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ABSTRACT 

 

The purpose of this research is to assess the effects of differences in position, inclination, 

and right ascension of the ascending node (RAAN) when applied to multiple spacecraft on 

different hyperbolic orbits. The rationale for conducting this work is to understand if the 

suggested model can prove useful for interplanetary missions involving two or more spacecraft 

on hyperbolic paths with respect to an object of interest. As an example, this could mean 

collecting sensor data from separate vehicles that could then be combined to form a distributed 

sensor. 

The range and range-rate between spacecraft pairs were compared to observe how 

different orbits and initial conditions could prove useful in minimizing the average range and 

range-rate. The study revealed that a change in inclination presented the smallest range whereas 

a change in RAAN was able to limit the range-rate between the spacecraft on different orbits. 

However, if two spacecraft are on the same orbit, changes to the RAAN and inclination have 

practically no impact on the range and range rate of the spacecraft pair.  

A future study will apply the second order solution of the relative-motion model to 

hyperbolic paths to examine if an improvement in accuracy can be made in determining the 

coordinates of the spacecraft, but with lower computational burden. An optimizer will also be 

implemented for minimizing the average range and range-rate in order to determine a method for 

ways in which multiple spacecraft on different orbits can find a time to communicate with each 

other while they move together around a planet. 
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NOMENCLATURE 

 

G  =  Universal Gravitational Constant [N (
m

kg
)

2

] 

m  =  Mass [kg] 

μ  =  Standard Gravitational Parameter [
km3

s2 ] or [
LU3

TU2] 

a  =  Semi-Major Axis [km] or [LU] 

rp  =  Radius of Periapsis [km] or [LU] 

p  =  Semi-Latus Rectum [km] or [LU] 

e  =  Eccentricity 

h  =  Specific Angular Momentum [
km2

s
] or [

LU2

TU
] 

ɛ  =  Specific Orbital Energy [
km2

s2 ] or [
LU2

TU2] 

Δ  =  Change in Element 

θ  =  True Anomaly [radians] 

Ω  =  Right Ascension of the Ascending Node [radians] 

ω  =  Argument of Periapsis [radians] 

i  =  Inclination [radians] 

r⃗  =  Position Vector [km] or [LU] 

𝑣⃗  =  Velocity Vector [
km

s
] or [

LU

TU
] 

D  =  Relative Distance (Range) [km] or [LU] 
𝑑𝐷

𝑑𝑡
  =  Relative Rate of Change in Distance (Range-Rate) [

km

s
] or [

LU

TU
] 

LU  =  Canonical Distance Unit 

TU  =  Canonical Time Unit 

𝑋̂, 𝑌̂, 𝑍̂  =  Cartesian Coordinate Frame Unit Vectors 

𝐼, 𝐽, 𝐾̂  =  Earth-Centered Inertial Coordinate Frame Unit Vectors
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Chapter 1 

Introduction 

Remote sensing using satellites has been successfully employed in many space missions 

since the 1960’s. Examples include routine meteorological measurements, climate-change 

observations, Earth-resource assessments, and surface-shape measurements for terrain-mapping. 

A single large-aperture sensor, such as a telescope, can produce higher resolution images than 

one with a smaller aperture, but large-aperture sensors can present difficult mechanical 

challenges (the sensor often has a diameter that exceeds that of the satellite). An alternative 

approach is to use several smaller-aperture sensors that work simultaneously and whose data are 

merged to produce measurements or images of a nearly equivalent quality to that of a large-

aperture sensor. This approach is called distributed sensing, and it has been used successfully on 

Earth-orbiting satellites as observed in papers by Barnhart et al [1], and Elderman and Gurfil [2].  

This thesis considers the concept of using several satellites as a distributed sensor as they 

fly by a planet. A principal requirement is that the relative distances between pairs of satellites 

remain relatively constant (or at least change slowly during the measurements). Flyby maneuvers 

occur on hyperbolic trajectories, and these form an important component for studying the 

feasibility of this distributed-sensing concept. 

Conventionally, hyperbolic orbits are also considered to be escape trajectories because 

they have a positive energy, enabling them to carry a spacecraft out of the gravitational sphere of 

influence of the body they are orbiting. Hyperbolic trajectories have many uses, the principal of 
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which are for flybys of objects of interest such as planets or moons, for observation and 

gravitational assists to increase or decrease a spacecraft’s speed or redirect its path. However, in 

more recent years, studies have been conducted to show how hyperbolic trajectories can be used 

in conjunction with multiple spacecraft to perform actions around or near celestial bodies. These 

actions can include satellites acting to relay planetary information, spacecraft coming together to 

form a distributed sensor, or even spacecraft on different hyperbolic trajectories being used to 

conduct a survey of the entire landscape of a body. Scientists have coined the term “swarm” 

theory for the study of this type of collective motion [3]. 

