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ABSTRACT 

 

Cellular glasses are heavily employed insulation materials due to their high strength-to-weight 

ratio, low cost in mass production, closed-cell microstructure, and low conductivity. The high 

strength-to-weight ratio stems from the porous microstructure of cellular glass. The porosity of 

cellular glass is characterized by millions of thin glass-walled cells filled with pressurized gasses 

(CO2 and O2). When compressed, these cells absorb high amounts of pressure while maintaining 

a low density and subsequent weight. The size and distribution of the cells drive the compressive 

strength of a given cellular glass sample and can range from 1.5 – 5 MPa. The high variation in 

strength leads to the failure of products when operating under normal conditions. A major 

challenge faced by manufacturers of cellular glass is the lack of a non-destructive testing (NDT) 

method. They can't analyze an entire sample’s microstructure without cutting into the block and 

visually inspecting the cells. This research seeks to undertake a series of exhaustive 

computational designs and experimentation to investigate how the true material properties of a 

given cellular glass sample can be identified. Specifically, the use of a neural network to perform 

defect detection using computerized tomography scans of cellular glass is explored. A logistical 

regression neural network for image classification was designed and written in the MATLAB 

platform and tested for its accuracy and efficiency. The results showed the neural network was 

highly accurate, with a peak rating of 100%, and efficient with a variety of sample data. The 

results of this research will guide future work to create an independent operating NDT system to 

characterize cellular glass products during the manufacturing of products and ultimately limit 

failures in the field. 
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Chapter 1  

Introduction 

Cellular glass is an insulation material with unique characteristics that meet high-stress 

engineering projects. Applications of the material span from commercial/residential uses like 

roofing and flooring to industrial projects like oil rig foundations and process piping [1], [2]. Its 

most notable attributes are that it is impervious to moisture, inert, and has high compressive 

strength [3], [4]. A major challenge faced by cellular glass manufacturers is a lack of 

nondestructive testing (NDT) for defect detection. Currently, the only methods of finding defects 

are limited to destructive and electronic probe analysis both of which are costly and inefficient 

[5]. 

This ultimately has led manufacturers to unknowingly send faulty products to customers which 

are at a higher risk of crack propagation and failure when placed under normal operating 

conditions.  The goal of this thesis is to prove the concept of creating a machine learning tool to 

accurately identify defective samples of cellular glass using computed tomography (CT) scans. 

The first step toward proof of concept is to explore existing literature on NDT methods of porous 

materials with similar microstructures as cellular glass. Second, a suitable machine learning 

architecture for analysis of the high-definition images resultant of CT imagery will be designed 

and created. Next, stress testing of the model with CT scans of the sample cellular glass will be 

completed. Finally, the results will be analyzed to determine the viability of creating an image 

classification AI to perform defect identification and classification on basic cellular glass. 
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Defect Detection in Porous Materials 

To create a non-destructive defect detection system for cellular glass, evidence of similar 

techniques on porous materials must be strong. Porous materials pose a unique challenge when 

imaging due to their lack of uniformity and varying densities [6], [7]. 

Concrete and other cementitious material are heavily researched and tested porous materials, 

with crack propagation similar to cellular glass [8], [9]. Concrete is a composite material made of 

aggerates that are bonded by a cement paste, like the glass powder and bonding agent used in 

cellular glass [4]. Research investigated the use of Ultrasonic Wave Reflection (UWR) to 

characterize early-age concrete and cementitious material. While there are many variations in the 

set-up of testing configurations, there is uniformity in the core elements: transducers to send and 

receive the signal, wave type produced by the transducers, and a buffer material between the 

transducers and sample [9]. Unique wave types and corresponding frequency and buffer 

materials were needed to test the samples as they aged. Research on UWR applicability on 

concrete concluded with findings of large flexibility across the aging process of concrete, mortar, 

and cementitious materials. While findings support the use of NDT on concrete and other 

cementitious materials, similar success with homogenous materials will further support the case 

for the use of ultrasonics of cellular glass [9]. 

