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Abstract

Figures are an essential tool for researchers to communicate their complex scientific narratives.
However, low-quality captions can cause confusion and misunderstanding among readers which
leads to a lost opportunity to convey important research impact. With scientific figures being
increasingly important and abundant, automatic figure captioning can enhance the sharing of
knowledge between researchers and the community. In this work, we introduced a new dataset
based on the Association of Computational Linguistics (ACL) that contains rich scientific figures
and captions in large quantity. We analyzed the large-scale dataset and demonstrated the ability of
novel attention-based deep neural networks to caption real-world scientific figures. Our experiment
results showed the various opportunities and challenges in generating captions for a diverse set of
figures.
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CHAPTER 1
Introduction

1.1 Motivation

Figures, whether it is a distribution plot or an image of gel electrophoresis, are important to com-
municate critical research findings and present complicated data. Almost all academic publication
today contains a set of figures. Some scholarly search engines and databases have even started to
display extracted figures in the thumbnail of publications. Figure captions, being a key component
of a figure, is often important to convey complex scientific narratives illustrated by the visual
compartments of the figure. Unfortunately, many literature or articles today still have captions that
are too generic (“Result of Experiment A”) or poorly written (“Relations between X and Y”) [25].
Substandard captions can cause confusion and misunderstanding among readers, thus losing the
opportunity to convey potentially important research impact.

The use of deep learning to generate image captions has been widely studied in Artificial Intelligence
(AI) research. The captioning task requires the machine to detect and understand features within the
image and construct a well-formed sentence with semantic language. To achieve this task, methods
from both Natural Language Processing (NLP) and Computer Vision (CV) are used in conjunction.
Furthermore, the captioning task varies when performed on different image data. Previous work
demonstrated novel architectures an techniques such as attention mechanisms that excel in image
captioning [54] as well as its use in synthetic scientific figures [7] and extracted figures from arXiv
corpus [25]. However, there is still a need for further exploration of extracted large-scale scientific
figure data and the application of state-of-art captioning models on those datasets.

1



CHAPTER 1. INTRODUCTION 2

1.2 Objectives

The main objective of this project is two-fold. First, we will discuss a newly extracted large-scale
scientific dataset from the Association of Computational Linguistics (ACL). From the raw figure
dataset, we will extract and analyze the figures and captions independently in order to assess
and create subsets for model training. Then, we will train several models based on the attention
mechanism and analyze its performance in order to discuss the challenges and opportunities for
captioning complex real-world scientific figures.

1.3 Design Needs

There are many components of design needs exhibited in this project. Since the use of natural
language processing is critical, we take awareness of the potential biases surrounding language
technologies. We followed the ethical guidelines highlighted in [14] where we provide all the
details on our machine learning model to offer readers and users transparency. In addition, we also
take consideration in the environmental bearings that training large deep learning models can cause
[45]. We carefully train and tune our models in order to achieve the same experimental results with
minimal drain on the computational resources.



CHAPTER 2
Literature Review

2.1 Machine Learning

This section aims to introduce methods, techniques, and concepts from the field of Machine
Learning (ML) that pertain to the topic of this thesis. The reader should be able to follow this
chapter and build the high-level knowledge required to understand the task of scientific image
captioning. For readers that are already acquainted with topics in deep learning, convolutional
neural network, and recurrent neural network, you may skip to Section 2.2.

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) where computer algorithms
improve automatically through and by the use of data [36]. The application of ML can be frequently
found in predictive tasks, such as classifying hand-written digits with a Support Vector Machine
[40]. Additionally, practitioners also use unsupervised ML methods such as k-Means clustering for
exploring complex data sets [30].

2.1.1 Deep Learning

With the increasing demand for addressing more complex tasks, deep learning (DL) was developed
as a sub-field of ML. Deep learning methods are based on artificial neural networks (ANNs) inspired
by information and distributed communication nodes in biological neurons [35]. Those biological
neurons produce short electrical impulses which travel along the axons and make the synapses
release chemical signals (information). When another neuron receives a sufficient amount of those
signals, it fires its own electrical impulses. When those simple behaving neurons are organized
in a network of billions, it enables highly complex computations [20]. Figure 2.1 represents the
structure of a biological neuron.

3
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Figure 2.1: Biological Neuron

The simplest architecture of ANN is the perceptron model presented in Figure 2.2. The inputs
𝑥0, 𝑥1, . . . , 𝑥𝑛 can be represented with 𝑋𝑋𝑋 . The weights 𝑤0, 𝑤1, . . . , 𝑤𝑛 can be represented with𝑊𝑊𝑊 ,
and the bias 𝑏0, . . . , 𝑏𝑛 (not shown in figure) can be represented as 𝑏𝑏𝑏. With linear algebra, you can
efficiently compute the output 𝑂 from this perceptron of 𝑛 inputs with Equation 2.1 where 𝜙 is the
activation function [20]. The activation function introduces non-linearity to the model. A common
activation function in practice is the Rectified Linear Unit (ReLU) [22].

𝑂𝑊,𝑏 (𝑋) = 𝜙(𝑋𝑊 + 𝑏) (2.1)

(𝑅𝑒𝐿𝑈) 𝜙 = 𝑓 (𝑥) = 𝑥+ = 𝑚𝑎𝑥(0, 𝑥) (2.2)

Figure 2.2: Perceptron Model [13]

Now, this simple perceptron model can be expanded by forming multiple layers of fully connected
neurons. The multilayer perceptron is consists of an input layer, one or more hidden layers, and
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an output layer (Figure 2.3). The hidden layers accept outputs from previous layers as their inputs.
When an ANN contains a deep stack of hidden layers, it is called a deep neural network, thus the
study of it being named deep learning [20].