As will be discussed in Chapter 2, a spacecraft’s position on a hyperbolic trajectory 

cannot be determined as a closed-form function of time. Therefore, numerical integration of the 

equations of motion will be used to calculate the distances and their rates of change for 

spacecraft on hyperbolic trajectories during planetary flybys. 
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Chapter 2 

 

Problem Statement 

Orbital mechanics involves finding ways to study objects in space moving under the 

influence of forces such as gravity, atmospheric drag, thrust, etc. To study the relative position of 

spacecraft and speed between two or more spacecraft on hyperbolic paths, an analysis of 

trajectories with differing orbital elements is explored. The ultimate goal is to consider what 

happens if three or more hyperbolic paths with the same eccentricity, oriented differently, are 

compared. As an example, this could include studying the average range and the range-rate over 

some interval of time, as well as adjusting the orbital elements to try and minimize the rate and 

the range-rate.  

2.1 Hyperbolic Trajectories 

Hyperbolic trajectories can be identified by their geometric qualities and dynamic 

behavior with the idea being that a body traveling along this trajectory will coast towards 

infinity, settling to a final non-zero (so-called excess) velocity relative to the central body. Like 

an elliptical orbit, a hyperbolic trajectory for a given system can be defined by its semi major 

axis and eccentricity. The following table shows how a hyperbolic trajectory differs from other 

conic orbits.   
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Table 1. Conic Orbit Definitions 

Conic Eccentricity (e) Semi-Major Axis (a) Energy (Ɛ) 

Circle e = 0 a > 0 Ɛ < 0 

Ellipse 0 < e < 1 a > 0 Ɛ < 0 

Parabola e = 1 a → ∞ Ɛ = 0 

Hyperbola e > 1 a < 0 Ɛ > 0 

An example of how a hyperbola is geometrically represented is shown in Fig. 1. 

 

Figure 1. Geometric Significance of a Hyperbolic Trajectory [6] 

 

where F is the focus of the conic, r is the position vector of the spacecraft, θ describes 

where the spacecraft is located on the orbit, V∞ represents the hyperbolic excess velocity with the 

positive superscript denoting departure and the minus sign denoting arrival, δ is the angle 

between the departure and the arrival asymptotes, and θ∞ is the true anomaly as the trajectory 
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goes to infinity. The quantity a is used to represent the semi-major axis of the orbit. It should also 

be noted that in Fig. 1, -c = -ae where e is the eccentricity of the hyperbola. 

2.2 Hyperbolic Time Equation 

In a typical problem where the position of a spacecraft on a hyperbolic trajectory at a 

given time is desired, the hyperbolic anomaly (H) can be calculated using the relationship. 

√
𝜇

−(𝑎)3
(𝑡 − 𝑡𝑜) = 𝑒 sinh 𝐻 − 𝐻  (1) 

 where μ is the gravitational parameter of the celestial body, a is the semi-major axis of 

the orbit, and to is the epoch time or a reference time to which the orbital elements are referred. 

The relationship between H and the physically significant angle θ is 

tan
𝜃

2
= √

𝑒 + 1

𝑒 − 1
tanh

𝐻

2
  (2) 

 However, there is no closed-form solution for H in Eq. (1). This means that in order to 

compute the position of the spacecraft on a hyperbolic trajectory for a given time, t, one must 

either solve Eq. (1) by numerical iteration or employ numerical integration of the dynamic 

equations of motion. 

 For the problem under consideration here, where the positions of multiple spacecraft at 

many different times must be determined, numerical integration is the more efficient method. 
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2.3 Numerical Integration 

The utilization of the ODE45 Runge-Kutta method is pertinent to conducting analysis on 

multiple hyperbolic trajectories at the same time. ODE45 is a built-in function in MATLAB 

based on an explicit Runge-Kutta (4, 5) formula that computes the position at the current time 

using only the position from the previous time step and derivative information from the 

equations of motion [12]. ODE45 will be used to simultaneously integrate multiple trajectories in 

order to compare the relative distance (range) and rate of change in distance (range-rate) of 

satellites on different three-dimensional hyperbolic trajectories.  

2.4 Equations of Motion 

In order to study and compare the change in distance and rate at which that same distance 

is changing between vehicles on hyperbolic trajectories, the equations of motion (EOMs) need to 

be derived and interpreted so that a solution can be integrated and examined. 

The equations of motion were derived in both polar and cartesian coordinates so that the 

optimum approach could be taken with the study. To compute the polar equations in the inertial 

frame, the transport theorem was applied to a position vector, r⃗. 

𝑑2𝑟  𝐼

𝑑𝑡2
=

𝑑2𝑟  𝑂

𝑑𝑡2
+

𝑑𝜔⃗⃗⃗ 𝑂

𝑑𝑡
× 𝑟  + 2ω⃗⃗⃗ ×

dr⃗ 𝑂

𝑑𝑡
+ 𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟) =

−𝜇𝑖̂𝑟
𝑟2

(3) 

where the subscripts I and O denote differentiation with respect to an inertial frame I and 

a frame O that is rotating with angular velocity, ω⃗⃗⃗, with respect to frame I. 

