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ABSTRACT 
 

Even the most advanced hurricane forecast models have difficulty predicting eyewall replacement 

cycles (ERCs) in tropical cyclones. Most research has attempted to solve this problem by working to 

understand the dynamic and kinematic drivers of an ERC. This project proposes an alternative approach 

focused on analyzing the changes in measurable environmental factors and utilizing a machine learning 

algorithm to predict the ERC. The aim of the first phase of this project is to establish which 

environmental factors are linked to the initial development of a secondary eyewall. Thirty-seven 

occurrences of secondary eyewall formation (SEF) in hurricanes between 1984 and 2018 were selected 

based on the criteria used in Sitkowski, et al. (2011). Each SEF event was matched with a similarly 

intensifying hurricane that did not experience a subsequent SEF event based on the year and storm 

intensity. Using environmental data from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) 

predictor files, the change in each environmental variable at six-hour intervals for twenty-four hours 

before the start of SEF was analyzed. The environmental variables that experience the most significant 

change prior to SEF will determine which variables should be used as predictors in a machine learning 

program designed to predict SEF onset. The goal of this research is to create an algorithm capable of 

predicting a SEF event twenty-four hours in advance. This algorithm will be compared to existing 

statistical SEF prediction schemes. Predicting ERC events will allow hurricane track and intensity models 

to produce more accurate forecasts and emergency response centers to accordingly alter evacuation zones, 

resulting in decreased economic loss and fatalities.  
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Chapter 1  
 

Introduction 

Accurate forecasting of hurricane intensity changes is essential to protect lives and 

property in the path of a major storm. Hurricane intensity can change by category on the Saffir-

Simpson scale during the Eyewall Replacement Cycle (ERC). Yet, there is no agreed upon 

reliable method of predicting the ERC. This results in inaccurate intensity forecasts and 

unpredicted changes in the damage potential of major hurricanes prior to landfall. Therefore, it is 

imperative that an ERC prediction method be established within the forecasting community.  

 Research has shown a predictable intensity fluctuation during the ERC in which 

the inner wind maximum weakens while a secondary wind maximum develops at greater radius 

and strengthens to overcome the original inner wind maximum and form a new eyewall. During 

this time there is a documented intensification, weakening, and reintensification pattern 

(Sitkowski 2011). The image below from Zhou and Wang shows the development of two 

concentric eyewalls as the outer wind maximum constricts inward to replace the original wind 

maximum. The moment at which two eyewalls become visible is known as Secondary Eyewall 

Formation (SEF). The ERC is defined as the entire process of SEF, inward constriction, eyewall 

replacement, and reintensification that occurs on average over 36 hours.  

 
Figure 1. Zhou and Wang (2009) Eyewall Replacement Cycle in Timesteps 
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There is no denying the significance of this ERC process. It occurs in 72% of major 

Atlantic hurricanes. Hurricane Andrew 1992 strengthened immediately prior to landfall as a 

result of the ERC and the large storm surge brought onshore by Hurricane Katrina 2005 can be 

attributed to a broadening of the wind field during the ERC.  

The largest barrier to forecasting the ERC is a lack of understanding of the dynamic, 

kinematic, and thermodynamic drivers of the ERC. Even with this understanding three major 

questions remain: why does this process occur, can we predict this process, and how strong will 

reintensification be?  

The majority of published research has worked to address the first of these major 

questions. Sitkowski (2011) established the identification phases of the ERC linked the onset of 

the cycle to an increase in integrated kinetic energy. Research has also shown the development of 

a critical moat region between the original and secondary wind maximums (Sitkowski 2011). 

Additionally, the internal dynamical processes within the moat region have been shown to dictate 

the duration of the concentric eyewall formation (Yang 2021). The symmetry of the storm has 

also been linked to ERC development. Kepert (2013) showed the boundary layer dynamics can 

be responsible for the enhancement of the radial vorticity gradient. The debate over external 

versus internal dynamic drivers also includes disagreement on the role of ice particles in 

secondary eyewall formation (Zhou and Wang 2011).  

While disagreement on driving factors of the ERC continues, impacts from the ERC on 

major hurricanes before making landfall continue to cause destruction. In 2017, destructive 

Hurricane Irma completed a rapid intensification period consisting of two ERCs prior to landfall 

(Fisher et al. 2020). As a result, research must address the second major question of prediction 

even though there is still no consensus on causation.  
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Kossin (2009) attempted to identify the onset of the ERC using a Bayes probabilistic 

model and classification scheme. This research showed the importance of several environmental 

factors including climatological depth of the 26°C ocean isotherm, 200-hPa zonal wind (200-800 

km from center), 0-600kn average symmetric tangential wind at 850hPa, azimuthally average 

surface pressure at outer edge of vortex, and 850-200hPa shear magnitude in ERC identification 

and prediction.  