Figure 2.3: Multilayer Perceptron [11]

In the subsequent sections, we will see how the classic structure of ANN is modified to form new
architectures that adapt to more complex and specific tasks such as computer vision and natural
language processing.

2.1.2 Convolutional Neural Network

A class of artificial neural network that sees wide application in computer vision tasks is convolu-
tional neural network (CNN). As a regularized version of multilayer perceptrons, CNNs also draw
inspiration from biological systems. Specifically, CNN resemble the process used by animal visual
cortex, where individual cortical neurons respond to signal in a restricted region of the visual field
[19].

Figure 2.4: Typical Convolutional Neural Network [12]
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Like MLP, CNN is constructed with multiple layers and has an input layer and an output layer.
However, the convolutional layers in between the input and output layers gives CNN its power.
A typical convolutional layer has three stages. In the first stage, named convolution stage, a dot
product is computed between a sub-field of the input matrix with a same size "filter" matrix named
the kernel. The result of the computation replaces the original input field matrix with its output.
This operation is repeated by shifting through the entire input matrix, effectively convoluting the
input. The second stage, named detector stage, runs the linear activation outputs from the first
stage through a nonlinear activation function. In the third stage, named pooling stage, a pooling
function replaces the output at certain location with summary statistics of nearby outputs [22].
One example of this is max pooling, where the operation returns the maximum output within a
rectangular neighborhood [57].

Figure 2.5: Convolution and Pooling Visualization [12]

In image captioning tasks, CNNs are often used for feature learning or feature extraction. Different
CNN architectures can be applied to extract local or global features, depending on the goal of
extraction. Typically, the features are then fed to a Recurrent Neural Network (RNN) for caption
generation.

2.1.3 Recurrent Neural Network

A shortcoming of traditional feed-forward neural network is that it assumes input as independent
data points. This means that it will have issues working with sequence data where one data point
depends on previous data point. Much like how CNN specializes in processing grid of values such
as an image, another class of ANNs called the Recurrent Neural Networks (RNNs) specializes in
processing sequence of values 𝑥 (1) , . . . , 𝑥 (𝑛) . Some examples of those sequences includes text and
speech [22].
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The simplest example of recurrence can be illustrated with a single recurrent neuron. The neuron
will receive an input 𝑥 and produce an output 𝑦, much like a regular neuron in a feed-forward neural
network. The difference comes when the neuron sends its output back to itself [20].

Figure 2.6: Recurrent neuron (left) unrolled through time (right) [20]

A layer of recurrent neurons can be easily created (Figure 2.7). At each time step 𝑡, the recurrent
layer would now take both the input vector 𝑥𝑥𝑥 (𝑡) and the output vector from previous time step 𝑦𝑦𝑦 (𝑡−1) .
Each recurrent neuron has two sets of weights𝑊𝑊𝑊𝑥 and𝑊𝑊𝑊 𝑦 that are weighted matrices, a bias vector
𝑏𝑏𝑏, and a activation function 𝜙. The output of a recurrent layer can be computed with the following
equation [20]:

𝑦𝑦𝑦 (𝑡) = 𝜙

(
𝑊𝑊𝑊𝑇

𝑥𝑥𝑥𝑥 (𝑡) +𝑊𝑊𝑊𝑇
𝑦 𝑦𝑦𝑦 (𝑡−1) + 𝑏𝑏𝑏

)
(2.3)

Figure 2.7: A layer of recurrent neurons [20]

Since the output of a recurrent neuron contains information from previous time steps, it produces
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a form of memory. This is why RNNs are frequently used for sequence data where dependence is
important. Although the basic memory cell is sufficient to illustrate the concept of RNN, it suffers
from the vanishing gradient problem. When the pattern in question is too long, information will
be lost as it traverse through the network [4]. In 1997, the Long Short-Term Memory (LSTM) cell
was introduced by Sepp Hochreiter and Jürgen Schmidhuber [23]. Those LSTM cells are widely
used in complex natural language processing tasks such as caption generation as we will see in the
next section [24].

Figure 2.8: Architecture of a LSTM cell [21]

Figure 2.8 shows the internal operations of a LSTM cell. The idea behind LSTM cells is to have
the network learn what to store in the long-term state and when to forget old states. The cell has
the same input and output as a regular recurrent unit (input at time step t 𝑥𝑥𝑥 (𝑡) and function of some
inputs at that time step t and its state at the previous time step ℎℎℎ(𝑡)). But there is an additional
system to control the flow of information. The most important component is 𝑥 (𝑡) which performs a
self-loop operation. The self-loop weight is controlled by the forget gate unit 𝑓

(𝑡)
𝑖

[22]:

𝑓
(𝑡)
𝑖

= 𝜎

(
𝑏
𝑓

𝑖
+

∑︁
𝑗

𝑈
𝑓

𝑖, 𝑗
𝑥
(𝑡)
𝑗

+
∑︁
𝑗

𝑊
𝑓

𝑖, 𝑗
ℎ
(𝑡−1)
𝑗

)
(2.4)

The internal state is then updated with the following equation:

𝑥 (𝑡) = 𝑓
(𝑡)
𝑖

𝑥 (𝑡−1) + 𝑔
(𝑡)
𝑖
𝜎

(
𝑏𝑖 +

∑︁
𝑗

𝑈𝑖, 𝑗𝑥
(𝑡)
𝑗

+
∑︁
𝑗

𝑊𝑖, 𝑗ℎ
(𝑡−1)
𝑗

)
(2.5)

The external input gate 𝑔
(𝑡)
𝑖

in Equation 2.5 is calculated with similar equation to the forget gate,
except with it’s own parameters. Lastly, the output ℎ(𝑡)