𝜔⃗⃗⃗ = 𝜃̇𝑖𝑧 (4) 
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𝑑2𝑟  𝑂

𝑑𝑡2
= 𝑟̈𝑖̂𝑟 (5) 

𝑑𝜔⃗⃗⃗ 𝑂

𝑑𝑡
× 𝑟 = 𝑟𝜃̈𝑖̂𝜃 (6) 

2ω⃗⃗⃗ ×
dr⃗ 𝑂

𝑑𝑡
= 2𝑟̇𝜃̇𝑖̂𝜃 (7) 

and 

𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟) = −𝑟𝜃̇2𝑖̂𝑟 (8) 

can be used to simplify Eqs. (3-8), 

𝑑2𝑟  I

𝑑𝑡2
= 𝑟̈𝑖̂𝑟 + 𝑟𝜃̈𝑖̂𝜃 + 2𝑟̇𝜃̇𝑖̂𝜃 − 𝑟𝜃̇2𝑖̂𝑟 =

−μ𝑖̂𝑟
𝑟2

(9) 

Separating Eq. (9) into 𝑖̂𝑟 and 𝑖̂𝜃 components, the second order equation can be put into 

state variable form where 

𝑥1 = 𝑟                  𝑥2 = 𝑟̇                  𝑥3 = 𝜃                  𝑥4 = 𝜃̇ (10) 

The state equations can finally be derived by taking the derivative of the state variables 

𝑥̇1 = 𝑥2 (11𝑎) 

𝑥̇2 = 𝑥1𝑥4
2 −

𝜇

𝑥1
2  (1𝑏) 

𝑥̇3 = 𝑥4 (11𝑐) 

𝑥̇4 =
−𝑥2𝑥4

𝑥1
 (11𝑑) 

Upon testing the polar EOMs with e = 1.5, 𝑟𝑝 = 1.2, and starting at periapsis, the 

following graph was created. 
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Figure 2. Polar Plot for rp = 1.2 and e = 1.5 

 

In a similar fashion, the state equations in cartesian coordinates are also computed. Since 

𝑟̈ = 𝑥̈𝐼 + 𝑦̈𝐽 + 𝑧̈𝐾̂ =
−𝜇

𝑟3
𝑟 (12) 

 and 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 (13) 

The state variable form once again can be set up by equating the components of Eq. (12). 

𝑥1 = 𝑥        𝑥2 = 𝑥̇        𝑥3 = 𝑦        𝑥4 = 𝑦̇        𝑥5 = 𝑧        𝑥6 = 𝑧̇ (14) 

where the state equations can be calculated by taking the derivative of the state variables. 

𝑥̇1 = 𝑥2 (15𝑎) 
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𝑥̇2 = −
𝜇𝑥1

(𝑥1
2 + 𝑥3

2 + 𝑥5
2)

3
2

 (15𝑏) 

𝑥̇3 = 𝑥4 (15𝑐) 

𝑥̇2 = −
𝜇𝑥3

(𝑥1
2 + 𝑥3

2 + 𝑥5
2)

3
2

  (15𝑑) 

𝑥̇5 = 𝑥6 (15𝑒) 

𝑥̇2 = −
𝜇𝑥5

(𝑥1
2 + 𝑥3

2 + 𝑥5
2)

3
2

 (15𝑓) 

which yields the exact same graph as in Fig. 1, but in the cartesian frame of reference as 

seen in Fig. 3. 

 

Figure 3. Cartesian Plot for rp = 1.2 and e = 1.5 
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The polar and cartesian state vectors were compared and analyzed using an initial 

evaluation of hyperbolic orbit definition. Ultimately, it was determined that while in the short- 

term polar coordinates were easier to use and manipulate, it would be difficult to transform them 

into orbital elements whereas cartesian coordinates could be used not only to easily calculate the 

orbital elements, but also to directly relate them to the Earth Centered Inertial (ECI) coordinate 

frame. This would ensure that all subsequent calculations related to relative distance and rate of 

distance could be compared. 

2.5 Perifocal Coordinate Frame 

Since a perifocal coordinate can define an orbit in two dimensions based only on 

spacecraft position (r, θ), eccentricity (e), and semi-major axis (a), this is the path selected. It is 

much simpler to use as an intermediate coordinate system to define the different hyperbolic 

trajectories than trying to determine the three-dimensional properties of the orbit immediately.  

In a perifocal coordinate frame, the 𝑃̂ unit vector points to the periapsis (x-direction) 

while the 𝑄̂ unit vector points in the direction of the semi-latus rectum (y-direction). This enables 

the x and y coordinates to easily be computed using the 𝑃̂ and 𝑄̂ directions of the perifocal 

coordinate frame. 

