 
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pronounced effect was seen at θ = 60°. MAeff  appeared linearly proportional to Ltubercle and Lpl 

when these values were varied of independent of each other. When varied at the same time, their 

individual impacts on MAeff  were compounded. This relationship was most apparent at the 

maximum value of the θ = 60° plot, where an increase in Ltubercle from 0 to 1cm and an increase 

in Lpl from 6.5cm to 7.2cm (10.8%) combined to produce an increase in MAeff from 2.79cm to 

3.27cm (17.2%). Ltubercle and Lpl had a similar impact on MAeff at θ = 30° and θ = 90°, while there 

was virtually no impact at θ = 0°. 

4.2 Hinged TKR Model 

 

Figure 12. Quadriceps effective moment arm as a function of knee flexion angle and A-P position of the hinge. 
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 Quadriceps effective moment arm decreased with a more anterior hinge and increased 

with a more posterior hinge (Figure 12). This relationship was most pronounced at flexion angles 

from 0 to 20 degrees and gradually became less pronounced as flexion angle increased from 20 

to 90 degrees. The greatest increase in MAeff  occurred when hingex was increased by 0.75cm, 

while the greatest decrease in MAeff  occurred when hingex was decreased by 0.75cm. Overall, the 

curves representing modified hinge position closely followed the nominal hinge curve. 

 
Figure 13. Patellofemoral contact force as a function of knee flexion angle and A-P position of the hinge. The 

nominal x-position of the hinge was 3.45cm in the global coordinate system. 

  

 

 Patellofemoral contact force increased with a more anterior hinge and decreased with a 

more posterior hinge (Figure 13). The impact of A-P hinge position remained relatively 

consistent across flexion angles from 0 to 90 degrees, indicated by the even spacing between the 
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curves. The variation of the x-position of the hinge had a significant effect on Fr. For example, 

At θ = 0°, a 21.7% decrease in hingex produced a 35.5% in Fr, and a 21.7% increase in hingex 

produced a 31.8% decrease in Fr, when compared to the nominal value. 

4.3 Hinged TKR Model with Knee Simulator Input 

 

Figure 14. Predicted PF contact force, experimental contact force, and predicted patellar ligament force, all as a 

function of knee flexion angle. This data was collected during the first of the five trials. 

 

 The patellofemoral contact force predicted by the model closely agreed with the values 

measured experimentally in the PSKS (Figure 14). The agreement was consistent across flexion 

angles from 0 to 90 degrees. In addition, the patellar ligament force was predicted by the model 
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and increased steadily with flexion angle. The mean RMS error of the predicted measurement 

across the five trials was 10.78N, and the standard deviation of the RMS error was 3.28N. 

 

Figure 15. Predicted patellar angle and experimental patellar angle, as a function of knee flexion angle. 

This data was collected during the first of the five trials. 

 

 The patellar angle predicted by the model agreed with the values measured 

experimentally in the PSKS (Figure 15). The agreement was relatively consistent across flexion 

angles from 0 to 90 degrees and decreased slightly between 75 and 90 degrees. The 

proportionality between patellar angle and flexion angle was roughly linear, with the predicted 

curve having a slightly greater slope than the experimental curve. The mean RMS error of the 

predicted measurement across the five trials was 1.88 degrees, and the standard deviation of the 

RMS error was 0.038 degrees. 
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Figure 16. Predicted patellar ligament moment arm, and experimental patellar ligament moment arm, as a 

function of knee flexion angle. This data was collected during the first of the five trials. 

 

 The patellar ligament moment arm predicted by the model closely agreed with the values 

measured experimentally in the PSKS (Figure 16). The agreement was consistent across flexion 

angles from 0 to 90 degrees. Slight fluctuations in the experimental curve were seen from 75 to 

90 degrees. The mean RMS error of the predicted measurement across the five trials was 

0.049cm, and the standard deviation of the RMS error was 0.0056cm. 
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Table 5. Summary of Mean RMS Error and Standard Deviation of RMS Error for experimental vs. predicted 

measurements of PF contact force, patellar angle, and patellar ligament moment arm. 

 Mean RMS 

Error 

Standard Deviation of 

RMS Error 

PF Contact Force 10.78 N 3.28 N 

Patellar Angle 1.88 deg. 0.038 deg. 

Patellar Ligament MA 0.049 cm 0.0056 cm 

 

 Overall, the RMS Errors of the predicted PF contact force, patellar angle, and patellar 

ligament moment arm were small compared to the magnitudes of the quantities themselves 

(Table 4). There was consistent agreement between predicted and experimental values, and the 

predicted curves were slightly smoother than the experimental curves. 
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Chapter 5  
 

Discussion 

5.1 Summary of Key Results 

 The Natural Knee Model, Hinged TKR Model, and Hinged TKR Model with Knee 

Simulator Input each produced their own findings and shed light on the mechanics of the knee 

extensor mechanism. The Natural Knee Model was an extension of the work of Yamaguchi and 

Zajac [5] and characterized the impact of Osgood-Schlatter disease on knee mechanics. Our 

study found that increased tibial tubercle length and patellar ligament length, two common 

effects of O-S, increased quadriceps effective moment arm; in fact, the effects of these two 

structural changes compounded when both were present. In addition, the Hinged TKR Model 

applied the planar equilibrium modeling paradigm of the Natural Knee Model to study a design 

consideration in hinged knee replacements. Using the geometry of a commercially available 

implant, this model revealed the impact of the anterior-posterior position of the hinge on 

quadriceps effective moment arm and patellofemoral contact force. Our study found that a more 

posterior hinge can decrease patellofemoral contact force and increase quadriceps moment arm. 

This model was used to make measurements that would have otherwise been impossible in vivo 

due to practical and ethical limitations. Finally, the Hinged TKR Model with Knee Simulator 

Input demonstrated that, with the right input data, a planar knee model can accurately predict the 

dynamics of the knee. Specifically, we used the measured quadriceps as an input to the model, 

which in turn predicted patellofemoral contact force, patellar angle, and patellar ligament 

moment arm. During this portion of the study, excellent agreement was found between 

experimental and predicted values, which spoke to the potential utility of planar equilibrium 
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models in the design of knee replacement implants. This study was novel in that it was the first 

to augment an Oxford rig-style knee simulator with a planar equilibrium model to study hinged 

TKR implants. 