Steel is another material that has been a subject of NDT testing research, with a major focus on 

separating diffracted ultrasonic signals from noise [10]. This issue becomes especially large 

when the area of interest (a crack) is rather small in comparison to the rest of the image. To 

circumvent this, image formation was avoided and instead sparse matrix elements were created 

to form a decision boundary [10]. An additional benefit of using sparse matrix analysis over 

image formation is the lowered demand for data storage. Full image formation becomes a burden 
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on one’s hard drive and can be a detriment to the speed at which analysis can be performed. The 

final step was applying the Hough Transform algorithm designed to detect the hyperbolas, 

indicating cracks in the microstructure of the test steel. These results improved the performance 

of ultrasonic testing both in terms of speed and success rate. The success in applying ultrasonic 

testing on steels proves valuable and supplements the research on concrete and cementitious 

materials. However, steel is not as strong of a benchmark material to cellular glass as cement and 

cementitious materials. Still, the noise reduction and data efficiency challenges with steel 

samples faced are shared by cellular glass. Altogether, both references [9] and [10] showed 

compelling evidence that ultrasonic imagery could be applied as a non-destructive defect 

detection for cellular glass. 

Classification of Porous Materials 

Following the evidence of non-destructive defect detection methods with porous materials, it is 

critical to assess the implementation of ultrasonic scans into image classification software. In 

supervised image classification algorithms, a set of sample data is inputted along with associated 

classifier(s). The goal of the algorithm is to create a graphical boundary separating “good” data 

from “bad.” At a high level, the algorithm creates a regression function capable of predicting the 

identity of a given image based on the data from the initial test set. In the case of complicated 

imagery like in CT scans [7], neural networks are needed to complete the analysis. An image 

classification neural network simultaneously performs the regression outlined above across 

several nodes which are repeated across many layers. The interaction between the nodes in 
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neural networks allows for the image to be broken down and ultimately allows for accurate 

interpretation.  

Additively manufactured parts face the constant challenge of varying conditions that lead to 

defects in their structural integrity [11]. Their porous microstructure makes for a strong 

benchmark for cellular glass. Research set out to determine if direct laser deposition scans of part 

melt pools could predict abnormalities in the microstructure of the final part. To achieve this, the 

scans measured simple metrics of the melt pool such as length, width, temperature, etc. [11]. 

Multiple supervised learning classification methods were tested including Decision Tree (DT), 

K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Discriminant Analysis (DA) 

[11]. Decisions Tree classification models work by recursive splitting of the input data into 

subsets based on their values until they match with an output label. K-Nearest Neighbor models 

make hypotheses of new samples based on their similarity to the K-closest test data points. 

Support Vector Machine classification makes hypotheses of new data using a planar boundary to 

separate various classes.  

Ultrasonic imagery has improved the classification of deep-partial thickness burns, which are the 

most difficult to identify; traditional methods only record an accuracy of ~80% [12]. Using a 

multiclass deep convolutional neural network (CNN) architecture in the classification of burn 

depths has achieved 95% accuracy [12]. While the success of CNN architecture supplements the 

findings on additive manufacturing, it must be stated that the similarities between medical and 

manufacturing samples are limited. However, the data collected by ultrasonic devices are similar 

and both sources concluded with high accuracy levels. Consequently, compelling evidence exists 

to suggest that imagery data of cellular glass can be accurately analyzed by an image 

classification algorithm to detect defects. 
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Image Classification Neural Networks of Structural Materials 

When performing image classification, data sizes can grow exponentially. Neural networks are 

used to make non-linear hypotheses, allowing for software to perform the more advanced 

functions required. Neural networks are comprised of multiple layers of interconnected nodes 

that hold onto information that is then passed on to the other nodes in the network. The input/first 

layer of a neural network receives the initial data which is then passed through a series of hidden 

layers of nodes. As the data is passed through the hidden layers, each performs a transformation 

based on its assigned weight. The final or output layer produces the model’s predictions. Neural 

networks are trained using a test data set that has both the raw data and its identity. During 

training, the network adjusts the weights and biases of its nodes to reduce the difference between 

its predictions and the true values. This is done using optimization algorithms, such as gradient 

descent, which iteratively adjusts the weights and biases to reduce the error between the 

predicted output and the true output. 

Image classification neural networks have success in accurately predicting and classifying 

structural materials [5]–[7], [13]–[15]. Models can be uniquely designed to meet the needs and 

challenges of the images they are trained on and predicting. Trained models can predict the 

material properties of a sample as quickly as one second without the need for a strong computing 

system [15]. However, an issue that can arise in these models is the overfitting of the test data, 

which occurs when the decision model does not generalize and fits too closely to the training set. 