𝑟 = 𝑥𝑋̂ + 𝑦𝑌̂ = 𝑟𝑐𝑜𝑠𝜃𝑃̂ + 𝑟𝑠𝑖𝑛𝜃𝑄̂ (16) 

Since the magnitude of the position vector is also defined as 

𝑟 =
𝑎(1 − 𝑒2)

1 + 𝑒𝑐𝑜𝑠𝜃
=

𝑝

1 + 𝑒𝑐𝑜𝑠𝜃
(17) 

Eq. (16) can be simplified to include the known parameters a, e, and θ 
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𝑥 =
𝑝

1 + 𝑒𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃 (18) 

𝑦 =
𝑝

1 + 𝑒𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃 (19) 

The x and y components of velocity can also be determined by utilizing the following 

derivation of the orbit equation and 𝜃̇ equation 

𝑟̇ =
𝜇

ℎ
𝑒𝑠𝑖𝑛𝜃 (20) 

𝜃̇ =
ℎ

𝑟2
(21) 

where h is the specific angular momentum of the orbital body and 𝜇 is the gravitational 

parameter of the focus. The velocity in the perifocal frame is established to be 

𝑣⃗ = 𝑥̇𝐼 + 𝑦̇𝐽 = (𝑟̇𝑐𝑜𝑠𝜃 − 𝑟𝜃̇𝑠𝑖𝑛𝜃)𝑃̂ + (𝑟̇𝑠𝑖𝑛𝜃 + 𝑟𝜃̇𝑐𝑜𝑠𝜃)𝑄̂ (22) 

which can be simplified with Eqs. (20-21) to 

𝑥̇ = −
𝜇

ℎ
𝑠𝑖𝑛𝜃 (23) 

𝑦̇ =
𝜇

ℎ
(𝑒 + 𝑐𝑜𝑠𝜃) (24) 

Thus, Eqs. (18-24) could all be used to determine the two-dimensional position and 

velocity of a spacecraft in perifocal coordinates.  

2.6 ECI Frame Direction Cosine Matrix 

To add three-dimensional properties to the hyperbolic trajectories, a direction cosine 

matrix (DCM) was constructed using orbital elements. This involved rotating the inertial 

reference frame three times to acquire the desired frame. The first rotation being the angle 
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defined by the right ascension of the ascending node (Ω) about the 3-axis, followed by a rotation 

about the 1-axis defined by the inclination (i), and the final rotation being once again about the 3-

axis at an angle equal to the argument of periapsis (𝜔). The definitions of the orbital elements are 

shown below in the following figure. 

 

Figure 4. Orbital Element Definitions [5] 

 

The collection of these rotations could then be inverted to produce the DCM from the 

perifocal coordinate system to the ECI frame as shown below 

[
𝐼
𝐽

𝐾̂

] = [[
cos 𝜔 sin 𝜔 0

− sin 𝜔 cos 𝜔 0
0 0 1

] [
1 0 0
0 cos 𝑖 sin 𝑖
0 − sin 𝑖 cos 𝑖

] [
cos Ω sin Ω 0

− sin Ω cos Ω 0
0 0 1

]]

−1

[
𝑋̂
𝑌̂
𝑍̂

] (25) 

 Eq. (25) allows for inclination, argument of periapsis, and right ascension to be 

considered when determining the hyperbolic trajectories. 
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Chapter 3 

 

Implementation 

In order to perform an analysis between different hyperbolic trajectories, multiple 

processes needed to be derived. This includes the relative distance between two or more objects 

on differing hyperbolic orbits, the derivative with respect to time of that distance, and a method 

of defining orbital elements with respect to the ECI frame. To maintain similarity between the 

orbits studied, the eccentricity was held constant at 1.5 and the radius of periapsis was always 

taken to be 1.2 LU. In this section, the calculations and processes used to define these parameters 

will be discussed. 

3.1 Canonical Units 

For the purposes of this research and to control the size of the values that would be 

calculated, a canonical system of units was set up and implemented. In the study, the length unit 

(LU) was set equal to the value of an arbitrary planet’s mean equatorial radius. This meant the 

planet’s radius could be substituted with one LU, and the subsequent calculations would still 

hold true. 

The time unit (TU) was set to the hyperbolic orbital period. Since the eccentricity and 

radius of periapsis were constant for all studied orbits, the periods of all the orbits also had to be 

the same. Setting the TU equal to the period of the hyperbolic trajectory allowed for simple 

integration of the EOMs from 0 to 1 TU. 

Finally, the gravitational parameter was assumed to be 𝜇 = 4𝜋2 𝐿𝑈3

𝑇𝑈2 . 
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3.2 Relative Distance 

To compare how one spacecraft moved with respect to another, the distance formula was 

implemented in cartesian coordinates 

𝐷 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (26) 

Since MATLAB was used to numerically integrate the equations of motion over a time 

period, Eq. (26) had to be applied to every single entry in the arrays, after the integration took 

place, to find the relative distance between the two vehicles along the entirety of their respective 

orbits. 

3.3 Relative Rate of Change in Distance 

The relative rate of change in distance between the entities could be determined by taking 

the derivative of Eq. (26) with respect to time 

𝑑𝐷

𝑑𝑡
=

(𝑥2 − 𝑥1) (
𝑑𝑥2

𝑑𝑡
−

𝑑𝑥1

𝑑𝑡
) + (𝑦2 − 𝑦1) (

𝑑𝑦2

𝑑𝑡
−

𝑑𝑦1

𝑑𝑡
) + (𝑧2 − 𝑧1) (

𝑑𝑧2

𝑑𝑡
−

𝑑𝑧1

𝑑𝑡
) 

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2
 (27) 

Similar to Eq. (26), Eq. (27) also needed to be applied to every entry in the arrays in 

order to find the relative change in distance between the two vehicles along the entirety of their 

respective orbits. 