5.2. Comparison to Previous Research 

 The findings of the Natural Knee Model were consistent with findings of Yamaguchi and 

Zajac [5] with respect to patellar ligament length providing support for the verification of the 

present model. Their study found that a 20% increase in patellar ligament length produced a 

significantly greater quadriceps effective moment arm at flexion angles beyond 15 degrees, 

which was consistent with our results. Similarly, Ward et al. found that persons with patella alta 

had larger quadriceps moment arms than control subjects [23]. Neither of these studies 

conducted a sensitivity analysis to assess the effects of various degrees of patella alta. In 

addition, our study was the first to analyze how varying tibial tubercle length affects quadriceps 

effective moment arm. 

 In addition, the findings of the Hinged TKR Model were partially consistent with the 

findings of Long et al. [32], who used an Oxford rig-style knee simulator to study design 

considerations in hinged TKR’s. By evaluating five commercially available knee implants, they 

concluded that, while the anterior-posterior position of the hinge plays a role in determining 

patellar tendon moment arm, there are other factors at play such as the geometry of the 

patellofemoral joint. They found that a more posterior hinge produces a greater patellar tendon 

moment arm at 20 degrees knee flexion but noted that the opposite may be true at greater knee 

flexion angles. Likewise, they found that a more posterior hinge can reduce quadriceps force, 
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which can reduce patellofemoral contact force. However, they did not comment directly on the 

relationship between hinge position and contact force. Consistent with our study, they also found 

that the greatest patellar tendon moment arm occurs at 20 degrees of knee flexion in hinged knee 

replacements. [32] studied commercially available implants in three dimensions, which likely 

revealed nuances that were neglected by our planar model. In addition, Browne et al. stated that a 

more posterior flexion axis tends to increase extensor moment arm in hinged knee replacements, 

which was consistent with our findings [36]. This was the first study that employed a sensitivity 

analysis to characterize the direct impact of hinge position on quadriceps moment arm and 

patellofemoral contact force. 

 Finally, the findings of the Hinged TKR Model with Knee Simulator Input agreed with 

the findings of Maletsky et al. [33], who used an Oxford-rig style knee simulator in conjunction 

with a planar model to study the tibiofemoral force in condylar TKR implants. Their results 

demonstrated that a planar equilibrium model can make realistic predictions of forces in the 

knee, and this study applied their methodology to accurately predict patellofemoral contact force, 

patella angle, and patellar ligament moment arm. The two studies differ in that [33] was focused 

on condylar implants and tibiofemoral force, while ours was focused on hinged implants that do 

not exhibit tibiofemoral contact force. This study both extended and complimented the work of 

[33] by extending their methodology to a different type of implant and predicting different 

measurements. 
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5.3 Implications 

Based on the results of this study, we learned that planar equilibrium knee models can be 

a legitimate tool for studying natural and artificial human knees. When used as a research tool, 

our models proved robust enough to perform sensitivity analyses that simulated structural 

changes not found in the typical human knee. Specifically, the findings of the Osgood-Schlatter 

sensitivity study suggested that a condition developed in adolescence can result in structural 

changes that permanently change the quadriceps moment arm, and as a result, the efficiency of 

the knee. However, more research is required to confirm or deny this assertion. In addition, the 

Hinged TKR Model suggested that a posterior hinge can produce two major benefits: 1) 

Increased leverage and efficiency of the quadriceps and 2) Reduced patellofemoral contact force. 

Both of these benefits may significantly improve TKA outcomes, especially for elderly and 

disabled patients who more commonly receive hinged implants. Greater leverage in the 

quadriceps means elderly and disabled patients may be able to perform everyday activities 

despite weaker quadriceps muscles, while reduced patellofemoral contact force may reduce 

postoperative pain. However, given the complexity of TKA, human subjects trials would be 

necessary to validate these claims. Finally, the Hinged TKR Model with Knee Simulator Input 

upheld the fact that a computationally efficient planar equilibrium model can make predictions 

that are consistent with mechanical knee simulators. As a result, planar models may be able to 

predict additional measurements that were not considered in our study. In addition, a planar 

equilibrium model could prove useful in the design of TKR implants as a rapid prototyping tool. 

Without having to create separate CAD models or physical prototypes, a planar equilibrium 

model could evaluate hundreds of potential designs and predict measurements of moment arms, 

contact forces and more.  
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5.4 Limitations 

Certain limitations affected this study, most of which arose from the assumptions used to 

construct the planar models. This study assumed that all forces and motions of knee extension 

occur in the sagittal plane, which neglected the three dimensional geometries of the human knee. 

For example, the patella was assumed to “roll” along a curve with a single point of contact. 

However, patellofemoral motion in the human knee occurs in three dimensions, and the 

patellofemoral contact force is transmitted over an area, rather than at a single point. Similarly, 

the quadriceps was assumed to attach to the patella at a single point and act along the long axis 

of the femur. However, in reality the quadriceps has a broad attachment to the patella through the 

patellar tendon and is made up of multiple smaller muscles that pull in different directions. This 

broad attachment produces dynamics during knee extension that were not accounted for in our 

models. Furthermore, the natural knee and TKR implants were both assumed to be frictionless. 

Although natural and artificial knees are well-lubricated, there is nonetheless friction present at 

every point of contact. This friction produces wear on the knee and adds complexity to the 

dynamics of knee extension. Finally, all of the components of the knee model were assumed to 

be rigid and inextensible, particularly the patellar ligament, which in reality stretches during knee 

extension. Despite these limitations, the planar equilibrium model demonstrated excellent 

agreement with the PSKS. Indeed, many assumptions were made for the sake of simplicity and 

computational efficiency; however, the results of this study suggest that the essence of knee 

extension can be captured by a planar equilibrium model. 
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5.5 General Conclusions and Future Studies 

 This study presented three planar equilibrium models of the human knee. The first, the 

Natural Knee Model, characterized the impact of Osgood-Schlatter on knee mechanics. The 

second, the Hinged TKR Model, shed light on the impact of the A-P position of the hinge, 

perhaps the most important design consideration in hinged knee implants. The third model, the 

Hinged TKR Model with Knee Simulator Input, used the planar knee model to augment the Penn 

State Knee Simulator. Ultimately, this study demonstrated the utility of planar equilibrium knee 

models and their ability to accurately predict measurements in both natural and artificial knees. 