Figure 1 shows a visual of overfitting in a two-dimensional training set. As shown in the 

overfitting example, the model (represented by the line) factors in outliers and risks 
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misclassifying images outside of the training set. Instead, the model should take a more 

generalized approach as shown in the optimal fitting example to ensure accurate predictions.  

 

Figure 1. Fitting Diagram 

Regularized neural networks (RNNs) can be used to add noisiness or penalties to the model to 

prevent overfitting and approach an optimal fit [14]. The process of fitting a model via 

regularization is iterative and can take many forms. A common method is to apply a penalty term 

to the optimization algorithms used to calculate the weights of the nodes [13]–[16]. 

Cellular Glass 

Cellular glass is an industrial material regarded for its high compressive strength, low thermal 

conductivity, and closed-cell structure. Because it is entirely made of glass, the material is non-

combustible allowing for use in extreme temperature conditions [4], [17]. Its market includes but 

is not limited to architectures: (floor insulation, plaza insulation), industrials: (below and above 

ground piping, floating tank insulation, tank/equipment bases), and specialties (abrasives, heat 

exchanger surface) [1], [3], [4]. The major challenge manufacturers face stems from the variation 
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in the production of cellular glass that leads to inconsistent material properties and in some cases 

terminal defects. 

The raw materials of cellular glass can be simplified down to a recycled glass powder and its 

foaming agent. Additionally, cellular glass is a hetero-phase material meaning that it 

simultaneously contains both solid and gaseous phases [3]. During formation, micrometer-thick 

walls take shape enclosing gas-filled bubbles resulting in high porosity and subsequent high 

compressive strength [4]. Research found that large cells formed when the foaming agent content 

grew [4]. Additionally, decreasing the size of the glass powder particles leads to a lower 

uniformity across the microstructure [4]. The categories of the powder distribution in the 

research can be broken down into L1 (coarse pores > fine pores), L2 (coarse pores = fine pores), 

and L3 (coarse pores < fine pores) [4]. Moreover, the distribution of the foaming content ranged 

from one to two percent by weight. Across the testing variations, the observed effects on 

samples’ densities varied from none to significant. The result of the variation in density played a 

large role in affecting the material properties [18].  

The key trait of cellular glass, its compressive strength, is derived from its high level of porosity 

[1]. The porosity of a sample varied greatly when minor changes were made to the inputs of the 

manufacturing process. This leads to a high variation in density (120 – 400 kg/m3) and strength 

(1.5 – 5 MPa) [4]. A major challenge faced by manufacturers is identifying samples whose 

material properties fall outside a standard uncertainty and are at risk of failure. 

The inability to perform reliable defect detection becomes a major manufacturing challenge 

when cellular glass is produced at scale and the variation in cooling conditions is increased. 

Currently, manufacturers are hearing from clients that some cellular glass blocks exhibit 

cracking and in extreme cases total failure when under normal operating conditions. Fortunately, 
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preliminary testing has shown that CT scans of cellular glass could be performed fast and 

effectively. This finding led to the possibility of using an image classification algorithm to 

accurately identify defective samples. 

Objective 

As discussed above, past work has shown that an array of methods to process imagery data of 

material exist, each chosen to match the challenges of their test material. High efficiency and 

accuracy have been reached in the image classification of various porous materials. While these 

investigations show promise in NDT of materials similar to cellular glass, this research will 

explore the effectiveness of a regularized neural network in performing defect identification and 

classification on cellular glasses. By designing a distinct RNN tailored to the features of CT 

scans of cellular glass, testing will be completed to find the limitations of the model. Finding 

where the model fails will significantly improve the understanding of cellular glass defects. It 

will provide the foundation for creating an independent NDT system for manufacturers to 

achieve lower failure rates of their products.  
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Chapter 2  

Methodology 

This research includes both data acquisition and computational studies to fully comprehend the 

feasibility of defect identification and classification of cellular glass. Therefore, this chapter will 

introduce the computerized tomography of the cellular glass samples, the creation of artificial 

defects, and the performed processing of the scans. Furthermore, the regularized neural network 

design and experimental setup will be described. 

2.1 Data Acquisition 

The CT scans used in this research were performed by Sara Mueller at the Center for 

Quantitative Image (CQI) at the Pennsylvania State University, for the Laboratory of Sound and 

Vibration Research (LSVR). Each scan produced approximately one-thousand unique tiff images 

ranging from 3.5 – 5 million total pixels. The scans were produced by rotating the glass sample 

about its vertical axis to obtain scans at varying angles. 