3.4 Average Distance and Average Rate of Distance 

For this study, the average distance and average rate of distance were collected by 

observing one pair of satellites at a time and then reporting the averages for each pair separately. 
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The averages could then be compared to each other as well as other spacecraft swarms to observe 

how different inclinations, right ascensions, spacecraft positions, etc. could be affected and 

manipulated. 

For both distance and rate of change in distance, each average could be computed by 

adding all the values of relative distance and rate of distance and then dividing by the total values 

present in the array. 

𝐴𝑉𝐺 =
𝑆𝑢𝑚(𝑉𝑎𝑙𝑢𝑒𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠
 (26) 

3.5 Orbital Elements  

To aid in making comparisons, the relative distance and relative rate of change in 

distance were calculated for spacecraft on orbits that varied in three dimensions. Inclination and 

right ascension of the ascending node (RAAN) were adjusted in Eq. (25) to examine how a 

change in plane or height could affect relative rate and range-rate. Information on how relative 

distance and range-rate compared between two dimensions and three dimensions could also be 

observed and studied by using the orbital elements.  
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Chapter 4 

 

Results 

Following the study, all observations were reported and examined. Multiple graphs were 

created to visualize and explain how different orbit and position changes could affect relative 

distance and distance rate, as well as the averages of these same quantities. The term “range” is 

used to describe the distance between a pair of spacecraft while the “range-rate” is used to detail 

the time derivative of the range. This section further explores these findings. 

4.1 Spacecraft on Same Hyperbola 

To explore how spacecraft will move relative to each other on the same hyperbolic 

trajectory at different starting positions, a simple case was implemented where one vehicle was 

placed at periapsis while the other was positioned at a starting location of θ = 90 degrees. The 

resulting trajectories for the time span can be seen in Fig. 3. 
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Figure 5. Spacecraft 1 and Spacecraft 2 Trajectories for Δθ = 90 degrees 

 

With a similar intention, various other starting locations for the two spacecraft were 

examined. Using the equations derived previously, an assessment of the relative distance and 

distance rate was conducted. The results are shown in Fig. 6 and 7 respectively. 
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Figure 6. Range of Two Spacecraft with Differing θ 

 

 As seen in Fig. 6, it is clear that when two vehicles are on the same hyperbolic trajectory, 

the range between them appears to decrease as the difference in starting position decreases. Since 

a larger difference in starting position inherently starts the range at a large value, this result is 

expected. It is also interesting to note that upon reaching a certain value of time (dependent on 

the starting positions), the range appears to reach a minimum value. 
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Figure 7. Range-Rate vs. Time for Changing Δθ 

 

In Fig. 7, it is interesting to note that the resulting curves from the calculations are mostly 

similar in magnitude throughout the entirety of the time span. This indicates that while starting 

positions may impact the starting velocity or how quickly each vehicle accelerates, the resulting 

range-rate will always eventually follow the same trend. 

Each curve also reaches some minimum value before slowly increasing in range-rate to a 

steady state near 0 LU/TU, which represents the idea that one vehicle is catching up to the other. 

Since the only difference between the two spacecraft is their difference in starting position, it is 

possible that this phenomenon is due to there being a certain point along the orbit where the 

spacecraft are no longer pulling away from each other, enabling a way for the relative velocity 
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and distance between the spacecraft to become almost constant. This behavior could be exploited 

to form a distributed sensor when the spacecraft are near this minimum range-rate point. 

4.2 Spacecraft at Periapsis of Hyperbolas with Differing Inclination 

The next step was to determine how the spacecraft will move relative to each other on 

hyperbolic trajectories with different inclinations, but with the spacecraft both starting at 

periapsis. As a visual example, one of the tested cases can be seen in Fig. 8. 

 

Figure 8. Spacecraft 1 and Spacecraft 2 Trajectories for i = 0 rad and i = 0.5 rad 

 

Even though the spacecraft have the same starting point, it is clear that the range and 

range-rate will still increase over time due to the constant increase in the 𝐾̂ direction. This is 



21 

 

documented below in Fig. 9 and 10, which shows how the spacecraft move relative to each other 

over the time span. 

 

Figure 9. Range vs. Time for Differing Inclination 

 

As a contrast to Fig. 6, the curves in Fig. 9 do not find a steady state at any point along 

the time span, but instead appear to increase towards infinity. As stated earlier, this is likely due 

to the constant increase in distance in the 𝐾̂ direction. It is also interesting to note that with larger 

inclination difference between trajectories, comes a larger difference and faster increase in range 

of the two vehicles.  
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Figure 10. Range-Rate vs. Time for Differing Inclination 

 

Fig. 10 appears to show the relative rate curves coming to a steady state right at the end 

of the time span. This is an interesting result since in Fig. 9, the curves all increased across the 

entire time span. It should also be noted that larger values of inclination difference appear to 

correspond to larger range-rate values. The difference in inclination appears to have larger and 

smaller values of difference interchanged within starting positions.   
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4.3 Spacecraft at Periapsis of Hyperbolas with Differing RAAN 

After examining how inclination affected range and range-rate, a thorough study into the 

effects of the RAAN needed to be conducted and compared. The spacecraft were still positioned 

directly at periapsis to start. As a visual example, one of the tested cases can be seen in Fig. 11. 