This paper attempts to build on published research to address the critical question of 

prediction of the ERC.  The presented research aims to determine which environmental factors 

exhibit statistically significant changes prior in six-hour increments for 24 hours prior to the ERC 

start time. This work then attempts to utilize the identified factors in a machine learning logistic 

regression model to predict the ERC. Full results of statistical analysis for variable significance 

to the ERC will be presented as well as preliminary model results, which show some success at 

ERC prediction.  
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Chapter 2  

 
Methods 

Data 

The start and end time of the ERC case used in this research were defined by flight level 

aircraft data form the NOAA WP-3D and U.S. Air Force WC-130 aircraft in Sitkowski (2011). 

Sitkowski (2011) analyzed a dataset of 79 hurricanes from 1977 to 2008, identifying 24 ERC 

events. Research by Wunsch (2018) following the same determination method as Sitkowski 

added the remaining thirteen ERC events analyzed in this research to create the 37 ERC cases 

from 1984 to 2018 considered in this research. 

Each of the 37 ERC cases was matched with a point in an intensifying hurricane that did 

not produce an eyewall replacement cycle. It is important to note that, while the methodology of 

defining ERC start and end times is consistent across the analyzed data, there is implicit 

uncertainty in these times which may introduce error. For this paper, an ERC/non-ERC (or 

positive/negative) point will be considered the full length of the ERC case or the selected non-

ERC case. 

 Only storms that reached hurricane level intensity are analyzed in Sitkowski 

(2011), Wunsch (2018), and this research. This is due to data availability and the need to keep 

consistency within the created data set for machine learning training. Additionally, all the ERC 

points considered occurred with the storm was over water. This ensures land atmosphere 

interactions will not skew data or otherwise render it unfit for statistical analysis.  

The environmental data used in this research is from the Statistical Hurricane Intensity 

Prediction Scheme (SHIPS) dataset. The SHIPS model provides intensity forecasts based on 
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linear regression techniques. There are 89 environmental predictors available. 75 of these factors 

were analyzed across all 74 ERC positive/negative cases.  

Point Matching 

To create the list of 74 positive and negative ERC points, each identified positive ERC 

point from previous research was matched with a negative ERC point. This matching is essential 

to creating a data framework that can evaluate significant differences between positive and 

negative ERC occurrences.  

 Negative storm points were selected exclusively from intensifying storms – 

storms in which the maximum surface winds were increasing by at least 10 knots in the 12 hours 

prior to the storm point. Additionally, negative storm points were selected to have the same 

Saffir-Simpson category as and have occurred in the same year as the corresponding positive 

point. If a storm of the same category in the same year without an ERC did not exist, a storm 

within two years and one category of the positive point storm was chosen.  

 The table below shows all positive and negative ERC points in their matched 

order.  

Table 1. Matched Positive and Negative ERC Points 

Positive and Negative ERC points matched based on storm intensification of at least 10kt/12hr, 
Saffir-Simpson storm category, and year. 
 
Positive ERC Occurrence Start Times  Negative ERC Occurrence Start Times 
DIAN 840911 12 GLOR 850921 12 
LUIS 950905 00 FELI 950812 06 
LUIS 950906 12 OPAL 951002 06 
ERIK 970908 18 BONN 980823 12 
GEOR 980919 18 BRET 990821 06 
FLOY 990911 06 BRET 990820 00 
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FLOY 990912 18 LENN 991117 06 
GERT 990917 06 LENN 991115 06 
ERIN 010910 12 FELI 010913 18 
MICH 011103 12 IRIS 011007 00 
ISID 020919 18 KATE 031003 06 
FABI 030903 18 KARL 040917 00 
ISAB 030915 18 LILI 021001 18 
FRAN 040830 06 KARL 040918 18 
FRAN 040830 18 KARL 040919 18 
FRAN 040901 06 KATE 030928 06 
FRAN 040903 18 KATE 031001 18  
IVAN 040908 18 CHAR 040810 18 
IVAN 040909 18 KARL 040923 06 
IVAN 040910 18 CHAR 040811 18 
IVAN 040912 12 CHAR 040812 18 
KATR 050826 18 EMIL 050713 18 
KATR 050828 12 EMIL 050716 12 
RITA 050921 18 EMIL 050714 18 
WILM 051018 18 EMIL 050719 00 
HELE 060919 00 GORD 060914 00 
DEAN 070818 06 GUST 080826 06 
DEAN 070819 00 GUST 080828 18 
FELI 070903 12 IKE  080907 00 
BERT 080710 06 FRED 090909 06 
MATT 161001 06 NICO 161006 12 
MATT 161006 12 NICO 161012 06  
HARV 170824 12 JOAQ 150930 18 
IRMA 170904 00 JOSE 170907 00 
IRMA 170907 12 JOSE 170908 18 
MARI 170923 12 MICH 181009 06 
FLOR 180910 12 OPHE 171013 00 

Average Change 

The change in each environmental variable over six-hour periods of the day leading to the 

ERC start time provided the factor data analyzed for this research. For example, the change in 

surface wind velocity between 12-18 hours prior to an ERC start time was compared between the 

positive and negative ERC points to determine significance in relation to the ERC. Since the data 
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is only reported every six hours, this paper refers to the six-hour change value as the “average 

change.”  