In future studies, we would expand on this study in the following ways: 

• Refine the model code and create a “tool” with a user interface that would empower 

researchers and implant engineers to use planar equilibrium models to study knee 

mechanics. 

• Create a “virtual knee simulator” that uses a planar model to predict quadriceps force and 

feeds it into a second planar model. 

• Recruit human subjects and tailor a model to each subject. Then, compare model outputs 

to experimental measurements and motion capture data. 

• Modify the PSKS and/or planar model to simulate more dynamic activities like running, 

climbing stairs, and jumping. 

• Study TKA outcomes in patients with hinged implants and characterize the impact of a 

posterior hinge. Compare these results to those predicted by the planar model. 
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Appendix A 

 

MATLAB Code 

Natural Knee Model 

Natural Knee Sensitivity Analysis Driver 

This script performs the sensitivity analysis described in 3.1. 

clear 

close all 

clc 

  

%% Define Inputs and Parameters 

% Note: distances in cm, angles in deg, forces in Newtons 

% Those parameters used later in the driver 

% are stored as meaningful variables 

  

params.TubLength = 0;  % INSTANTANEOUS advancement of tibial tuberosity 

TibTubAdvancement = 1; % FINAL Advancement of Tibial Tuberosity 

params.theta_q = 0;    % placeholder 

% theta_q = theta defined in YZ_resid 

params.tib_slope_angle = 8; %degrees 

tib_slope_angle = params.tib_slope_angle; 

params.Fq = 250;       % quad force 

Fq = params.Fq; 

params.TibAttachDist = 5.26;  % dist from tibial tuberosity 

% to "top left corner" of tibia 

TibAttachDist = params.TibAttachDist; 

params.A1 = 3.54;      % femoral condyle (ellipse 1) axis lengths 

params.B1 = 2.18; 

params.A2 = 2.86;      % median anterior groove (ellipse 2) axis lengths 

params.B2 = 1.90; 

params.Lp = 3.94;      % length of patella 

Lp = params.Lp; 

params.t = 1.63;       % thickness of patella 

params.Lpl = 6.52;     % length of patellar ligament 

Lpl = params.Lpl; 

NomRatio = Lpl/Lp; 

params.L_tib_plat = 5.57; % length of tibial plateau 

L_tib_plat = params.L_tib_plat; 

params.Cx = .25;          % Cx, Cy = 

Cx = params.Cx;           % location of the center of ellipse 2 

params.Cy = .79;          % WRT ellipse 1 (in F) 

Cy = params.Cy; 

  

% Obtain location of TF contact point 

% as percentage of tibial slope length 

% *Data extracted from Fig 2 of Y+Z 1989 using 'Grabit' add-on* 

load('Yamaguchi_fig_2_data.mat'); 

fig_2_x = Yamaguchi_fig_2_data(:,1); 

fig_2_y = Yamaguchi_fig_2_data(:,2); 

% perform spline fit or extracted fig 2 data 

pct_tib_plat_vect = spline(fig_2_x, fig_2_y, 0:90)/100; 

  

% Pre-allocate variables 

  

x_soln = zeros(91,9);   % solution vector 

residual = zeros(91,1); % total residual 
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resid2 = zeros(91,9);   % residual vector 

  

% MA_1 is calculated geometrically (perp dist) 

MA_act1 = zeros(91,1); 

MA_eff1 = zeros(91,10,10); 

% MA_2 is calculated analytically (dL/d(theta)) 

FqLength = zeros(91,1); 

MA_act2 = zeros(91,1); 

MA_eff2 = zeros(91,10,10); 

counter = .0001; 

  

  

%% SOLVER- For loop runs simulation multiple times 

% Lpl and tuburcle lentgh are varied 

% to mimic patella alta and OS, respectively. 

  

% The solver, post-processing, and animation all happen inside for loops 

% that vary Lpl and TubLength 

  

% The solver itself, and many post-calculations, must be performed at every 

% angle theta for the given trial, hence another for loop from 1 to 90 deg 

  

Lpl_vect = linspace(6.5,7.2,10); 

  

for i = 0:9 

    % change tuburcle length (OS) 

    params.TubLength = TibTubAdvancement*.1*i; 

    TubLength = params.TubLength; 

    for j = 0:9 

         

        frac = counter/100; 

        h_wait = waitbar(frac); 

        waitbar(frac, h_wait, 'Running simulations... ') 

         

        % changle Lpl (PA) 

        Lpl = Lpl_vect(j+1); 

        params.Lpl = Lpl; 

         

        % specify initial guess, bounds 

        %     Fr   Fpl  h  tx  ty  phi1 phi2  alpha beta 

        x0 = [250  250  2  3   7.1 262  180   0    -30]; 

        lb = [0    0    0 -10 -15  200  100  -90   -90]; 

        ub = [500  500  Lp 10  15  400  300   90    90]; 

         

         

        for theta = 0:90 

             

            ind = theta + 1; 

             

            pct_tib_plat = pct_tib_plat_vect(ind); 

             

            % f passes theta, params into YZ_resid 

            f = @(x)YZ_resid(x,theta,pct_tib_plat,params); 

            % call to solver, generate solution and residual vectors 

             

            [x_soln(ind,:),residual(ind)] = lsqnonlin(f,x0,lb,ub);%opts); 

             

            % guess at next theta is soln to previous theta 

            x0 = x_soln(ind,:); 

            resid2(ind,:) = YZ_resid(x_soln(ind,:),theta,pct_tib_plat,params); 

             

            % extract necessary values from solution vector 

            Fpl = x_soln(ind,2); 

            tx = x_soln(ind, 4); 

            ty = x_soln(ind, 5); 

            alpha = x_soln(ind,8); 

            beta = x_soln(ind,9); 

             

            % calculate moment arm 1 (geometric) 

            %{ 
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 A O (Bottom left of patella) 

    \ 

     \          C (TF Contact point) 

      \  ______O_______ 

       \ |           / 

        \|          / 

      B  O         / 

   (Tibial 

  Tuberosity) 

  

            %} 

             

            % find theta2, angle between BA and BC 

            BA = [-TubLength + Lpl*sind(beta) 

                Lpl*cosd(beta)]; 

            BC = [TibAttachDist*sind(tib_slope_angle) + (1-

pct_tib_plat)*L_tib_plat*cosd(tib_slope_angle) 