 

Figure 11. Spacecraft 1 and Spacecraft 2 Trajectories for Ω = 0 rad and Ω = 0.5 rad 

 

A quick survey of Fig. 11 reveals that a difference in RAAN offsets the trajectories. 

Since inclination is considered to be zero in this portion of the study, all of the orbits are still in 

the two-dimensional plane even with changes to the RAAN of the orbit. These offsets cause the 

hyperbolic trajectories to cross paths at certain points as well as continuously increase in range, 

all of which can be seen in Figs. 12 and 13. 
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Figure 12. Range vs. Time for Differing Ω 

 

Since the periapsides of the orbits are offset, it makes sense that the relative distance 

would take on a bucket shape to show how the two orbits curve into or towards each other at the 

start of the time span before heading in two different directions. It is also not surprising that the 

range then increases for all RAAN differences since the orbit offsets will cause the separation 

distance to continuously increase. The rate at which the range increases appears to depend on the 

size of difference in RAAN with larger values increasing faster than smaller ones.  
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Figure 13. Range-Rate vs. Time for Differing Ω 

 

The range-rate in Fig. 13 appears to show that at a certain point along the time span, a 

maximum rate is achieved before slightly decreasing back down to an almost steady state. For 

the most part, all the curves seem to follow the same kind of pattern, with each curve starting at 

an approximately zero range-rate.  

It is also interesting to note that all of the curves appear to be approaching different 

steady-state values at the end of the time span, once again with larger values of RAAN 

difference resulting in larger values of steady-state range-rates. 
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4.4 Spacecraft with Different Positions on Hyperbolas with Differing Inclination 

To initiate comparisons, a study of how the range and range-rate would be affected by a 

position difference and an inclination change was conducted.  

 

Figure 14. Range vs. Time for Changing Δθ and Differing Inclination 

 

The main difference between Fig. 14 and Fig. 9 is that in Fig. 14 each curve appears to 

either possess some sort of minimum value of range or start from a value larger than zero. This is 

due to the curves being shifted by the difference in starting position. Since all of the vehicles are 

not directly at periapsis and instead maintain some sort of starting separation distance, the curves 

are still able to follow the same increasing trend present in Fig. 9, but at different rates. The shift 

in the curves is also able to reveal more information about the trend when the spacecraft do not 
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start at the same position, which is helpful since it is unlikely that two spacecraft will start from 

the exact same position on their orbits. 

 

Figure 15. Range-Rate vs. Time for Changing Δθ and Differing Inclination 

 

Similar to the trends present in Fig. 14, Fig. 15 appears to follow the same trends as seen 

in Fig. 10 but shifted, at least for the Δi = 0.5 radians and Δi = 0.6 radians cases. The Δi =

0.35 radians and Δi = 0.25 radians cases appear to be the inverse of the original trend in Fig. 

10. The peaks and steady states of each curve are much clearer in Fig. 15. Each curve possesses 

an increase to a maximum value of range-rate before decreasing back down to a steady state 

condition. It is interesting to note that all of the curves, appear to still have a steady state value 

that corresponds to their inclination size difference.  
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4.5 Average Distance and Distance Rate 

Table 2. Average Range and Range-Rate for Each Study 

Section Average Range (LU) Average Range-Rate (LU/TU) 

Change 

in 

Orbital 

Element 

Δ = 0.25 Δ = 0.35 Δ = 0.5 Δ = 0.6 Δ = 0.25 Δ = 0.35 Δ = 0.5 Δ = 0.6 

4.2 0.52 0.72 1.02 1.22 1.70 2.38 3.38 4.04 

4.3 0.61 0.85 1.20 1.43 1.01 1.41 2.00 2.39 

4.4 0.77 1.28 1.38 1.83 1.08 1.11 2.88 3.16 

 

Table 3. Average Range and Range-Rate for Section 4.1 

Section Average Rate (LU) Average Range-Rate (LU/TU) 

𝚫𝛉 Δ =
𝜋

20
 Δ =

𝜋

12
 Δ =

𝜋

6
 Δ =

𝜋

2
 Δ =

𝜋

20
 Δ =

𝜋

12
 Δ =

𝜋

6
 Δ =

𝜋

2
 

4.1 0.20 0.60 0.72 2.77 -0.14 -0.41 -0.50 -1.48 

Since section 4.1 used one hyperbolic trajectory where the vehicles were placed at 

different positions whereas the other sections had inclination or RAAN differences in terms of 

radians, two tables were created to accurately display all the average distances and distance rates. 