𝑖
can also be shut off via the output gate

𝑜
(𝑡)
𝑖

:
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ℎ
(𝑡)
𝑖

= 𝑡𝑎𝑛ℎ

(
𝑠
(𝑡)
𝑖

)
𝑞
(𝑡)
𝑖

(2.6)

𝑜
(𝑡)
𝑖

= 𝜎

(
𝑏𝑖 +

∑︁
𝑗

𝑈𝑖, 𝑗𝑥
(𝑡)
𝑗

+
∑︁
𝑗

𝑊𝑖, 𝑗ℎ
(𝑡−1)
𝑗

)
(2.7)

There is another popular recurrent unit model that serves similar purpose as LSTM named the
Gated Recurrent Unit (GRU) [9]. The architecture of GRU cells are a simplified version of LSTM
cells but showed similar performance. For more detail on GRU we refer the user to the following
notes [22] [20].

2.2 Image Captioning Models

Given the importance of image captioning in everyday applications, it has been a popular field of
research in the past few years. The earlier methods proposed for captioning are mostly template
based. In those approaches, fix templates with blank slots are filled with extracted features from the
image space. For example, Farhadi et al. [17] uses a Markov Random Field classifier to extract a
triplet representation <object, action, scene> from the image and sentence space to generate a final
description by calculating similarity. Li et al. [31] developed further on that idea by composing
sentence automatically from scratch with web-scale n-grams. In a similar fashion, Kulkarni et
al. [29] uses a Conditional Random Field to infer a triplet representation consisting of objects,
attributes, and prepositions to generate descriptions. Although the above methods provided a way to
generate grammatically correct descriptions, they do have several shortcomings. Due to the nature
of template based methods, the caption outcome is fixed in length and by many specific rules. Those
hinder the model’s ability to generate variable and consistent captions. Recent developments in
novel deep learning methods for captioning has given us a better way to generate natural language
that mirror the creativity and attention of a human doing such task.

The general approach for the deep learning methods involves extracting image feature with a CNN
based encoder, and then describing those features through a RNN based language model [24][53].
This is essentially the encoder-decoder architecture that we will discuss in the following section.
However, other methods that includes a composition of additional networks and the use of attention
mechanisms has been added to this basic structure for better performance.
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2.2.1 Encoder-Decoder Architecture

The encoder-decoder technique has been popular and effective in areas such as neural machine
translation [46]. This has inspired its use for image captioning. The encoder-decoder based
methods generally involves the following steps:

1. Extract image features with the hidden activation of CNN

2. Feed the extracted feature to a language model for converting to words.

The process is illustrated in Figure 2.9

Figure 2.9: Basic Encoder-Decoder based Image Captioning Process

Although the general model design is similar, researchers have experimented with different varia-
tions of CNN, language models and training methods. For instance, Vinyals et al. [52] proposed
a method called Neural Image Caption Generator. This method uses a CNN with novel batch
normalization that employ its output from the last hidden layer as input to a LSTM decoder. Be-
cause the input image is fed once only at the beginning of the process, even the LSTM suffer from
the vanishing gradient problem when trying to generate long captions. Jia et al. [26] proposed
a extended LSTM called guided LSTM (gLSTM) which includes global semantic information to
each gate and cell state in order to combat this problem.

2.2.2 Compositional Architecture

Similar to the encoder-decoder architecture, the compositional architecture includes a CNN compo-
nent for image understanding and a RNN component for text generation. However, compositional
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methods treat those components and several other functional components as separate blocks. A
general compositional architecture based method includes the following steps [24]:

1. Extract image feature with CNN

2. Obtain visual concepts and attributes from visual features

3. Generate multiple captions with language model using the output of Step 1 and Step 2

4. Use a deep multi-modal similarity model to select high quality captions

The process is illustrated in Figure 2.10

Figure 2.10: Basic Compositional Architecture based Image Captioning Process [24]

Fang et al. [16] introduced a system that uses a visual detector in image sub-regions rather than
full images. A maximum entropy language model was used to generate image captions from those
sub-region features. The system then re-rank generated captions by linear weighting of sentence
features. Researchers also use a variety of additional function blocks for specific captioning
applications. Most methods mentioned earlier perform well for captioning tasks on the same
domain, but there is no certainty that those methods perform well on open-domain images. Tran et
al. [48] introduced a compositional based model that uses an external knowledge base to recognize
entities such as landmarks and celebrities. This methods has proven effective even in open-domain
databases where key entities are not in the model training scope.

2.2.3 Attention Based Methods

Most methods we saw earlier were able to generate caption for an input image through a feed-
forward fashion. However, a common issue with those methods is that they aren’t able to analyze
the image over time as they generate captions. Furthermore, they do not consider spatial aspects of
the image relevant to parts of the image caption. Attention mechanisms have been popular in deep
learning to address those limitations by dynamically focus on parts of the input while outputs are
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being produced. Xu et al. [54] first introduced a method leveraging attention mechanisms for image
captioning. Rather than compressing an entire image into a static representation, the method use
attention to bring salient features to the forefront as captions are generated. The paper proposed two
different attention mechanisms. The "soft" attention mechanism focus on all regions and provide
weight value to each region while the "hard" attention mechanism select focused areas based on
probability value (Figure 2.11). An additional benefit to this method was that we can "see" how
the model maps its attention region to specific output text. This will be critical for exploring how
attention based models caption scientific figures differently from other images.