Average change values were calculated for the 0-6hr, 6-12hr, 12-18hr, and 18-24hr time 

periods prior to each ERC start time for each environmental predictor.  These values were then 

used in statistical significance testing and for machine learning model training.  

Variable Eliminations 

Several of the environmental factors available in the SHIPS data were not considered in 

this analysis because of incomplete data or formatting differences in the data. Ocean depths of 

the 30 through 16-degree Celsius isotherms, ocean heat content from satellite date and at the 20-

degree isotherm, depth of the maximum ocean temperature, climatological values of the NCODA 

variables, max ocean temperature in the NCODA variable profile, depth of the mixed layer, and 

depth and temperature of the lowest model levels in the NCODS analysis were not included in 

this analysis. Moreover, ocean heat content and sea surface temperature from the NCODA 

analysis and principle components from IR imagery 1.5hours before initial time were analyzed 

for fewer than the nominal 37 cases due to outliers in the data.  

Analysis Procedure 

A standard independent two sample T-test that assumed equal population variances was 

used in comparing positive and negative ERC point data. After the average change for each 

environmental variable and time period was calculated the positive and negative ERC points 

were compared. For each environmental variable and time-period combination, the average 
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change of the 37 positive cases was tested against the average change of the 37 negative cases to 

determine the statistical significance of each variable in each timer-period to ERC occurrence. 

 The null hypothesis for each T test was that the arithmetic means of average 

change in the environmental variable during the assigned time-period in the positive and 

negative ERC cases were identical. Therefore, accepting the null hypothesis would be 

acknowledging that the environmental variable being tested has no impact on the occurrence of 

the ERC in the timer period under evaluation. Rejecting the null hypothesis would indicate that 

the environmental variable in question may be helpful in predicting the ERC during the tested 

time-period.  

 The P statistics of the T tests were compared between factors. The p-value is 

determined by comparing the t-statistic against a theoretical t distribution assuming a normal 

distribution of the data. In this analysis, the p-value is used as an indicator of the reliability of the 

t-statistic to determine the likelihood of chance in the calculated T value. The p-value threshold 

accepted as reasonable will be discussed further in results, but it is important to note that the 

relatively small sample size of ERC data will impact the average value of the p-value across all 

completed T tests.  

Machine Learning 

The SciKit-Learn implementation of the logistic regression machine learning model was 

used to create an ERC prediction model based on the identified environmental factors. In all runs 

of the model predictor data was fed into the model and a true/false binary ERC predictand was 

the model output. Prior to identification of the significant environmental factors, the logistic 
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regression model was tested with random data to determine the number of predictors that could 

be used before the model developed false skill.  

 Randomly generated data was created for 54 environmental predictors. The model 

was then trained with this random data as predictors and a combination of 37 negative/positive 

randomly assigned ERC binary cases as the predictand. 37 additional negative/positive randomly 

assigned binary ERC cases were then used and predictands to test the model with secondary 

randomly generated data as predictors. The number of predictors used in the model training and 

testing was increased until the model developed entirely false skill. The limited number of ERC 

cases available for training/testing data is the limiting factor in the number of predictors that can 

be used for model development without attaining false model skill.  

After analysis of the critical number of predictors to preclude false skill development and 

identification of the significant environmental factors, the logistic regression model was trained 

and tested with the SHIPS environmental data. The ERC cases were split into a training group 

and a testing group. The data used to train the model includes 19 positive ERC predictand cases 

and 18 negative ERC predictand cases. The data used to test the model skill for each model run 

utilizes the remaining 18 positive ERC predictand and 19 negative ERC predictand cases.   

The model used for the results in this report works with four predictors selected by the 

user in a single time frame (time frames being 6-0hr, 12-6hr, 18-12hr, and 24-18hrs in advance 

of the ERC start time). The program calculates the average change in each predictor for the 

assigned time frame. Consequently, the program creates a training matrix of the average change 

in each predictor variable across the 37 training ERC cases to feed into the logistic regression 

model.  
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The testing data is created in an identical manner; a combined matrix of the average 

change for each predictor variable is generated across the 37 ERC test cases. Model results from 

this testing data are then compared with the assigned binary predictand values. The number of 

current ERC predictions to total predictions made is then calculated and output in the  skill score.  