An interesting observation is that in table 2, sections 4.2 and 4.3 have similar values and 

trends for the range. This is likely due to both inclination and RAAN causing the spacecraft to 

have a continuously increasing separation distance. As seen in section 4.4, the offset caused by 

no longer starting each craft at periapsis appears to cause the average range-rate to decrease 
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greatly (at least compared to the section 4.2 case) but has an increasing effect on the average 

range. This could provide a way to minimize the value of the average rate. 

When compared to table 2, table 3 shows that when the spacecraft are on the same 

trajectory, the average range and average range-rate are much easier to manage. The values are 

almost all smaller than their counterparts, which likely means that when the objects are on the 

same orbit, they are able to reach their steady state more quickly and at a lower value of range 

and range-rate. 

4.6 Study of Three Spacecraft 

A comparison of three spacecraft on two different orbits was conducted to examine the 

differences in range and range-rate when two vehicles are on the same orbit, but the other is on 

an orbit with differing RAAN or inclination. An example of how the simulation was setup is 

shown in Fig. 16, which details that the first and second craft start at periapsis while the third 

craft is started at a position of 30 degrees ahead of periapsis on the inclined or right ascended 

orbit. For the purposes of this section, the inclination and RAAN change used was 0.75 radians. 
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Figure 16. Spacecraft 1,2,3 on Two Differently Inclined Orbits 

 

The distance and distance rates were calculated for each set of two spacecraft (spacecraft 

1 to spacecraft 2, spacecraft 1 to spacecraft 3, and spacecraft 2 to spacecraft 3). This enabled a 

direct comparison to how each spacecraft moved with respect to each spacecraft in the study. 

These results for a difference in inclination are shown below in Fig. 17 and 18, while the results 

for a difference in RAAN are shown in Fig. 19 and 20. 
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Figure 17. Range of Three Spacecraft on Two Orbits with Differing Inclination 
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Figure 18. Range-Rate of Three Spacecraft on Two Orbits with Differing Inclination 

 

Since spacecraft 2 and 3 are on the same orbit with a starting separation distance of 30 

degrees, it is not surprising that in Fig. 17 and 18, the respective curves maintain a completely 

different trend than the other curves. The range and range-rate for these two spacecraft also 

reaches a steady state in both figures where the range and range-rate become practically constant. 

Again, based on section 4.1, this is expected for spacecraft on the same orbit.  

Likewise, it is not surprising that by starting spacecraft 3 at 30 degrees past periapsis with 

the same inclination difference as spacecraft 2, the steady state of the range-rate between 

spacecraft 1 and spacecraft 3 winds up being an almost identical value to spacecraft 1 and 

spacecraft 2. It is however interesting to note that spacecraft 2’s range-rate to spacecraft 1 starts 

out much higher than spacecraft 3’s rate to spacecraft 1. This likely has to do with the inclination 



33 

 

change happening immediately upon starting the simulation for spacecraft 2 whereas spacecraft 3 

starts already in a plane with different inclination. 

Lastly, it can be observed that in Fig. 17 and 18, that the spacecraft 1 and 2 and 

spacecraft 1 and 3 curves have the same relative trends, but slightly shifted due to the position 

difference. 

 

Figure 19. Range of Three Spacecraft on Two Orbits with Differing Ω 

 



34 

 

 

Figure 20. Range-Rate of Three Spacecraft on Two Orbits with Differing Ω 

 

Fig. 19 and 20 produce very similar results to what was reflected in Fig. 17 and 18. 

However, the spacecraft 1 to spacecraft 2 curve is very similar to the spacecraft 1 to spacecraft 3 

curve. Since the RAAN does not add a third dimension to the orbit, this most likely has to do 

with all of the spacecraft still being in the same plane, thus the curves follow a very similar path 

to one another only offset by the initial position difference. This is somewhat justified by Fig. 20, 

where the spacecraft 1 to 3 curve starts out slightly faster than the spacecraft 1 to 2 curve, but 

then quickly comes to a steady state at an almost identical value of 3.7 LU/TU in about 0.8 TU. 

The trends for these two curves are also practically the same in Fig. 19 where the 

spacecraft 1 to 3 curve starts off at a larger separation than spacecraft 1 to 2, but then 

immediately takes on almost the same trend as spacecraft 1 to 2 for the entire duration of the 
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simulation. There is still some difference between the two curves, but this is likely brought on by 

the fact that there was an initial position difference of 30 degrees between spacecraft 2 and 3. 

Finally, just like in Fig. 17 and 18, the spacecraft 2 to 3 curves are expected and 

showcases that with a RAAN difference, the range and range-rate curves are nearly identical to 

what they were in the inclination case, which makes sense as nothing about the orbit itself has 

changed aside from how it was oriented in three-dimensional space. However, it is an interesting 

observation that the steady state appears to be approximately 0 LU/TU for both Fig. 18 and 20, 

which shows that eventually the orientations result in the same range-rate for spacecraft in 

different three-dimensional space with the same two-dimensional characteristics (eccentricity 

and radius of periapsis). 