                TibAttachDist*cosd(tib_slope_angle) - (1-

pct_tib_plat)*L_tib_plat*sind(tib_slope_angle)]; 

            theta2 = acosd(dot(BA,BC)/(norm(BA)*norm(BC))); 

            MA_act1(ind,:) = (dot(BA,BC)/norm(BA))*tand(theta2); 

             

            % calculate EFFECTIVE moment arm 1 

            MA_eff1(ind,i+1,j+1) = Fpl*MA_act1(ind,:)/Fq; 

             

             

             

        end 

         

        counter = counter + 1; 

         

        %% Calculate weighted residual vector 

        WeightedResid = resid2; 

        WeightedResid(:,1:2) = .1*resid2(:,1:2)/Fq; 

        [max_resid,index] = max(abs(WeightedResid), [], 'all', 'linear'); 

         

        if max_resid > 10^-3 

            warning('Significant error detected.') 

            fprintf('Error of %4.6f found at index %4.0f of WeightedResid. \n',max_resid, index) 

            pause 

        else 

            fprintf('No significant error detected. \n') 

        end 

         

        % Animate? 

        { 

        choice = menu('Animate?', 'Yes', 'No'); 

        if choice == 1 

            run YZ_anim_driver.m 

        end 

        } 

         

    end 

end 

frac = 1; 

  

  
Natural Knee Residual Function 

 

This function accepts the input parameters and current solution vector of the model and returns 

the residual vector. 

 
function f = YZ_resid(x,theta,pct_tib_plat,params) 

  

% Inputs and parameters 

TubLength = params.TubLength; 
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params.theta_q = theta; 

theta_q = params.theta_q; 

tib_slope_angle = params.tib_slope_angle; 

Fq = params.Fq; 

TibAttachDist = params.TibAttachDist;   

A1 = params.A1;   

B1 = params.B1; 

A2 = params.A2;   

B2 = params.B2; 

Lp = params.Lp;   

t = params.t;    

Lpl = params.Lpl;  

L_tib_plat = params.L_tib_plat;  

Cx = params.Cx;   

Cy = params.Cy;  

  

% Specify unknowns 

Fr = x(1);    % patllafemoral contact force 

Fpl = x(2);   % Patellar ligament force 

h = x(3);     % dist from bottom of patella to PF contact point 

tx = x(4);    % location of origin of F CS in T 

ty = x(5); 

phi1 = x(6);  % ellipse 1 parameter 

phi2 = x(7);  % ellipse 2 parameter 

alpha = x(8); % angle between patella and vertical 

beta = x(9);  % angle between patellar ligament and vertical 

  

  

  

% 9 EQUATIONS FORMING RESIDUAL VECTOR 

f = zeros(1,9); 

  

% Static Equilibrium: 

f(1) = -cosd(alpha)*Fr - sind(beta)*Fpl + sind(theta_q)*Fq; 

f(2) = sind(alpha)*Fr - cosd(beta)*Fpl + cosd(theta_q)*Fq; 

temp = cross([-t -h 0], [Fpl*sind(alpha - beta) -Fpl*cosd(alpha - beta) 0])... 

    + cross([-t Lp-h 0], [Fq*sind(theta_q - alpha) Fq*cosd(theta_q - alpha) 0]); 

f(3) = temp(3); 

  

  

% TF Contact Point:  

Ttf = [ cosd(theta)  sind(theta)  0  tx;  

       -sind(theta)  cosd(theta)  0  ty; 

        0            0            1  0 ;  

        0            0            0  1]; 

temp = Ttf*[A1*cosd(phi1); B1*sind(phi1); 0; 1]; 

     

f(4) = TibAttachDist*sind(tib_slope_angle) + (1-pct_tib_plat)*L_tib_plat*cosd(tib_slope_angle) - 

temp(1); 

f(5) = TibAttachDist*cosd(tib_slope_angle) - (1-pct_tib_plat)*L_tib_plat*sind(tib_slope_angle) - 

temp(2); 

  

vect1 = Ttf*[-A1*sind(phi1); B1*cosd(phi1); 0; 0]; 

vect1 = vect1/norm(vect1); 

vect2 = [cosd(tib_slope_angle); -sind(tib_slope_angle); 0]; 

temp = cross(vect1(1:3), vect2); 

f(6) = temp(3); 

  

  

% PF Contact Point 

temp = Ttf*[Cx + A2*cosd(phi2); Cy + B2*sind(phi2); 0; 1]; 

f(7) = -TubLength + Lpl*sind(beta) + t*cosd(alpha) + h*sind(alpha) - temp(1); 

f(8) = Lpl*cosd(beta) - t*sind(alpha) + h*cosd(alpha) - temp(2); 

  

vect1 = Ttf*[-A2*sind(phi2); B2*cosd(phi2); 0; 0]; 

vect1 = vect1/norm(vect1); 

vect2 = [sind(alpha); cosd(alpha); 0]; 

temp = cross(vect1(1:3), vect2); 

f(9) = temp(3); 

end 
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Hinged TKR Model 

Hinged TKR Sensitivity Analysis Driver 

This script performs the sensitivity analysis described in 3.2. 

clear 

close all 

clc 

  

% Status: Using dummy data, runs both models 

% Next: verify output using actual hip frc data 

  

%% Parameter Input 

  

% specify points that splines are based on 

pat_spline_pts =  [ 0.2878328   -1.51866092; 

    0.53875686  -1.16105178; 

    0.69176138  -0.86296246; 

    0.78161642  -0.60709048; 

    0.84768944  -0.28579318; 

    0.86614      0; 

    0.83076796   0.3949446; 

    0.74197972   0.7324471; 

    0.63265812   0.99162362; 

    0.4649216    1.27374904; 

    0.2878328    1.51866092]'; 

  

fem_spline_pts = [ -1.31203954  -0.64701674; 

    -1.81688232  -0.64701674; 

    -2.30312468  -0.52940204; 

    -2.8309316   -0.33295844; 

    -3.2822388   -0.09787128; 

    -3.6622736    0.178838098; 

    -3.9760144    0.51293776; 

    -4.1839134    0.86360254; 

    -4.3224704    1.31477258; 

    -4.356735     1.68402254; 

    -4.349115     2.14546434; 

    -4.3411902    2.5994868; 

    -4.3331384    3.0612842; 

    -4.3266614    3.43154; 