The model parameters used on the logistic regression model are as follows. The L2 

penalty term was used with liblinear as the solver due to the size of the dataset. Dual formulation 

was not used in the model because the number of samples greatly exceeded the number of 

features. All other default model parameters were used.  
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Chapter 3  
 

Results 

Environmental Factor Analysis 

Each time frame revealed a different set of environmental factors significant to the ERC 

when tested via the two sample t-test approach. While some environmental factors did appear as 

significant across multiple time frames, the most correlated variable in both the positive and 

negative directions were unique to each time frame. All environmental variable names are given 

in the appendix. This is shown in Table 2, where the individual largest positive and negative T 

statistics are reported for each time frame. Noticeably, there is no consistent pattern on where the 

largest positive or negative statistic is more significant.  

Table 2. Summary Results for Significant Environmental Factors Across All Time Frames 

No repeated factors for largest positive or negative statistic across time frames. All time frames 
given are in hours prior to ERC/non-ERC start time. VMAX and DELV share the same negative 
statistic magnitude in the 18-12hr time frame.  
 
Time 
Period 

Largest 
Positive T 
Statistic Factor 

Positive T 
Statistics 
Magnitude 

Largest Negative 
T Statistic Factor 

Negative T 
Statistic 
Magnitude 

6-0hr TGRD 2.03 U200 2.13 
12-6hr V850 3.75 SHRG 2.07 
18-12hr T000 1.88 VMAX/DELV 2.26 
24-18hr PEFC 2.70 REFC 2.10 

 

The results from each time frame further reveals a lack of similarity in significant factors 

across time frames. While the 0-6hr time frame can only be used for ERC diagnosis, not 
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prediction, it is still relevant for analysis of significant environmental factors when compared to 

data from the adjacent 6-12hr time frame. Notably, the only one environmental variable is 

repeated between the top five highest positive/negative statistics in the 6-0hr and 12-6hr time 

frames. This variable is the 200hPa zonal wind vs. time for a radius of 0-500km, as seen in Table 

3 and Table 4. 

Table 3. Significant Environmental Factors Based on 6-0hr Average Change 

The average change in environmental factors from 6 hours prior to the start of the ERC. The top 
two positive and negative statistics show strong trends with small chance of randomness. This 
data would be used for diagnosis of an occuring ERC, not prediction of future ERC events. 
 
Largest 
Positively 
Correlated 
Factors 

Largest 
Positive T 
Statistic  

Positive T 
Statistics 
Magnitude 

Largest 
Negative T 
Statistic  

Negative T 
Statistic 
Magnitude 

P Value  

TGRD 2.03 0.05 U200 2.13 0.04 
TADV 1.92 0.06 PC00 1.91 0.06 
VMFX 1.86 0.07 U20C 1.56 0.12 
VVAV 1.78 0.08 PCM1 1.52 0.13 
RHLO 1.67 0.10 SHRD 1.45 0.15 

 

As the p value column in tables 3 – 6 verify, despite the small data set all reported 

significance values have a relatively low chance of randomness. In most cases the p value is less 

than 10%. Only 13 of the 40 significant variable results presented show a p value at or above 

10%, the highest p value represented in the top five T statistics is 21%. These values must be 

contextualized given the sample size of the data.  

Table 4. Significant Environmental Factors Based on 12-6hr Average Change 

12-6hr data based on the average change t-test. This time frame displays the least uncertainty in 
positively correlated factors. 
 
Largest 
Positively 
Correlated 
Factors 

Largest 
Positive T 
Statistic  

Positive T 
Statistics 
Magnitude 

Largest 
Negative T 
Statistic  

Negative T 
Statistic 
Magnitude 

P Value  
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V850 3.75 0.0004 SHRG 2.07 0.04 
T150 2.5 0.01 CFLX 1.73 0.09 
RHMD 2.45 0.02 SHRD 1.69 0.09 
PC00 2.35 0.02 G200 1.56 0.12 
TWAC 2.2 0.03 U20C 1.55 0.13 

 

 The 6-12hr significance data displays the most certainty in positively correlated factors 

across all tested time frames. None of the 12-6hr top five positive T statistics align with the top 

five positive statistics established for the 0-6hr time frame, the 18-12hr time frame, or the 24-

18hr time frame. As mentioned previously the U20C variable does appear as a negative statistic 

in both the 12-6hr and 6-0hr time frames. CFLX – the dry air predictor, appears with a strong 

negative statistic in the 12-6hr time frame and the 18-12hr time frame. 

 

 

 

Table 5. Significant Environmental Factors Based on 18-12hr Average Change 

Five new significant positive statistic factors and four new significant negative statistic 
factors are introduced in the 18-12hr time frame. 