Figure 2.11: Demonstration of Attention Based Image Captioning with "hard" attention mechanism
(bottom row) and "soft" attention mechanism (top row). [54]

Generally, a attention based method includes the following steps [24]:

1. Obtain image information based on the whole scene with a CNN

2. Generate words and phases based on the output of Step 1 with a language model

3. Focus on salient regions of the image with each time step of the language generation

4. Update captions dynamically until the end state of language model

A diagram of the process is provided in Figure 2.12. Many other attention based methods have been
introduced in literature. For example, Jin et al. [27] proposed a method that was able to extract flow
of abstract meaning based on semantic relationship between visual and textual information. Yang
et al. [55] introduced a review-based attention method that perform multiple review steps with
attention on CNN hidden states. Due to its high performance in generating meaningful captions,
similarity with human visual processing functions, and ability to inspect caption stages, attention
based mechanisms have been popular in the field of image captioning [38][33][8].
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Figure 2.12: Basic Attention Mechanism based Image Captioning Process

2.2.4 Evaluation Metrics

Evaluation metrics are necessary for assessing the performance of any machine learning model.
In simple classification models, metrics such as accuracy, precision, recall, and F-1 score are used
to evaluate its performance [56]. However, more sophisticated metrics have been developed or
adopted to evaluate models for image captioning:

BLEU [37]
Bilingual Evaluation Understudy (BLEU) is the most popular metric used to measure the quality
of machine generated text. The score calculates the ratio of prevision value for n-gram between
generated phrases and reference phrases. The score also implements penalty mechanisms to
address the problem of short prediction sequence and geometric average to balance the difference
of precision values of n-gram. Although a generally reliable metric, there are limitations to BLEU
scores when the generated text is short [6].

ROGUE [32]
Recall-Oriented Understudy for Gisting Evaluation (ROGUE) is a set of metrics for measuring the
quality of text summary. The method compares word sequences, word pairs, and n-grams with a
set of human curated reference summaries. In particular, ROGUEL, ROGUEW, and ROGUES are
metrics included in the set that are appropriate for evaluating figure captioning.

METEOR [3]
Metric for Evaluation of Translation with Explicit ORdering (METEOR) is another metric used for
machine translated language. In this method, standard word segments are compared with reference
texts and stems of sentences. In addition, synonyms of words are also considered for matching.
METEOR exceeds at comparing sentence level correlations.
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CIDEr [51]
Consensus-based Image Description Evaluation (CIDEr) is a consensus metric for evaluating
image descriptions. CIDEr achieves human consensus by using term frequency-inverse document
frequency (TF-IDF).

SPICE [1]
Semantic Propositional Image Caption Evaluation (SPICE) is a newer metric for evaluating quality
of image captions. This method uses a graph-based semantic representation to extract information
of different objects, attributes, and their relationship to the image description.

2.2.5 Scientific Figure Captioning

In this section, we will review related works that are specific to the captioning of scientific figures.
Chen et al. [7] identified some challenges when captioning figures as compared to regular images.
Those challenges revolve around "pivot" elements in the object. For example, in the image with the
cat in a sink (Figure 2.12), the "pivot" elements are the cat and the sink. However, in a bar graph,
all the bars, axis, and labels can be pivot elements. Additionally, the model also has to determine
how important a "pivot" element is compared to other "pivot" elements. In the same work, Chen
et al. introduced FigCAP, a figure-caption pair corpus with synthesized figures and five models
to perform captioning on the dataset. Some of the models experimented include a CNN-LSTM
baseline, CNN with LSTM plus multiple attention assisted decoders, and a combine model with
CNN-LSTM with attention mechanisms and reinforcement training. They found that the models
with attention metrics outperforms the baseline CNN-LSTM model.

Hsu el al. [25] identified the problem where model trained on synthesized figures and captions
tend to only describe features without any other high-level insights. They addressed this issue
by developing SciCAP, a figure-caption pair corpus based on the arXiv dataset which contains
extracted figures and captions from arXiv documents [10]. Furthermore, they implemented a
baseline CNN-LSTM model with an attention mechanism on the graph plots sampled from the
dataset. Their results show the performance of the captioning model is the highest on figures with
single-sentence captions. Though, there are general challenges when captioning real-world figures
since the baseline model has a unsatisfactory BLEU-4 score and empirical results.



CHAPTER 3
Data Processing and Analysis

3.1 Dataset

In the previous chapter, we discussed two figure-caption paired datasets: FigCAP [7] which
contains synthesized figure-caption pair data, and SciCAP [25] which contains extracted figure-
caption corpus from arXiv. In this thesis, we increase the quantity and diversity of scientific figures
by constructing and utilizing a dataset extracted from the Association for Computational Linguistics
(ACL) corpus.

3.1.1 Extraction Pipeline

The ACL document corpus contains 55,760 research papers. The goal of the pipeline is to extract
figures and tables from those research papers. The extracted data is then augmented by automatically
extracting reference context and linking them to corresponding figures. For figure extraction, we
used DeepFigure [42], a distant supervised learning method to induce labels of figures from a
large collection of scientific documents. The extraction pipeline is summarized in the following
steps:

1. Retrieve identifier from the job queue and pull paper from the server file system

2. Run DeepFigures on the paper to detect figures and extract captions

3. Crop the figures from the rendered PDFs

4. Save the cropped figures as .png files in the resulting directory

5. Save the metadata file in JSON format into a directory identified by PDF file name

15



CHAPTER 3. DATA PROCESSING AND ANALYSIS 16

(a) extracted cropped figure sample

(b) extracted figure metadata sample

Figure 3.1: Example of extracted figure-metadata pair from ACL papers

After applying the extraction pipeline to the corpus of 55,760 ACL papers, we were able to extract
a total of 264,343 individual figures and tables. Those figures and tables are stored as individual
.png files under the result directory along with a .json file, consisting of a list of metadata for figures
and tables in a single paper. An example of the figure-metadata pair is shown in Figure 3.1.