The LSVR’s inventory of cellular glass samples needed to be cut down into smaller blocks for 

the CT equipment at the CQI. The abundant flaking of cellular glass when handled posed a 

health hazard for members of the lab and proper PPE and safe practices needed to be put into 

place. Two individuals were required to cut a sample of the glass: one to perform the cutting 

using a sharpened knife and another to hold a vacuum close to the cut site to limit the glass 

flakes from spreading. Both individuals wore medical gloves underneath coated fabric gloves 

and a disposable mask. A sample block is shown in Figure 2. 
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Figure 2. Cut Block of Cellular Glass 

After a sample was cut, it was carefully wrapped in paper towels followed by plastic wrap to 

reduce the risk of glass dust from spreading during the transport and imaging of each sample as 

shown in Figure 3. 

 

Figure 3. Wrapped Sample of Cellular Glass 

The first eight samples scanned all returned what appeared to be perfectly “healthy” images, 

having no cracks and uniform porosity. The decision was made to artificially create a defective 

sample from a previously scanned block to have a clear comparison for the neural network and 

cut imaging costs. To produce the defective sample, the prior block was carefully removed from 
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its wrapping with a vacuum to remove any new glass dust. Then a screwdriver and knife were 

used to simulate cracks and air pockets in the sample. A side-by-side comparison of the block 

before and after the defect creation is shown in Figure 4. In the top right corner of the defective 

scan, two hollowed areas simulating defects are shown (designated by red circles). The top one 

was created by driving a screwdriver into the side of the sample of cellular glass to mimic 

cavities in cellular glass. Below that is a smaller hole created by driving a knife into the side of 

the sample to mimic a crack in a block of cellular glass. 

  

Figure 4: Healthy (left) and Defective (right) Sample Scans 

Each scan includes irrelevant data to the microstructure of its sample of cellular glass. This 

includes the wrapping surrounding the blocks, the base plate at the bottom of the blocks, and the 

orientation marker in the top right and left corners (designated by green boxes). These features of 

the scan hold no significance, and will not make an impact on the accuracy of the neural network 

because they will be factored into the model. All the sample scans include imagery of the 

wrapping, base plate, and marker, so the irrelevant data will not make any impact on the neural 

network decision boundary. 
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2.2 Data Upload and Processing 

The CT scans were uploaded, processed, and saved in MATLAB for use in the neural network. 

We note that the scans of the healthy and defective samples were different sizes (2014-by-2024 

pixels for the healthy and 2014-by-1900 pixels for the defective). The neural network used in this 

research performs its calculations via matrix operations, requiring the sizes of the matrices to be 

the same. To achieve the same data size for each sample, the white space above and a portion of 

the base plate below the unhealthy scans were cropped so that their matrices were 2014-by-1900 

pixels. Cropping of the healthy image was performed out of necessity as the healthy scans were 

taken at different parameters resulting in the differing sizes. It was assumed that because the 

defects were still shown in the sample data along with some of the noise features (base plate and 

wrapping). The validity of this assumption is reported in the first testing reports. 

After matching the scans’ sizes, further processing of the data was necessary as the neural 

network used in this research utilizes vectorization to achieve higher levels of efficiency. 

Therefore, the images were unwrapped into vectors and converted from uint16 to doubles. 

Finally, a second vector was saved to hold the labels of each scan and complete the test data 

upload and preparation. The chosen labels were the digits “1” and “2” corresponding to defective 

and healthy samples respectively. Note that MATLAB does not have a zero index and choosing 

“0” to be a label will lead to incorrect predictions. Note if two scans resulted in a different 

number of pixels then the larger must be cropped to be the same size as the smallest to perform 

the matrix operations in the neural network, as discussed above.  

The large number of pixels for a given image meant that the total number of samples in test data 

was initially limited to have an efficient code run time. Therefore, the initial sample set was 

composed of 200 total CT scans: 10 defective and 190 healthy. Careful selection of the scans for 
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the sample was taken to have a varying array of angles as shown in Figure 5. Applying a diverse 

selection of scans was crucial to properly test the code as it allowed for what was one defective 

sample to be translated into many different ones.  