 
Largest 
Positively 
Correlated 
Factors 

Largest 
Positive T 
Statistic  

Positive T 
Statistics 
Magnitude 

Largest 
Negative T 
Statistic  

Negative T 
Statistic 
Magnitude 

P Value  

T000 1.88 0.06 VMAX 2.26 0.03 
G250 1.88 0.07 DELV 2.26 0.03 
Z850 1.81 0.07 V20C 2.07 0.04 
G150 1.61 0.11 CFLX 1.63 0.11 
E000 1.51 0.15 R000 1.61 0.11 

 

Besides the CFLX similarity with the 12-6hr data, the 18-12hr significance data 

introduced new factors for consideration in relation to ERC development. The highest average 
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uncertainty in positively correlated factors occurs in this time frame, as made clear in the listed p 

values. In the negative statistics, the maximum surface wind speed and the intensity scale factor 

show identical strength statistics and chance of uncertainty.  

Table 6. Significant Environmental Factors Based on 24-18hr Average Change 

The furthest time frame from the ERC point displays strong positive statistics with little 
uncertainty. Yet, this time frame displays the most uncertain negative statistics across the 
presented data. 

 
Largest 
Positively 
Correlated 
Factors 

Largest 
Positive T 
Statistic  

Positive T 
Statistics 
Magnitude 

Largest 
Negative T 
Statistic  

Negative T 
Statistic 
Magnitude 

P Value  

PEFC 2.70 0.009 REFC 2.10 0.04 
V500 2.27 0.03 D200 1.80 0.08 
O500 2.04 0.05 U200 1.35 0.18 
V300 2.02 0.05 OAGE 1.35 0.18 
DSTA 1.73 0.09 EPOS 1.26 0.21 

 

In the time frame furthest from the ERC start point, ten new factors significant to ERC 

occurrence are identified. There is low uncertainty in the presented positive T statistics and high 

uncertainty in the presented negative statistics. The p values in the negative case are of the 

largest in magnitude found in the data set, indicating uncertainty. The contribution of eddy fluxes 

both positively and negatively is worthy of note. Planetary eddy momentum flux convergence 

gives the strongest and most certain positive statistic, while relative eddy momentum flux 

convergence is a strongly negative difference between the ERC and non-ERC mean.  

 A summary of all the environmental factors tested and the T statistic values 

established for each across all time frames can be seen in Figure 1. Environmental factors which 

showed consistently strong differences across time frames, even if not in the top five, include 

longitude (LON), 850hPa vorticity (Z850), heading above shear vector (SDDC), longitude of 

850hPa vortex center (TLON), and tangential winds at 300hPa (V300).  
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Figure 2. Graph of T Statistics Across All Environmental Factors and Time Frames 

Figure showing all tested T statistic values. Note the agreement across all time frames of the 
significance of the average change in longitude, 850hPa vorticity, and longitude of the 850hPa 

cortex center. 

Machine Learning Prediction 

The SHIPS data set used provides more predictors than there are ERC cases to train and 

test a machine learning model against. Therefore, the number of predictors needed to generate 

false skill in a logistic regression model was tested and can be seen in Figure 3. Based on the 

results of this testing, only four predictors were used in the initial training and testing of the 

regression model presented in this paper. 

 

Figure 3. Results of Random Data Skill Testing 
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The results presented in this figure show that false model skill is quickly developed after more 
than 8 predictors are utilized. Using two to four predictors greatly reduces the chance of false 

skill development but does not eliminate it. 
 

For the preliminary run of the model, the four environmental factors with the highest 

differences in ERC and non-ERC means were selected and tested. The results of this model run 

can be seen in Table 7. Based on the results displayed in Figure 3, the machine learning model 

develops false skill quickly as the number of predictors increases. For this study the number of 

predictors was limited to four because the average false skill developed remains under 0.60 while 

still allowing multiple environmental factors to be considered by the algorithm.  

Table 7. Preliminary Model Run Results 

Early model results based on the four highest T statistic factors show increasing skill the closer 
to ERC event. 
 

Predictors Time Period Mean Model 
Accuracy 

PEFC, V500, REFC, O500 24-18hr 0.62 
VMAX, DELV, V20C, T000 18-12hr 0.68 
V850, T150, RHMD, PC00 12-6hr 0.78 

Chapter 4  
 

Discussion 

These preliminary model results do show some skill at predicting the ERC using machine 

learning methods. However, the success of the machine learning model is entirely dependent on 

the effectiveness of the identified predictors at creating a clear delineation between ERC 

negative and positive events. Fischer (2019) clearly establishes the link between ERC and 

environmental factors and the need for further investigation. The lack of repeated factors 

identified as significant across the time frames presents the need for unique prediction 
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considerations for each six-hour time frame before an ERC event. The certainty of each statistic 

most also be accounted for in relation to the overall small sample size of the data considered.  