3.1.2 Data Processing

From the sample data, we observe that extensive data processing is required to extract the figure-
caption pair and reformat it for model training purposes. In the following sections, we will go into
detail about the methods and procedures used to preprocess figure and caption data that will enable
analysis and captioning experiments. This will involve extracting the figures and captions from
the directory that contains the total information. Then, we will apply independent data cleaning
procedures to the figure and caption data. Finally, we will perform an analysis of the figures and
captions and combine them into a new dataset appropriate for our captioning experiments. Figure
3.2 provides a high-level illustration of the entire process.
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Figure 3.2: High-level data processing procedure

3.2 Figure Processing and Analysis

3.2.1 Processing

The high-level figure processing steps are illustrated in Figure 3.3.

Figure 3.3: High-level figure processing steps

Since tables contain an entirely different feature structure than other scientific figures, our first step
would be to remove them from our dataset (298,856 images). In the directory, the figures and
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tables are indicated in the file name during our extraction step. We use a regular expression [47]
to separate out the figure files. After the separation, we have 123,721 figures and 175,135 tables.
Only the figures will now move to subsequent processing.

In order to use the figures for analysis and model training, we will digitize them by extracting features
with a CNN-based architecture. The VGG16 model [43] is a large series of convolutional layers
followed by fully connected layers. It is suited for this task because of its state-of-art performance
when coming to similar tasks [44]. We load the VGG16 model with the pre-trained weights from
the ImageNet dataset [39]. Then, we removed the output layer so the final output will be a vector
of image features. Before putting the image through the models, we reshape them to 224x224x3 in
order to match the pre-defined input size of VGG16. The result for feature extraction was 123,721
(number of images) samples with a feature vector length of 4096 (defined feature size from hidden
layer).

To increase computational efficiency when analyzing the figure data, we will need to reduce the
dimension of our feature vector. Principle Component Analysis (PCA) [18] is a standard statistical
procedure to perform dimensionality reduction. The process generates hyper-planes in n-dimension
captured by principle components that retain variance within the data. Before running PCA on our
feature vectors, we need to determine the final number of principle components to preserve. We do
this by fitting PCA on our feature vectors and calculating the cumulative explained variance at the
different count of principle components (Figure 3.4).

Figure 3.4: Cumulative explained variance of different principle component count

Typically, we aim to retain at least 80% of the cumulative explained variance when selecting the
number of principle components. From Figure 3.4, we see that with 500 components, we can retain
85% of the variance. This choice gives us the greatest boost in computational efficiency while
retaining important features of each figure image.
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3.2.2 Analysis

Since the dataset is extracted from a large corpus of real scientific literature, we know that there will
be many types of figures. Our main objective with figure analysis is to observe and understand how
to group and classify the figures in our dataset. This is a necessary step in order to both understand
the dataset and interpret experimental outcomes for the captioning model.

To group the figures, we use K-Means clustering [34], an unsupervised method for partitioning
data into k clusters. A metric to measure the separation of clusters is the Silhouette score. The
score measures how similar an object is to its own cluster compared to other clusters. A higher
Silhouette score indicates that the object is highly cohesive with the assigned cluster. We run the
K-means clustering algorithm over the feature vectors where we set the number of clusters k from
2 to 10. For each k, we calculate the respective Silhouette score (Figure 3.5).

Figure 3.5: Silhouette score for different numbers of figure clusters

The Silhouette score has peaks at 𝑘 = 3 and 𝑘 = 5. To increase diversity, we assigned each figure
to a cluster based on the 𝑘 = 5 results. We visualized the clusters by performing another PCA
operation, this time reducing the data to 2 principle components. The results are shown in Figure
3.6. In addition, we performed t-Distribution Stochastic Neighbor Embedding (t-SNE) [50] (Figure
3.7), another unsupervised clustering technique that differs from PCA by preserving small pairwise
distances and local similarities between data points. Due to their differences, t-SNE can provide
extra information in addition to PCA when visualizing large-scale datasets.
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Figure 3.6: 2D visualization of figure clusters

Figure 3.7: Visualization of figure clusters with t-SNE

Although we separated the figures into 5 clusters, we observe that there are loosely 3 clusters in
Figure 3.6. Clusters 1, 2, and clusters 0, 4 exhibit high degree of overlapping. This is reflected in the
high Silhouette scores for 3 clusters. The t-SNE visualization provided similar information where
major areas of the plot is overlapped by figures from different clusters. The results suggested that
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many figures contain features that are highly similar. This could be expected since the two types
of figures share similar "pivot" features. For example, flowcharts that contain a heavy amount of
text might be clustered with a manuscript figure. Although they are classified as different types of
figures, the appearance of textual information can cause them to be assigned the same cluster.

In Table 3.1, we selected representative sample figures from each cluster. We grouped clusters 0,
4, and clusters 1, 2 since the majority of figure types in those clusters are shown to be similar. By
observing and labeling sampled figures closest to the centroid of each cluster, we provide an empir-
ical label for the cluster. Clusters 0 and 4 contain figures with text-heavy features such as flowcharts
and screenshots of text documents. Cluster 3 contains line graphs and scatter plots. Clusters 1
and 2 contain mostly graphs with block-like features such as bar graphs. However, some figures in
clusters 1 and 2 also scatter plots or line graphs that are more cluttered, creating a block-like view.
The same is true for cluster 3. The results suggested the complexity of analyzing distinct features for
automatically extracted scientific figures. Distinguishing functionalities between different figure
types purely based on visual features extracted by a CNN is shown to be difficult. It also suggests
that the performance of the captioning model, which also uses extracted visual features, can be
affected due to unclear "pivot" elements.