    -4.3205146    3.7842698; 

    -4.3147996    4.111371]'; 

  

% make parameter vectors that can be used for spline fitting 

pat_param = 0:length(pat_spline_pts(1,:))-1; 

fem_param = 0:length(fem_spline_pts(1,:))-1; 

  

% fit splines 

data.pat_pp = csapi(pat_param,pat_spline_pts); 

data.fem_pp = csapi(fem_param,fem_spline_pts); 

  

% find derivatives of splines 

data.pat_der_pp = fnder(data.pat_pp,1); 

data.fem_der_pp = fnder(data.fem_pp,1); 

  

% point definitions 

data.hinge_in_t = [3.44853 5.99815 0 1]'; 

data.Q_orig_in_f = [-4.09633 58.22908 0 1]'; 

data.Q_ins_in_p = [-0.36120 3.30501 0 1]'; 

data.PL_orig_in_p = [-0.40121 -3.03964 0 1]'; 

data.PL_ins_in_t = [0 0 0 1]'; 

data.PL_length = 6.93214; 
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nomx = 3.44853; 

% decreased_x = linspace(nom_x - 0.5, nom_x, 6); 

% increased_x = linspace(nom_x, nom_x + 0.5, 6); 

hinge_x_vect = [nomx-0.75, nomx-0.5,nomx-0.25,nomx,nomx+0.25,nomx+0.50,nomx+0.75]'; 

  

%% General setup 

  

opts_LSQ = optimoptions('lsqnonlin','Display','none','TolFun',1e-8,... 

    'MaxIterations',100000); 

  

nvars = 7; 

  

% weight vector 

%wt = [0.01 0.01   .5 6.0 6.0 50.0 6.0]'; % OG wt vector 

wt = 100*[0.01 0.01 .05 6.0 6.0 50.0 6.0]'; 

  

  

theta_vec = 0:.2:90; 

nsteps = length(theta_vec); 

  

% DUMMY INPUTS 

Fq = 1000; 

  

%% Model #1 - initial setup/guess 

  

tf_start1 = min(fem_param)+0.5*(max(fem_param)-min(fem_param)); 

  

% x = [Fr   Fpl    tp              tf         tx   ty   alpha  ] 

x01 = [ 50   1000   mean(pat_param) tf_start1  -1.2  10   .1     ]; 

LB1 = [   0     0  min(pat_param)  min(fem_param)  -10   0   -30    ]; 

UB1 = [3000  3000  max(pat_param)  max(fem_param)   10  15   100   ]; 

  

MA_eff_vec1 = zeros(nsteps,1,length(hinge_x_vect)); 

all_x_opt1 = zeros(7,nsteps,length(hinge_x_vect)); 

all_resid1 = zeros(7,nsteps,length(hinge_x_vect)); 

all_resnorm = zeros(7,nsteps,length(hinge_x_vect)); 

  

  

  

%% Model #1 - vary theta and find positions 

  

for i = 1:length(hinge_x_vect) 

     

    data.hinge_in_t(1) = hinge_x_vect(i); 

     

    x01 = [ 50   1000   mean(pat_param) tf_start1  -1.2  10   .1     ]; 

    

for ind = 1:nsteps 

     

    theta = theta_vec(ind); 

     

    [x_opt,rnorm,res,exitflag] = lsqnonlin(@(x) HingeResid_LSQ(x,theta,... 

        Fq,data,wt),x01,LB1,UB1,opts_LSQ); 

    all_resid1(:,ind,i) = res; 

     

    x01 = x_opt; 

    all_x_opt1(:,ind,i) = x_opt; 

    all_resnorm(:,ind,i) = rnorm; 

     

    fprintf('Percent completion: %4.2f %% exit = %i \n ', 100*ind/nsteps,exitflag) 

     

    % calculate quad moment arm 

    Fpl = x_opt(2); 

    tx = x_opt(5); 

    ty = x_opt(6); 

     

    % "measure" MA_act, perp dist from hing to PL 

    u_TF = [tx ty]'/norm([tx ty]); 

    u_TH = data.hinge_in_t(1:2)'/norm(data.hinge_in_t(1:2)); 

    ang = acosd(dot(u_TF, u_TH)); 
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    MA_act = norm(data.hinge_in_t(1:2))*sind(ang); 

     

    % convert MA_act to eff quad MA 

    MA_eff = Fpl*MA_act/Fq; 

    MA_eff_vec1(ind,1,i) = MA_eff; 

     

end 

  

fprintf('Simulation is complete. \n') 

  

figure(2),plot(all_resid1(:,:,i)','LineWidth',1.25) 

figure(2),title('Residuals') 

figure(2),legend('1','2','3','4','5','6','7') 

  

figure(3),plot(all_x_opt1(1:7,:,i)','LineWidth',1.5) 

figure(3),title('x soln (3-7)') 

figure(3),legend('t_{p}','t_{f}','t_{x}','t_{y}','\alpha') 

  

  

End 

 

 

Hinged TKR Residual Function 

 

This function accepts the input parameters and current solution vector of the model and returns 

the residual vector. 

 

function f = HingeResid_LSQ(x,theta,Fq,data,wt) 

  

% x = [Fr Fpl tp tf tx ty alpha] 

Fr = x(1); 

Fpl = x(2); 

tp = x(3); 

tf = x(4); 

tx = x(5); 

ty = x(6); 

alpha = x(7); 

  

% define transformations: Fem-->Tib, Pat-->Tib 

%   Pt = Ttf*Pf 

%   Pt = Ttp*Pp 

Ttf = [ cosd(theta) sind(theta) 0 data.hinge_in_t(1); 

       -sind(theta) cosd(theta) 0 data.hinge_in_t(2); 

        0          0            1 0; 

        0          0            0 1            ]; 

     

Ttp = [ cosd(alpha) sind(alpha) 0 tx; 

       -sind(alpha) cosd(alpha) 0 ty; 

        0           0           1 0 ; 

        0           0           0 1]; 

     

     

% attachment points - all 4x1 

Q_orig_in_t = Ttf*data.Q_orig_in_f; 

Q_ins_in_t = Ttp*data.Q_ins_in_p; 

PL_orig_in_t = Ttp*data.PL_orig_in_p; 

PL_ins_in_t = data.PL_ins_in_t; 

  