   

Figure 5. Example Scans at Varying Angles 

2.3 Description of Neural Network Architecture 

The architecture design for this thesis is a three-layer regularized logistical regression neural 

network using the pixel data from CT scans as the input. As stated, the input layer of the neural 

network is comprised of individual nodes equaling to the total number of pixels in the test scan 

with each node holding the numeric value for a given pixel. The hidden layer was comprised of 

twenty-five nodes that contained the transformed data from the input layer. Finally, the data held 

in the second layer was used to calculate the hypothesis in the final layer made up of two nodes 

corresponding to either a healthy or defective sample prediction. Figure 6 shows a visual 

representation of the neural network and how it interacts to generate predictions. 
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Figure 6. Neural Network Architecture 

To train the neural network the first step was to randomly initialize the weights that the 

transformations of the input data and the hidden layer were based on. The randomly initialized 

weights were stored in matrices, called theta, with the number of rows equal to the size of the 

input layer and the number of columns equal to the output layer. For example, the first initial 

theta was a 3826600-by-25 matrix corresponding to the number of pixels in the scans and the 

number of nodes in the hidden layer. Next, feedforward propagation takes place and calculates a 

hypothesis for each image used in the training set. Feedforward propagation is the process of 

working through the neural network as designed: the input data is transformed via a sigmoid 

function (logistic function) using the randomized weights culminating in a prediction of the data 

set in the output layer. By applying a sigmoid function as the transformation, the hypothesis can 

be bounded to our chosen variables. Fig. 7 shows the sigmoid function used in this network 

along with a graphical representation depicting how it can be bounded to a range of [0,1]. In this 

case, the variable x corresponds to theta. 
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Figure 7. Sigmoid Function 

Following feedforward propagation, a cost function is calculated using the calculated hypothesis. 

A cost function is a measurement of the error rate of feedforward propagation. It calculates the 

difference between the hypothesis and the true value of the test data. The next step is to 

implement backpropagation which minimizes the cost function (difference in predicted and true 

values) via a gradient descent function. The backpropagation in this neural network works by 

factoring in the cost function to fine-tune the theta parameters. Gradient descent is an iterative 

optimization algorithm that finds the local minimum of a given function which is the cost 

function in the case of this research. The final step in training the neural network was to apply 

regularization to the thetas in the form of weight penalization. The weight penalty, lambda, curbs 

the overfitting of the model by increasing the weight of terms in the neural network by increasing 

their cost. Therefore a larger lambda will increase the weights than a lower one causing a 

smoother or more generalized model fit. The front-end code and all relevant functions can be 

referenced in Appendix A. The value of the penalty was tuned throughout the testing process and 

is reported in Chapter 4. With properly tuned weights to transform the data from the input to the 

output layer, the neural network was ready to identify and classify samples of cellular glass.  
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2.4 Experimental Setup 

After the scan data was acquired, uploaded, processed, and the neural network written, a baseline 

set of parameters with varying training set sizes and regularization penalties was tested. Using 

those results, further testing was completed to determine what caused the model to fail. 

Throughout these tests, the randomly initialized theta matrices were held constant at the 

beginning of each training test to prevent undue variation in the efficiencies and accuracies. First, 

the sample size was incrementally increased while keeping the training set size constant. Second, 

a possible solution to the mismatched scan sizes was explored by adjusting the aspect ratios of 

each scan during the processing step. Finally, scans outside of the training set were rotated 

during the processing step to simulate new defects and challenge the model.   
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Chapter 3  

Results and Discussions 

From the experimental data gained from the series of testing on the neural network, the results 

were analyzed to investigate the accuracy, efficiency, and failure characteristics of the model. 

Observations of the model failure yield greater insight into the application of this neural network 

at larger scales. Manipulations of the scans to improve efficiency and accuracy are also 

investigated. Finally, the artificial creation of new defective samples is explored to add increased 

variation to the data set. 

3.1 Baseline Code Performance 

As mentioned in section 2.4, a baseline set of parameters was chosen for the neural network for 

initial testing and tuning. The chosen architecture was composed of one hidden layer containing 

25 nodes, the regularization factor lambda set to 1.0, and 40 training iterations. The number of 

training iterations was set to 20% to have a significant amount of images not included in the 

weight calculation to better test the model fit. The data set was a total of 200 CT scans comprised 

of 10 defective and 190 healthy samples. The reported accuracy was 100%, with a run-time of 

approximately 546 seconds. Following this result, tests were completed with varying 

regularization (lambda) values to test for which images would be misclassified when the model 

was generalized. Additionally, the training iterations were lowered to gain insight into possible 

heightened efficiencies. All other variables were kept constant including the initial theta matrices 
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which were only randomly initialized once. Table 1 shows the reported accuracies and run time 

for each specification.  