 The significant differences in variable relevance between periods displays that 

there are multiple distinct phases leading up to an ERC occurrence. This supports research by 

Sitkowski (2011), which argued distinct intensification, weakening, and re-intensification phases 

in the ERC process. The weakening phase can be clearly seen in the data from this experiment 

during the 18-12hr time frame. The negative difference to ERC occurrence with both max 

surface wind speed and the intensity factor displayed during this time frame show agreement 

with Sitkowski’s analysis of Hurricane Dorian’s weakening period prior to ERC occurrence. 

Willoughby (1981) also showed a weakening period, which would agree with the negative T 

statistics presented here. 

 Overall, the negative T statistics dominate over the positive statistics in this 18-

12hr time frame. This does not hold as the ERC start time approaches. In the 12-6hr time frame 

the positive difference in means far outweighs the negative difference in significance. The 

impact of thermodynamic factors seem to become important during this time frame as factors 

related to temperature and humidity begin to rival the importance of dynamic tangential wind 

and vorticity factors. The importance of these dynamic factors at the beginning of the ERC 

process are well documented by Abarca (2013). Putting these two time periods together, we can 

begin to construct a picture of the ERC where a weakening event in the 18-12hr time frame 

leaves the storm susceptible to more thermodynamic factors in the 12-6hr period before an ERC 

event.  

 The significance of eddy momentum flux convergence displayed in the 24-18hr 

time frame does not contradict published research, yet it is not in strong agreement either. This 
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early ERC thermodynamic driver could connect to deeper storm dynamics related to global heat 

transport and locations of convective heat sources. The certainty of the planetary eddy 

momentum flux convergence statistic demands attention and the dichotomy of the positive 

planetary convergence with a negative relative convergence presents an interesting case. More 

research on this component will need to be done before conclusive statements can be made on 

the subject.  

 Besides the factors selected because of high positive/negative statistics in each 

time frame, it is also important to analyze the factors that appeared consistently across time 

frames even with smaller magnitude differences in the means. One of these interesting statistics 

is the average change in longitude. The average change in longitude appears to be most 

significant in the 24-18hr time frame but holds a positive difference in means across all time 

frames. Figure 4 contains the tracks of several major hurricanes, some with and some without 

ERC events. This figure demonstrates that hurricanes with multiple ERC events have tracks 

which parallel latitudinal lines. 
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Figure 4. Hurricane Track Comparison for ERC and non-ERC Major Hurricanes 

Analysis of tracks from major hurricanes with and without ERC events, shows correlation 
between a lack of longitudinal movement and ERC occurrence. All tracks from IBTrACS. 

 
 The impact of northward motion on ERC occurrence was also noted in Yang 

(2021). Yang (2021) found that long-lived concentric eyewall formations occurred more 

frequently in tropical cyclones with smaller northward motion components. This could be due to 

a variety of factors including sea surface temperatures, atmospheric moisture, blocking patterns 

at time of storm development, and should be further investigated. Kossin (2009) found a link 

between SEF and latitude, possibly indicating that ERCs are more likely further south.  

Kossin (2009) constructed a Bayesian model to identify SEF events and several features 

found relevant to SEF formation agree with the identified significant factors for ERC 

development. The 200hPa zonal wind was identified as a possible predictor variable by both 
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Kossin (2009) and this study. This study specifically showed 200hPa zonal wind as a significant 

factor in the 6-0hr and 24-18hr time frames. The Bayesian probabilistic model was focused on 

SEF identification, therefore links between significant environmental factors in the 6-0hr 

analysis in this study and the features used by Kossin (2009) are expected. 850-200hPa shear 

magnitude was also used in Kossin (2009) and identified in the 6-0hr time frame of this study.  

Other factors found in this study and used in Kossin (2009) were similar, though not 

identical like zonal winds and shear magnitude. The Bayesian model utilized current intensity as 

a predictor and this study identified intensity change as a significant indicator of ERC occurrence 

in the 18-12hr time frame. Additionally, relative humidity (%) vs time (200-88km) for 700-

500hPa was identified as a significant variable in the 12-6hr time frame of this study. Kossin 

(2009) also used relative humidity as a model feature but considered the 500-300hPa level. 

Tangential wind factors were also used in this study and Kossin (2009). This study identified the 

tangential wind azimuthally averaged at r=500km as significant at the 500hPa level for the 24-

18hr time frame and at the 850hPa level for the 12-6hr time frame. Similarly, Kossin (2009) used 

the 0-600om average symmetric tangential wind at 850hPa from NECP analysis. Of note, both 

Kossin (2009) and Sitkowski (2011) also identified infrared imagery as a method of identifying 

SEF and an infrared imagery related variable (PC00) was shown as significant in the 12-6hr time 

frame of this work.   