% contact points - all 4x1 

patCP_in_t = Ttp*[fnval(data.pat_pp,tp); 0; 1]; 

femCP_in_t = Ttf*[fnval(data.fem_pp,tf); 0; 1]; 

  

% patella force application points - all 4x1 

r_Fq_in_t = Ttp*[data.Q_ins_in_p(1:3); 0]; 

r_Fpl_in_t = Ttp*[data.PL_orig_in_p(1:3); 0]; 
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r_Fr_in_t = Ttp*[fnval(data.pat_pp,tp); 0; 0]; 

  

% spline derivatives - all 3x1 

%   note that both splines must be defined as getting more superior as 

%   tp and tf increase 

pat_der_in_t = Ttp*[fnval(data.pat_der_pp,tp); 0; 0]; 

pat_der_in_t_u = pat_der_in_t(1:3)/norm(pat_der_in_t(1:3)); 

inward_pat_normal_in_t = [-pat_der_in_t_u(2); pat_der_in_t_u(1); 0]; 

fem_der_in_t = Ttf*[fnval(data.fem_der_pp,tf); 0; 0]; 

fem_der_in_t_u = fem_der_in_t(1:3)/norm(fem_der_in_t(1:3)); 

  

% forces on patella - all 3x1 

Fq_in_t = Fq*(Q_orig_in_t(1:3) - Q_ins_in_t(1:3))/... 

    norm(Q_orig_in_t(1:3) - Q_ins_in_t(1:3)); 

Fpl_in_t = Fpl*(PL_ins_in_t(1:3) - PL_orig_in_t(1:3))/... 

    norm(PL_ins_in_t(1:3) - PL_orig_in_t(1:3)); 

Fr_in_t = Fr*inward_pat_normal_in_t; 

  

% initialize unweighted residual vector 

fu = zeros(7,1); 

  

% static equilibrium of patella - forces 

fu(1:2) = Fq_in_t(1:2) +  Fpl_in_t(1:2) + Fr_in_t(1:2); 

  

% static equilibrium of patella - moments about pat orig 

fu(3) = dot(cross(r_Fq_in_t(1:3),Fq_in_t),[0 0 1]) + ... 

       dot(cross(r_Fpl_in_t(1:3),Fpl_in_t),[0 0 1]) + ... 

       dot(cross(r_Fr_in_t(1:3),Fr_in_t),[0 0 1]); 

  

% contact between femur and patella 

fu(4:5) = femCP_in_t(1:2) - patCP_in_t(1:2); 

fu(6) = dot(cross(fem_der_in_t_u,pat_der_in_t_u),[0 0 1]); 

  

% constant length PL 

fu(7) = norm(PL_orig_in_t(1:3)-PL_ins_in_t(1:3)) - data.PL_length; 

  

% weighted residual vector 

f = wt.*fu; 

     

end 

Hinged TKR with Knee Simulator Input 

Hinged TKR with PSKS Input Driver 

This script performs the analysis described in 3.3. 

clear all 

close all 

  

% specify points that splines are based on 

pat_spline_pts =  [ 0.2878328   -1.51866092; 

    0.53875686  -1.16105178; 

    0.69176138  -0.86296246; 

    0.78161642  -0.60709048; 

    0.84768944  -0.28579318; 

    0.86614      0; 

    0.83076796   0.3949446; 

    0.74197972   0.7324471; 

    0.63265812   0.99162362; 

    0.4649216    1.27374904; 

    0.2878328    1.51866092]'; 
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fem_spline_pts = [ -1.31203954  -0.64701674; 

    -1.81688232  -0.64701674; 

    -2.30312468  -0.52940204; 

    -2.8309316   -0.33295844; 

    -3.2822388   -0.09787128; 

    -3.6622736    0.178838098; 

    -3.9760144    0.51293776; 

    -4.1839134    0.86360254; 

    -4.3224704    1.31477258; 

    -4.356735     1.68402254; 

    -4.349115     2.14546434; 

    -4.3411902    2.5994868; 

    -4.3331384    3.0612842; 

    -4.3266614    3.43154; 

    -4.3205146    3.7842698; 

    -4.3147996    4.111371]'; 

  

% make parameter vectors that can be used for spline fitting 

pat_param = 0:length(pat_spline_pts(1,:))-1; 

fem_param = 0:length(fem_spline_pts(1,:))-1; 

  

% fit splines 

data.pat_pp = csapi(pat_param,pat_spline_pts); 

data.fem_pp = csapi(fem_param,fem_spline_pts); 

  

% find derivatives of splines 

data.pat_der_pp = fnder(data.pat_pp,1); 

data.fem_der_pp = fnder(data.fem_pp,1); 

  

% point definitions 10/15 tests 

data.hinge_in_t = [3.44853 5.99815 0 1]'; 

data.Q_orig_in_f = [-4.09633 58.22908 0 1]'; 

data.Q_ins_in_p = [-0.36120 3.30501 0 1]'; 

data.PL_orig_in_p = [-0.40121 -3.03964 0 1]'; 

data.PL_ins_in_t = [0 0 0 1]'; 

data.PL_length = 6.93214; 

  

% VMs for Nominal 

fn_start = 'Nominal'; 

data.hinge_in_t = [3.73210 5.65487 0 1]'; 

data.Q_orig_in_f = [-4.35656 58.06256 0 1]'; 

data.Q_ins_in_p = [-0.48164 3.44336 0 1]'; 

data.PL_orig_in_p = [-0.78044 -3.08527 0 1]'; 

data.PL_ins_in_t = [0 0 0 1]'; 

data.PL_length = 7.03092; 

  

ntrials = 5; 

  

%% vary theta and find positions 

opts = optimoptions('lsqnonlin','Display','none','TolFun',1e-6,... 