Cluster Sample Figures General Figure Types

Clusters 0 and 4
Text-heavy Flowcharts
and Images

Cluster 3
Scatter Plots and Line
Graphs

Clusters 1 and 2
Bar Graphs and His-
tograms

Table 3.1: Sample figures from clusters with empirical classification
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3.3 Caption Processing and Analysis

3.3.1 Processing

The high-level caption processing steps are illustrated in Figure 3.8.

Figure 3.8: High-level caption processing steps

The caption is currently stored as a key in the figure metadata in JSON format. The first step
involves extracting the captions from each metadata file. Since we excluded tables for captioning,
we will need to exclude all captions belonging to a table. Since most of the captions contain a label
(ex: Figure 2-3 shows the flow of syntactic and ...), we can use a regular expression to match only
captions that belong to a figure.

After the features are extracted, we apply a series of text operations to format it for model training.
We first standardize the text by lower the casing and removing extra white space. Then, we removed
the labels (Figure 2-3, Table 1-1, etc.) since they will be trivial for learning. An important step
here is to add tokens <start> and <end> to the start and end of the captions. Those tokens will
signal the model to start and end sequence generation.

With the caption text cleaned and formatted, we can now generate some metadata such as the
number of words and number of sentences. The Natural Language Toolkit (NLTK) [5] provides the
functions to compute those metadata. We then move on to removing outliers based on the number
of words and number of sentences. We computed the interquartile range (IQR) and set cutoff limits
with:

𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡 = 75%𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 + 1.5 × 𝐼𝑄𝑅 (3.1)
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𝑙𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑖𝑡 = 25%𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 1.5 × 𝐼𝑄𝑅 (3.2)

The process removed 8775 outliers from the dataset. The distribution of caption word count before
the removal process is displayed in Figure 3.9.

Figure 3.9: (a) Distribution of word count before removing outliers and (b) Distribution of word
count after removing outliers

Based on the results in [25], we see that captioning often suffers in performance when the captions
get long. Therefore, we only take the first 3 sentences of any captions that are longer than 3 sentences.
Lastly, we know previously from our figure analysis that the extraction results contain many figures
with sub-figures. In order to remove those, we filter all the captions that contain subsection labeling
(ex: (a)...(b)...(c)...). 3955 total captions are identified for indicating sub-figures and have been
removed from the final caption dataset.

3.3.2 Analysis

The automatic extraction process of captions from real-world scientific literature likely means that
the caption qualities will vary. With the standardization process in place, the number of words
and sentences in a caption becomes the most important caption quality that can affect caption
generation. We can visualize the overall distribution of word count and sentence count with
distribution plots (Figure 3.10). The plots indicate that most captions in the dataset are below 30
words and 2 sentences. However, there are a decent amount of captions that have 40 to 60 words
and some examples that can be over 100 words. Similarly, some captions will have more than 10
sentences.



CHAPTER 3. DATA PROCESSING AND ANALYSIS 24

(a) Word count distribution (b) Sentence count distribution

Figure 3.10: Distribution plots for caption dataset

From previous works [25][7], we know that the sentence length of captions can be highly influential
to the learning outcomes of the caption generation model. To take a closer look, we sampled
representative captions from various sentence counts (Figure 3.11). We see that for captions with
over 10 sentences, the first couple of sentences often offers a short description of the plot (ex: "The
space of unweighted languages"). The sentences following gives an extensive description of the
"pivot" elements. Those descriptions go into great detail about the methodology and results that
the reader can find in the figure. For captioning, the extensive description is not helpful when
the model is trying to learn distinctive feature areas in the figure. Instead, most information is
contained within the first couple of sentences. Captions with 4-6 sentences have a similar pattern.
The results indicated that we needed the preprocessing step to only preserve the first 3 sentences in
captions that are longer than 3 sentences.
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Figure 3.11: Sample caption from different ranges of sentence count



CHAPTER 4
Scientific Figure Captioning

4.1 Experimental Setup

In the previous chapter, we preprocessed and analyzed a large-scale figure-caption dataset. From
which we defined clusters representing different types of scientific figures. In this chapter, we will
train attention-based caption generation models based on the different figure categories.

4.1.1 Preparing Dataset

The preprocessed captions and figures are stored in their individual datasets, where each element
has its figure file name as its unique identifier. We perform an inner join on the file name. Recall
that we have 123,721 total figures in our raw dataset. With low-quality data removed from both the
figure and caption datasets, our final cleaned dataset contains 119,764 figure-caption pairs. The
count of the figure-caption pair for each subgroup defined in the previous chapter is shown in Table
4.1 and an sample of the data is shown in Figure 4.1.

Cluster Count
Clusters 0 and 4 53,240

Cluster 3 22,459
Clusters 1 and 2 44,065

Table 4.1: Count of data points in each group of the dataset

26
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Figure 4.1: Sample of inner joined figure and caption data

The final processing step for this dataset is to tokenize the cleaned captions. Tokenization is a
vectorizing operation in NLP that breaks text strings into smaller word units called tokens. Those
tokens will then be mapped to a vocabulary with an assigned index. We employ the Tokenizer
method in the TensorFlow text module to perform the tokenization step.

4.1.2 Model Training

In this experiment, we aim to construct three models. Each of the models is trained on one of
the defined clusters. The setup for the models is similar. First, we split the data into training and
test sets using the 80/20 split. For cluster 3, that means we will have 17,967 data points used for
training and 4,492 data points for validation.

We construct the different components of the attention-based caption generation model based on
[54]. The first component is a CNN encoder with 256 embedded dimensions. Then we have an
RNN decoder employing a Bahdanau attention mechanism [2]. We used the Adam optimizer [28]
as the model optimizer and sparse categorical cross entropy as the loss function. We trained the
model on a GeForce RTX 2080 Ti GPU. Due to limited time, we trained each model for 20 epochs,
where each epoch takes an average of 75 seconds. The loss plot for the model trained on cluster 0
and 4 is shown in Figure 4.2.