The preliminary machine learning model results do show promise in prediction ability of 

the ERC given environmental predictors. This is well shown in the 12-6hr time frame, where 

there is a starting accuracy of 78% with predictors chosen simply based on high T statistics. A 

jackknife method of testing the machine learning model where all but N cases are used to train, 

and the model is continuously re-built and tested should be used in the future to further test the 
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model accuracy. More careful predictor selection coupled with post-processing will likely 

improve this model’s accuracy. Kossin (2009) was able to achieve a ~88% accuracy for SEF 

identification using a Bayesian probabilistic model. Machine learning preliminary model data 

which is only 10% less accurate than the Bayesian model in the 6 hours out time frame, dictates 

further consideration of the machine learning model for ERC prediction.  
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Chapter 5  

 
Conclusions 

 

The preliminary accuracy of the machine learning model shows promise in comparison to 

and the identified significant environmental factors agree with published work. Which factors are 

significant in ERC development were identified within each time frame. Furthermore, the lack of 

consistency in environmental factors repeated across time frames was contextualized to the 

understanding of distinct sections in ERC development from published research.  

 The next major challenge in continuing this research is to further develop the 

machine learning algorithm to increase the accuracy of ERC prediction across all time periods. 

Balancing positive and negatively correlated factors as predictors or strategically selecting the 

number of negatively vs. positively correlated factors instead of selection of the largest 

magnitude T statistics should be the first step of this effort. Integrating factors with notable 

statistics across all time frames could also increase model accuracy.  

 While the preliminary model run was completed with four predictors, decreasing 

to three or increasing to between five and seven predictors may also be valid and increase model 

skill. However, when increasing the number of predictors, preventing the development of false 

model skill will become a serious consideration. The limited number of positive ERC points 

available puts a serve constraint on the number of predictors used and model complexity. If the 

ERC proves to be more complex than the number of predictors used in this model can accurately 

represent, more data will be needed to make progress in ERC prediction via machine learning 

algorithm.   
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 The overall goal of this research was to identify the environmental factors 

significant in ERC formation with the eventual goal of predicting the ERC utilizing machine 

learning. A comprehensive list of significant environmental factors for the 6-0hr, 12-6hr, 18-

12hr, and 24-18hr time frames was created and explained, meeting this initial goal. Moreover, 

the preliminary success of the machine learning algorithm when using the identified 

environmental factors as predictors, further proves the success of significant factor identification. 

This work opens the door for future prediction of the ERC using environmental data and 

machine learning methods. 
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Appendix A 
 
SHIPS Predictor Information 

Table 8. SHIPS Predictor Full Descriptions 

Predictor Abbreviation Full Predictor Description (Edited from 
SHIPS Predictor File) _ 

CD20 Climatological depth (m) of 20 deg C isotherm 
from 2005-2010 NCODA analyses. 

CD26 Same as CD20 for the 26 deg C isotherm. 
CFLX Dry air predictor based on the difference in 

surface moisture flux between air with the 
observed (GFS) RH value, and with RH of air 
mixed from 500hPa to the surface. 

COHC 26 deg C ocean heat content (kJ/cm2). 
CSST Climatological Sea Surface Temperature – SST - 

(deg C * 10) vs time. 
D200 850hPa vorticity (sec-1 * 10**7) vs time (r=0-

1000 km) for 200hPa divergence. 
DELV Intensity change (kt) -12 to 0, -6 to 0, 0 to 0, 0 to 

6, ... 0 to 120 hr.  
DIVC Same as D200 but centered at 850hPa vortex 

location. 
DSST Daily Reynolds SST (deg C*10) vs time. 
DSTA Same as DSST, but spatially averaged over 5 

points (storm center, + 50 km N, E, S and                         
W of center). 

DTL Distance to nearest major land mass (km) vs time. 
E000 1000 hPa theta_e (r=200-800 km) vs. time (deg 

K*10). 
ENEG Same as EPOS, but only negative differences are 

included. The minus sign is not included. 
ENSS Same as ENEG, but the parcel theta_e is 

compared with the saturated theta_e of the 
environment. 

EPOS The average theta e difference between a parcel 
lifted from the surface and its environment (200-
800 km average) versus time (deg C * 10). Only 
positive differences are included in the average. 

EPSS Same as EPOS, but the parcel theta_e is compared 
with the saturated theta_e of the environment. 

G150 Temperature perturbation at 150hPa due to the 
symmetric vortex calculated from the gradient 
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thermal wind. Averaged from r=200 to 800 km 
centered on input lat/lon (not always the 
model/analysis vortex position). (deg C*10)  

G200 G150 for 200hPa.  
G250 G150 for 250hPa. 
HE05 HE07 from P=1000 to 500hPa. 
HE07 Storm motion relative helicity (m^2/s^2)*10 for 

p=1000 to 700hPa, r=200 to 800 km. 
INCV Intensity change (kt) -18 to -12, -12 to -6, ... 114 

to 120 hr. 
LAT Latitude 
LON Longitude. 
MSLP Minimum Sea Level Pressure in hPa.  
NAGE Same as OAGE but normalized by the maximum 

wind/100kt. If the max wind was a constant 100 
kt over its past history, NAGE=OAGE.  