    'MaxIterations',1000); 

%all_x_opt = []; 

  

PF_RMS = zeros(ntrials,1); 

pat_ang_RMS = zeros(ntrials,1); 

PTMA_RMS = zeros(ntrials,1); 

  

for tr = 1:ntrials 

     

    % weight vector 

    wt = [1.0 1.0 5.0 1.0 1.0 5.0 1.0]'; 

     

    % Create initial plot 

     

    % transformation between tibia and femur 

    theta = 0; 

    Ttf = [ cosd(theta) sind(theta) 0 data.hinge_in_t(1); 

        -sind(theta) cosd(theta) 0 data.hinge_in_t(2); 

        0          0            1 0; 
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        0          0            0 1            ]; 

     

    % transformation between tibia and patella 

    alpha = 0; 

    tx = -2; 

    ty =  5; 

    Ttp = [ cosd(alpha) sind(alpha) 0 tx; 

        -sind(alpha) cosd(alpha) 0 ty; 

        0           0           1 0 ; 

        0           0           0 1]; 

     

    % get transformed points for initial plotting 

    pat_pts = get_transformed_pts(Ttp,pat_param,data.pat_pp,100); 

    fem_pts = get_transformed_pts(Ttf,fem_param,data.fem_pp,100); 

     

    % initial plotting, get handles to plot objects 

    figure(1),pat_h = plot(pat_pts(1,:),pat_pts(2,:),'r-'); 

    axis([-10 10 -5 15]) 

    axis equal 

    hold on 

    figure(1),fem_h = plot(fem_pts(1,:),fem_pts(2,:),'b-'); 

    figure(1),cp_p_h = plot(pat_pts(1,1),pat_pts(2,1),'ro'); 

    figure(1),cp_f_h = plot(fem_pts(1,1),fem_pts(2,1),'bo'); 

     

    Q_orig_in_t = Ttf*data.Q_orig_in_f; 

    Q_ins_in_t  = Ttp*data.Q_ins_in_p; 

    figure(1),Q_h = plot([Q_orig_in_t(1) Q_ins_in_t(1)], ... 

        [Q_orig_in_t(2) Q_ins_in_t(2)],'k-'); 

     

    PL_orig_in_t = Ttp*data.PL_orig_in_p; 

    PL_ins_in_t  = data.PL_ins_in_t; 

    figure(1),PL_h = plot([PL_orig_in_t(1) PL_ins_in_t(1)], ... 

        [PL_orig_in_t(2) PL_ins_in_t(2)],'k-'); 

     

    %% initial guess 

    % x = [Fr Fpl tp tf tx ty alpha] 

    tf_start = min(fem_param)+0.8*(max(fem_param)-min(fem_param)); 

    x0 = [   0.0  200.0 mean(pat_param) tf_start        -2   8   0]; 

     

    % x = [Fr Fpl tp tf tx ty alpha] 

    LB = [   0.0    0.0 min(pat_param)  min(fem_param)  -4   6   0]; 

    UB = [1500.0 1500.0 max(pat_param)  max(fem_param)   3  14  70]; 

     

    fn = [fn_start '_' num2str(tr) '_out.mat']; 

    load(fn); 

     

    % filtering 

    fs = 100; 

    fc = 5; 

    theta_vec = lowpass(theta_vec, fs, fc); 

    alpha_vec = lowpass(alpha_vec, fs, fc); 

    Fq_vec    = lowpass(Fq_vec, fs, fc); 

    PF_vec    = lowpass(PF_vec, fs, fc); 

    PTMA_vec  = lowpass(PTMA_vec, fs, fc); 

     

    % find frame at which 90 degrees knee flexion is reached 

    endframe = 0; 

    for qq = 1:length(theta_vec) 

        if (theta_vec(qq) > 90) 

            endframe = qq; 

            break 

        end 

    end 

     

    frms = 1:5:endframe; 

    theta_vec = theta_vec(frms); 

    Fq_vec = 0.865779*Fq_vec(frms); % corrected calibration 

    alpha_vec = alpha_vec(frms); 

    PF_vec = PF_vec(frms); 

    PTMA_vec = 0.1*PTMA_vec(frms); % convert mm to cm 
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    nsteps = length(theta_vec); 

     

    all_resid = zeros(7,nsteps); 

    all_resnorm = zeros(1,nsteps); 

    all_x_opt = zeros(nsteps,7); 

    all_trials_x_opt(:,:,tr) = zeros(nsteps,7); 

     

    for ind = 1:1:nsteps 

         

        ind 

         

        theta = theta_vec(ind); 

        Fq = Fq_vec(ind); 

        [x_opt,rnorm,res,exitflag] = lsqnonlin(@(x) 

HingeResid_LSQ(x,theta,Fq,data,wt),x0,LB,UB,opts); 

        all_resid(:,ind) = res; 

        all_resnorm(ind) = rnorm; 

        x0 = x_opt; 

        all_x_opt(ind,:) = x_opt; 

    end 

     

    all_trials_x_opt(:,:,tr) = all_x_opt; 

     

    LW = 1.5; 

    MS = 7; 

     

    figure(3),h1 = line_fewer_markers(theta_vec,Fq_vec,10,... 

        '^-g','Spacing','curve','MarkerSize',MS,'MarkerFaceColor','g',... 

        'LineWidth',LW); 

    figure(3),h2 = line_fewer_markers(theta_vec,all_x_opt(:,1),10,... 

        'o-r','Spacing','curve','MarkerSize',MS,'MarkerFaceColor','r',... 

        'LineWidth',LW); 

    figure(3),h3 = line_fewer_markers(theta_vec,PF_vec,10,... 

        's-b','Spacing','curve','MarkerSize',MS,'MarkerFaceColor','b',... 

        'LineWidth',LW); 

    figure(3),h4 = line_fewer_markers(theta_vec,all_x_opt(:,2),10,... 

        'd-k','Spacing','curve','MarkerSize',MS,'MarkerFaceColor','k',... 

        'LineWidth',LW); 

    figure(3),xlabel('Knee Flexion Angle (\theta) [deg]','FontName','Times New Roman') 

    figure(3),ylabel('Force [N]','FontName','Times New Roman') 

    figure(3),title('PF Contact Force and PL Force','FontName','Times New Roman') 

    figure(3),legend([h2 h3 h4],'F_{r} (model)','F_{r} (exp)',... 

        'F_{pl} (model)','Location','NorthWest','FontName','Times New Roman') 

    axis([20 100 0 800]) 

    set(gcf,'color','w'); 

     

    figure(4),h1 = line_fewer_markers(theta_vec,all_x_opt(:,7),10,... 

        'o-r','Spacing','curve','MarkerSize',MS,'MarkerFaceColor','r',... 

        'LineWidth',LW); 

    figure(4),h2 = line_fewer_markers(theta_vec,alpha_vec,10,'s-b',... 

        'Spacing','curve','MarkerSize',MS,'MarkerFaceColor','b',... 