Table 4. Average Range and Range-Rate for Three Spacecraft on Two Different Orbits with 

Inclination Difference 

Average Range (LU) Average Range-Rate (LU/TU) 

Δi = 0.75 

Craft1→Craft2 

Δi = 0.75 

Craft1→Craft3 

Δi = 0 

Craft2→Craft3 

Δi = 0.75 

Craft1→Craft2 

Δi = 0.75 

Craft1→Craft3 

Δi = 0 

Craft2→Craft3 

1.52 1.82 0.54 5.00 3.82 -0.38 
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Table 5. Average Range and Range-Rate for Three Spacecraft on Two Different Orbits with 

RAAN Difference 

Average Range (LU) Average Range-Rate (LU/TU) 

ΔΩ = 0.75 

Craft1→Craft2 

ΔΩ = 0.75 

Craft1→Craft3 

ΔΩ = 0 

Craft2→Craft3 

ΔΩ = 0.75 

Craft1→Craft2 

ΔΩ = 0.75 

Craft1→Craft3 

ΔΩ = 0 

Craft2→Craft3 

1.78 2.27 0.54 2.97 2.61 -0.38 

 For further comparison, tables 4 and 5 were created to highlight the average range and 

range-rate between each of the different spacecraft cases. As seen in table 4, the average ranges 

for the spacecraft 1 to spacecraft 2 and 3 cases are both much smaller than the corresponding 

values in table 5. This is likely because the periapsis’ in the RAAN case is offset to start whereas 

in the inclination case, the periapsis is held constant at the same initial value. As examined in 

Fig. 17 and 19, the spacecraft 2 to 3 cases for range are practically identical, thus it makes sense 

that the average range-rate for these cases are approximately the same magnitude.  

 The most interesting part of the relative rates between tables 4 and 5 is that the range-rate 

is much larger in value between spacecraft 1 and 2/3 for the inclination case than the RAAN 

case. This once again likely has to do with the RAAN not bringing in a third dimension. As such, 

the RAAN only has to deal with the spacecraft moving relative to each other in plane whereas 

the inclination case has the spacecraft moving away from each other in three components of 

direction.  
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Chapter 5 

 

Conclusions and Future Study 

5.1 Conclusions 

A comparison of different hyperbolic trajectories was explored to find optimal solutions 

to dealing with a “swarm” of vehicles. By holding radius of periapsis and eccentricity constant, a 

study of how inclination, RAAN, and three spacecraft on two orbits affect the range and range-

rate could be explored. It was determined that two spacecraft on identical orbits revealed the best 

possible case for minimizing range-rate. When applying an inclination or a RAAN change, the 

range-rate was drastically increased for all cases. However, the range was actually decreased for 

certain cases, enabling the possibility to minimize the distance by adjusting the inclination and 

RAAN of the orbits.  

This idea was further explored in section 4.4 where the range-rate was able to be 

decreased below all the range-rates in section 4.2 by applying both a position and inclination 

change to the hyperbolic trajectory. This came at the cost of increasing the range between the 

spacecraft but opens the possibility of minimizing the range-rate for a certain combination of 

position and orbital element changes. As an advantage, increased distance between spacecraft 

(with minimum range-rate between them) is an ideal condition for creating a high-resolution 

distributed sensor. 

A further analysis using three spacecraft on two differently oriented orbits was used to 

reveal unique trends in the way three spacecraft will move relative to each other. It was shown 

that a change in inclination utilized the smallest range whereas the RAAN could limit the range-
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rate between the spacecraft on opposing orbits. When it came to range and range rate of 

spacecraft on the same orbit, the RAAN produced almost identical results to the inclination 

change, which proved to be another opportunity where a combination of inclination, RAAN, and 

position changes may be able to limit both the range and range-rate between all three vehicles. 

5.2 Recommendations for Future Study 

As a recommendation for future study of the subject, the analytical approximation 

derived by Willis et al. [4] should be examined. The second-order solution was developed for 

application to elliptical orbits, but the expansion is not limited to elliptical motion. Further 

consideration of this approximation as applied to hyperbolic trajectories could reveal a useful 

tool for the problem considered in this thesis. The numerical calculations are very accurate but 

will require a high computation time as more spacecraft are considered whereas the analytical 

approximation is extremely fast, but its accuracy for hyperbolic trajectories needs to be assessed. 

It is also suggested that an optimizer for minimizing the average range-rate for some 

specified range between spacecraft pairs be implemented to determine a way that multiple 

objects on different orbits can find a time to communicate with each other while they move 

together around a planet. This would entail coding a method that uses multi-objective 

optimization, with the objectives being the range-rates of the spacecraft pairs. 

Computing a better average of distance and distance rate using weighting is also left as a 

suggestion. By weighting the largest of the relative values more than the others, one can easily 

reduce the overall average distance and rate. Likewise, a better weighting scheme that 

determines a way in which to state which satellite holds more value would inherently provide a 
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much more accurate average rate and average distance. These values could then be used for 

better optimization and mission planning.  
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