NOHC Ocean heat content from the NCODA analysis 
(J/kg-deg C) relative to the 26 C isotherm. 

NSST SST from the NCODA analysis (deg C*10). 
O500 Pressure vertical velocity (hPa/day) at 500hPa, 

averaged from r=0 to 1000 km. 
O700 Same as O500 at 700hPa 
OAGE Ocean Age (hr*10), which is the amount of time 

the area within 100 km of the storm center has 
been occupied by the storm along its track up to 
this point in time. 

PC00 Principal components and related variables from 
IR imagery at t=0. 

PCM1 Same as PC00 but for 1.5 hours before initial 
time. 

PCM3 Same as PC00 but for three hours before initial 
time. 

PEFC Planetary eddy momentum flux convergence 
(m/sec/day, 100-600 km avg) vs time. 

PENC Azimuthally averaged surface pressure at outer 
edge of vortex ((hPa-1000)*10). 

PENV 200 to 800 km average surface pressure ((hPa-
1000) *10). 

R000 1000hPa relative humidity (200-800 km average) 
REFC Relative eddy momentum flux convergence 

(m/sec/day, 100-600 km avg) vs time. 
RHHI Same as RHLO for 500-300hPa. 
RHLO 850-700hPa relative humidity (%) vs time (200-

800 km). 
RHMD RHLO for 700-500hPa 
RSST Reynolds SST (deg C*10) vs time. Number after 

SST label is the age in days of the SST analysis 
used to estimate RSST. 
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SDDC Heading (deg) of above shear vector. Westerly 

shear has a value of 90 deg. 
SHDC Same as SHRD but with vortex removed and 

averaged from 0-500 km relative to 850hPa vortex 
center. 

SHGC Same as SHRG but with vortex removed and 
averaged from 0-500 km relative to 850hPa vortex 
center. 

SHRD 850-200hPa shear magnitude (kt *10) vs time 
(200-800 km). 

SHRG Generalized 850-200hPa shear magnitude (kt *10) 
vs time (takes into account all levels from 1000 to 
100hPa. 

SHRS 850-500hPa shear magnitude (kt *10) vs time. 
SHTD Heading (deg) of above shear vector. Westerly 

shear has a value of 90 deg. 
SHTS Heading of above shear vector 
T000 1000hPa temperature (dec C* 10) (200-800 km 

average). 
T150 200 to 800 km area average 150hPa temperature 

(deg C *10) versus time. 
T200 Same as T150 for 200hPa temperature (deg C 

*10) 
T250 Same as T150 for 250hPa temperature (deg C 

*10). 
TADV The temperature advection between 850 and 

700hPa averaged from 0 to 500 km. From the 
geostrophic thermal wind (deg per sec*106). 

TGRD The magnitude of the temperature gradient 
between 850 and 700hPa averaged from 0 to 500 
km estimated from the geostrophic thermal wind 
(deg C per m*107). 

TLAT Latitude of 850hPa vortex center in NCEP 
analysis (deg N*10). 

TLON Longitude of 850hPa vortex center in NCEP 
analysis (deg W*10). 

TWAC 0-600 km average symmetric tangential wind at 
850hPa from NCEP analysis (m/sec *10). 

TWXC Maximum 850hPa symmetric tangential wind at 
850hPa from NCEP analysis (m/sec *10). 

U200 200hPa zonal wind (kt *10) vs time (r=200-800 
km). 

U20C U200 for r=0-500 km. 
V000 The tangential wind (m/sec *10) azimuthally 

averaged at r=500 km from (TLAT,TLON). If 
TLAT, TLON are not available, (LAT, LON) are 
used.  

V20C  
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V300 V000 at 300hPa 
V500 V000 at 500hPa 
V850 V850 at 850hPa.  
VMAX Same as U20C, but for the v component of the 

wind. 
VMFX VVAV, but with a density weighted vertical 

average.  
VMPI Maximum potential intensity from Kerry Emanuel 

equation (kt). 
VVAC VVAV but with soundings from 0-500 km with 

GFS vortex removed. 
VVAV Average (0 to 15 km) vertical velocity (m/s * 100) 

of a parcel lifted from the surface where 
entrainment, the ice phase and the condensate 
weight are accounted for. Note: Moisture and 
temperature biases between the operational and 
reanalysis files make this variable inconsistent in 
the 2001-2007 sample, compared 2000 and 
before. 

XDST Climatological value of the daily Reynolds SST 
(deg C*10). 

Z000 1000hPa height deviation (m) from the U.S. 
standard atmosphere. 

Z850 850hPa vorticity (sec-1 * 10**7) vs time (r=0-
1000 km). 
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