        'LineWidth',LW); 

    figure(4),xlabel('Knee Flexion Angle [deg]','FontName','Times New Roman') 

    figure(4),ylabel('Patellar Angle (\alpha) [deg]','FontName','Times New Roman') 

    figure(4),title('Patellar Angle (\alpha)','FontName','Times New Roman') 

    figure(4),legend([h1 h2],'Model','Experiment','Location','SouthEast','FontName','Times New 

Roman') 

    axis([20 100 0 60]) 

    set(gcf,'color','w'); 

     

    figure(6),plot(all_resid') 

    figure(6),legend('1','2','3','4','5','6','7') 

     

    figure(7),plot(all_resnorm) 

     

    PF_RMS(tr)      = sqrt(mean((all_x_opt(:,1)-PF_vec).^2)); 

    pat_ang_RMS(tr) = sqrt(mean((all_x_opt(:,7)-alpha_vec).^2)); 

     

    all_PTMA = zeros(nsteps,1); 
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    anim_played = 0; 

    while (anim_played == 0) 

        figure(1),title('PAUSED: Any key to display results (CTRL-c to quit)') 

        pause(2.0) 

        figure(1),title('Displaying animation') 

         

        % display results 

        for ind = 1:1:nsteps 

             

            % transformation between tibia and patella 

            tx    = all_x_opt(ind,5); 

            ty    = all_x_opt(ind,6); 

            alpha = all_x_opt(ind,7); 

            Ttp = [ cosd(alpha) sind(alpha) 0 tx; 

                -sind(alpha) cosd(alpha) 0 ty; 

                0           0           1 0; 

                0           0           0 1]; 

             

            % transformation between tibia and femur 

            theta = theta_vec(ind); 

            Ttf = [ cosd(theta) sind(theta) 0 data.hinge_in_t(1); 

                -sind(theta) cosd(theta) 0 data.hinge_in_t(2); 

                0          0            1 0; 

                0          0            0 1            ]; 

             

            % get transformed points 

            pat_pts = get_transformed_pts(Ttp,pat_param,data.pat_pp,100); 

            fem_pts = get_transformed_pts(Ttf,fem_param,data.fem_pp,100); 

             

            % update femur curves 

            set(pat_h,'XData',pat_pts(1,:),'YData',pat_pts(2,:)); 

            set(fem_h,'XData',fem_pts(1,:),'YData',fem_pts(2,:)); 

             

            % update contact points 

            cp_p = Ttp * [fnval(data.pat_pp,all_x_opt(ind,3)); 0; 1]; 

            set(cp_p_h,'XData',cp_p(1),'YData',cp_p(2)); 

            cp_f = Ttf * [fnval(data.fem_pp,all_x_opt(ind,4)); 0; 1]; 

            set(cp_f_h,'XData',cp_f(1),'YData',cp_f(2)); 

             

            Q_orig_in_t = Ttf*data.Q_orig_in_f; 

            Q_ins_in_t  = Ttp*data.Q_ins_in_p; 

            xd = [Q_orig_in_t(1) Q_ins_in_t(1)]; 

            yd = [Q_orig_in_t(2) Q_ins_in_t(2)]; 

            set(Q_h,'XData',xd,'YData',yd); 

             

            PL_orig_in_t = Ttp*data.PL_orig_in_p; 

            PL_ins_in_t  = data.PL_ins_in_t; 

            xd = [PL_orig_in_t(1) PL_ins_in_t(1)]; 

            yd = [PL_orig_in_t(2) PL_ins_in_t(2)]; 

            set(PL_h,'XData',xd,'YData',yd); 

             

            % compute PTMA 

            B = PL_orig_in_t(1:2); 

            A = [0 0]'; 

            H = data.hinge_in_t(1:2); 

            avec = H-A; 

            uvec = (B-A)/norm(B-A); 

            bvec = dot(avec,uvec)*uvec; 

            cvec = avec - bvec; 

            all_PTMA(ind) = norm(cvec) 

             

            axis([-10 10 -5 15]) 

             

            pause(0.01) 

        end 

        anim_played = 1; 

    end 

     

    PTMA_RMS(tr) = sqrt(mean((all_PTMA-PTMA_vec).^2)); 
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    figure(5),h1 = line_fewer_markers(theta_vec,all_PTMA,10,... 

        'o-r','Spacing','curve','MarkerSize',MS,'MarkerFaceColor','r',... 

        'LineWidth',LW); 

    figure(5),h2 = line_fewer_markers(theta_vec,PTMA_vec,10,'s-b',... 

        'Spacing','curve','MarkerSize',MS,'MarkerFaceColor','b',... 

        'LineWidth',LW); 

    figure(5),xlabel('Knee Flexion Angle (\theta) [deg]','FontName','Times New Roman') 

    figure(5),ylabel('MA_{pl} [cm]','FontName','Times New Roman') 

    figure(5),title('Patellar Ligament MA','FontName','Times New Roman') 

    figure(5),legend([h1 h2],'Model','Experiment','Location','SouthEast') 

    axis([20 100 0 6]) 

    set(gcf,'color','w'); 

     

     

     

    %pause 

    close all 

end 

mn_RMS_PF = mean(PF_RMS) 

sd_RMS_PF = std(PF_RMS) 

  

mn_RMS_ang = mean(pat_ang_RMS) 

sd_RMS_ang = std(pat_ang_RMS) 

  

mn_RMS_PTMA = mean(PTMA_RMS) 

sd_RMS_PTMA = std(PTMA_RMS) 

 

Hinged TKR with PSKS Input Residual Function 

 

This function is the same as the Hinged TKR Residual Function. 
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Training and Development Captain, Dancer Relations Committee 

• Leading a team of 75 volunteers to help plan and execute THON Weekend 

• Training over 700 volunteers to ensure a safe and memorable experience during the 46-hour 

dance marathon 

• Developing innovative fundraising techniques to raise money for the fight against childhood 

Cancer  
 

Penn State Marching Blue Band                                                                                                                       
August 2018 - present 

Trombone Section Leader 

• Leading a team of 35 musicians—mentoring younger members, teaching marching 

fundamentals, and rehearsing up to 15 hours every week 

• Maintaining perfect attendance at all rehearsals and performances, including the Citrus Bowl and 

Cotton Bowl 

 

 

mailto:anthony4@psu.edu
http://www.linkedin.com/in/ARMannarino