Figure 4.2: Loss plot for caption generation model trained on clusters 0 and 4
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4.1.3 Performance Evaluation

After training the model, we evaluate the model in two main ways. First, we compute and record
the BLEU, METEOR, ROUGE-L, and Embedding Average Cosine Similarity (EACS) scores using
the functions provided by [41]. Due to limited time, we sample 100 data points from the validation
set to compute the evaluation metrics, where each iteration takes 37.45 seconds. The second
method is plotting the attention grid for the image on every sequence generated by the recurrent
decoder. This method is critical when examining the focus of the neural network while captioning
the model.

4.2 Results

In this section, we present the evaluation results from our experiment. For each of the three caption
generation models, we sampled 2 figures from the results. For those figures, we then show the
actual caption, the predicted caption, and the attention grid for each step of sequence generation.
Lastly, we provide the evaluation scores on the validation set as described in Section 4.1.3.

4.2.1 Text-based Figures

The first model was trained on clusters 0 and 4, which we have identified in the data analysis section
as figures with text-heavy features.

Figure Original Caption Predicted Caption

In an example of anno-
tated data from [UNK]
the gray area shows the
annotation values. only
step 1 out of [UNK] in
this guide is shown here.

sample dialogue from
the annotation scheme

retrieval of two senses
for five seed terms
in three different lan-
guages.

a flow chart of the exam-
ple sentence in [UNK]

Table 4.2: Sample figures with original and predicted captions from clusters 0 and 4
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Figure 4.3: Attention grid for sample figure 1 in clusters 0 and 4

Figure 4.4: Attention grid for sample figure 2 in clusters 0 and 4

4.2.2 Block-based Graphs

The second model is trained on clusters 1 and 2, which we identified as figures that have block-like
or cluttered features such as bar graphs and histograms.
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Figure Original Caption Predicted Caption

indices of coherence de-
rived from human par-
ticipant evaluation of
[UNK] [UNK] lower is
better.

distribution of mturk
workers [UNK] [UNK]

comparison of [UNK]
across different lan-
guages

comparison of perfor-
mance of [UNK] and
multilingual model de-
velopment task, data,
training sets

Table 4.3: Sample figures with original and predicted captions from clusters 1 and 2

Figure 4.5: Attention grid for sample figure 1 in clusters 1 and 2

Figure 4.6: Attention grid for sample figure 2 in clusters 1 and 2
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4.2.3 Line-based and Sparse Graphs

The third model is trained on cluster 3, which we identified as figures that have line-based or sparse
features such as line graphs and scatter plots.

Figure Original Caption Predicted Caption

comparison of n-gram
boost approaches.

unsupervised [UNK] f1
score on x-axis.

label entropy of [UNK]
with different rate of ex-
tra post nodes

[UNK] i for different
training with finetuning
performance

Table 4.4: Sample figures with original and predicted captions from cluster 3

Figure 4.7: Attention grid for sample figure 1 in cluster 3
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Figure 4.8: Attention grid for sample figure 2 in cluster 3

4.2.4 Evaluation

Table 4.5 presents the evaluation scores for the three models labeled by the clusters they were
trained on. Noting again that the scores are calculated based on 100 data points from the validation
set. A detailed description of the scores can be found in Section 2.2.4.

Model BLEU-4 METEOR ROUGE-L EACS
Clusters 0 and 4 0.285 0.179 0.204 0.801
Clusters 1 and 2 0.003 0.163 0.197 0.815

Cluster 3 0.001 0.148 0.185 0.817

Table 4.5: Evaluation Scores for experiments on caption generation models

4.3 Discussion

In our experiment, we trained our attention-based caption generation model on three subsets of
our dataset. We empirically determined the majority of figure types in those subset clusters as
text-based, block-based, and line or sparse-based. We presented the results from each of the subsets
with sample figures, their predicted caption, attention grid, and evaluation metrics. Generally,
the predicted captions are different in terms of vocabulary compared to the original caption but
highlight similar "pivot" elements. For example, the original caption from figure 1 of Table 4.4
described it as a high-level comparison of experiment outcomes. The caption on the other hand
described the graph’s features such as the legend and x-axis. In another case, such as Figure 2 from
Table 4.3, the predicted and original caption both captured the comparative nature of the figure.
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One possible reason could be because block-based figures such as bar graphs are more often used
for comparison, and the model picked up on that trend when training on the captions. The results
showed that captioning models can capture semantic information in a similar fashion as humans,
however, the dataset has to be treated such that the generated captions are more normalized in terms
of focus areas.

We expected that figures from each subset will have different "pivot" elements and attention areas.
The behavior can be observed with the attention grids. The text-based figures are difficult to caption
due to the lack of visual pivot elements. For other figures, the models use the text in axis labels and
legends to gain a clue about the captioning which are clearly not available for text-heavy figure such
as Figure 4.3. The results for text-based figures showed that the models in turn learn to recognize
general objects that describe the figure. In Figure 4.3, the model recognized that it is an annotation
scheme. However, it falsely captioned the JSON-like data as dialogue, possibly due to the quotes.
The same thing happens with Figure 4.4. The model recognized the boxes and lines as a flow chart,
which is an abundant figure type in clusters 0 and 4, wherein reality it is a labeled comparison
plot. From the second and third instance, we can see the model showing heavy attention on top to
bottom text ("flow") and box containers ("chart"). The results showed that captioning is difficult for
text-based figures, since different categories of those figures share the same visual features.

Block-based figures, unlike text-based figures, have more diverse visual features, and text serves as
pivot element. In Figure 4.5, the model was able to first recognize that the overall plot is illustrating
some type of distribution. Then, the third and fourth attention instance was able to utilize the axis
to determine the subject of interest, which was captioned as Amazon Mechanical Turk (mturk)
workers. Although the original caption uses an entirely different vocabulary, where they called the
subjects human participants, the important message is conveyed in both cases. The theme is similar
for Figure 4.6. The model was able to capture the fact that the bars serve as a comparison and that
it is comparing different languages.

Line-based figures has a similar proportion of visual feature to text as block-based figures. However,
the visual features in those figures are much harder to distinguish, and the purpose of those figures
are usually more diverse. The results showed that the model was able to describe the figure in both
samples, but the scientific narrative wasn’t preserved in the same way as the original caption. Figure
4.7 is a unique case where the model specifically described the label of the x-axis. This is possibly
due to training captions that also describe the axis of plots, different from the approach taken from
the original caption of this particular figure. This suggests that apart from separating the figures,
the caption length can have a influence on model performance [25]. Further experiments can be
performed to analyze if normalizing caption structure and intention can enhance the model.
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We were able to analyze in detail the model behavior by looking at attention grids, but evaluation
metrics allow us to have a better look at the overall performance based on the selected metrics.
Our results showed that the model for clusters 0 and 4 has the highest BLEU-4, METEOR, and
ROUGE-L scores and the lowest EACS score. BLEU-4 and METEOR were originally developed
for machine translation. Since clusters 0 and 4 are text-based, it can be expected that the vocabulary
similarity between the generated caption and the original caption is similar, leading to a higher
score in those metrics. On the other hand, the other models that are better at describing the same
object with different vocabulary have a higher EACS score, which measures the embedded meaning
of the words. For comparison, the results in [25] which are also trained on extract graphs have an
average BLEU-4 score of 0.021.

In summary, our results showed that the attention-based figure captioning model can generate
grammatically correct captions that describe the figures. Between the three categories of figures
we defined, the block-based figures with distinct visual features and a small function pool provided
the highest quality caption that convey a scientific narrative. Those conclusions align with the
hypothesis provided in previous research [25][7]. Some standard evaluation scores showed that
the current model has unsatisfactory performance in most cases. Further sub-setting the figures
and manually identifying caption purposes are potential ways to significantly improve model
performance that can be explored in future research. In Section 5.1, detailed suggestions on future
experimentation for this topic will be described.
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Conclusion

In this work, we investigated caption generation for large-scale real-world scientific figures. We
provided extraction and analysis of the figures and metadata from the Association of Computational
Linguistics. This large dataset is then cleaned and clustered. The clustering analysis produced 5
clusters and 3 empirically defined figure categories. Those categories are then used to train three
individual captioning models for which we examined the performance. Our experimental results
showed that the model achieve best performance when captioning block-based figures due to their
diverse visual features. The analysis was carried out by plotting the attention grid generated by
our attention-based models. Our results can be helpful for future research by highlighting the
opportunities and challenges of captioning extracted figures and providing the analytical tools that
can be used to evaluate those data and models.

With captioning being an integral portion of any scientific literature, producing quality captions
automatically can be highly influential. Researchers can leverage automatic captioning to assess
the quality of their captions and seek recommendation. Users with disability can use automatic
captioning to receive scientific message in wild figures. Although there are steep challenges for
this task, as presented in this work, novel methods and high quality data can be developed in the
near future to empower communication of scientific knowledge.

5.1 Future Work

The complexity for the data used in this work comes from it being automatically extracted. The large
scale and diverse data types also adds to that complexity. Since the data is in many cases integral to
the performance of machine learning models, extra time and resources can be used to increase the
quality of this dataset. Some cleaning procedure used in this work includes removing sub-figures

35
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by recognizing patterns in captions, removing outliers and redundant components in captions, and
cropping extra information from long captions. More cleaning can be done by employing both
automated and manual procedures. For example, one can automatically filter sub-figures with
FigureSeparator [49]. For the captions, one might be able to build a rule-based system that only
preserve captions that is defined by a standard format. This way, there won’t be captions that only
provide a high-level description while others go into detailed context. After low quality data is
removed with those procedures, the dataset might be scaled down enough for manual cleaning and
inspection which is highly desired.

In our analysis, we adopted a clustering approach to segment our data due to the limited knowledge
on the types of figures in the ACL corpus. To expand on this work and gain more sophisticated
insight, one can use a different clustering technique such as DBSCAN [15] or choose different
number of clusters. An effective strategy used in previous research is to segment the figures using
a figure classifier [25]. From our clustering analysis, we found that a significant amount of data
has overlapping. By extracting the data closest to the centroid of each cluster can improve the
separation. For the captions, the sentence tokenizer in some cases miscalculated the sentence count
due to the common use of periods (.) in figure captions. A more sophisticated tokenizer can be
built to resolve that issue. Lastly, a CNN model other than VGG16 can be used to extract figure
features.

We expect that training the model on higher quality data will improve its performance. However,
there is still some tasks that can be extended on this work. Due to limited resources, the model
wasn’t trained and validated fully. We only trained the model for 20 epochs, which can be increased.
We ran our validation on 100 data points while we have more than 1000 examples for validation in
each cluster. One can also train the model on more specific figure types with consistent caption in
a way similar to [25]. Additional features such as text and vision context could be added to adapt
to the inconsistency in real-world figure data. Lastly, one can always experiment with other model
architectures.
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APPENDIX A
Python Code

The Python codes that perform the data cleaning, analysis, and captioning model construction can be
found in this link: https://github.com/billchen0/scientific-figure-captioning.git. The experiments
and data can be recreated from the code provided.
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