Table 1. Baseline Results 

TEST METHOD REPORTED ACCURACY 

(PREDICTION = LABEL) 
PERFORMANCE 

(TRAINING TIME) 

Baseline 100% 546 sec 

Lambda Values  

5 100% 625 sec 

20 100% 567 sec 

25 100% 594 sec 

26 95% 576 sec 

27.5 95% 613 sec 

30 95% 608 sec 

Training Iterations 

30 100% 390 sec 

25 95% 324 sec 

20 95% 259 sec 

 

Note that the reported accuracy can be misleading: tests that reported 95% accuracy are 

misclassifying all the defective samples in this data set. The regularization penalty tests 

concluded that the defective and healthy samples were mutually exclusive. This conclusion was 

made because there were no lambda values that resulted in a gross accuracy that fell between 95-

100%. Furthermore, all the results from the tests on training iterations that resulting in either a 

perfect classification of defects or none.  
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The results signified that the model was very strong at classification when tested on the 200-

sample set composed of 10 defective and 190 healthy samples. The lack of misclassification of 

only a portion of the defective samples indicates that the defective data samples are statistically 

significant from all the healthy ones. Additionally, when the training iteration tests fell below 30, 

the misclassification was driven by a lack of defective test sets since only 10 were included in 

the overall sample size. In conclusion, this testing proved the viability of the neural network 

when used on a small, clean data set and requires additional testing with higher variation in the 

data to identify any weaknesses. 

3.2 Expansion of Sample Size 

Building on the results of the baseline testing, the sample size was increased to introduce more 

variety in defective samples to investigate when the model would misclassify a subset of 

defective samples rather than all of them. The total sample size was incrementally increased 

through the addition of samples taken from different angles and was only trained once using a 

training set of 40 iterations on the first test using 400 samples. The training took approximately 

twenty minutes. Additionally, the ratio of defective to healthy samples was kept the same as in 

the preliminary tests. Table 2 reports the results of the increased sample size testing. 
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Table 2. Sample Size Expansion Results 

SAMPLE SIZE REPORTED ACCURACY 

(PREDICTION = LABEL) 

400 100% 

800 100% 

1200 100% 

1600 100% 

2000 100% 

4000 100% 

  

The results supported the findings in 3.1, which stated that the current defective samples being 

applied to the neural network are completely mutually exclusive to the healthy samples. 

Misclassification would still only occur on the entire set of defective data as was seen in the test 

done in 3.1.   

This testing built on those results by introducing a larger variation in the defective samples 

through the addition of new, unique angled scans. A limitation of these results is that the 

cropping of the healthy scans resulted in eliminating some noise elements: wrapping, white 

space, and the base plate. The next steps in stress testing the model were to test new methods of 

preprocessing the scans and creating more defective samples and testing them without being 

included in the test data. In the scope of this research, further defects were artificially created by 

rotating the existing defective sample in the preprocessing step. 
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3.3 Investigation of Resizing Scans  

Building off the results in 3.2, the first step in the testing of rotated scans was to resize the 

sample matrices to be square. Therefore, before testing rotations, an investigation was completed 

on changing the aspect ratios of the sample to 1:1. The testing was extended to matching the size 

of both scans’ data sets to evaluate another solution other than cropping. Each scan was resized 

in the preprocessing section of the code to be 1900-by-1900 pixels. This allowed for the scans to 

retain the majority of their resolutions and be saved as square matrices which become important 

in the testing of the neural network. Fig. 8 shows a comparison of defective and healthy scans 

before and after their aspect ratios were altered. In the defective sample, the screwdriver-induced 

cavity and incisions from the knife were still clearly visible, and no noticeable changes were seen 

in the healthy scan. 

    

Figure 8. (Left to Right) Defective Sample and Healthy Sample Before and After Modified Aspect Ratios 

The testing of the altered scans was completed similarly to the sample size expansion testing; 

with only one round of training on a sample size of 200 followed by an incremental increase in 

samples.  
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Table 3 Aspect Ratio Results 

SAMPLE SIZE REPORTED ACCURACY 

(PREDICTION = LABEL) 

200 100% 

400 100% 

800 100% 

2,000 100% 

 

Table 3 reports the performance of the neural network using the resized scans. The model 

retained 100% accuracy with the resized images, concluding that the data sets could be resized 

allowing for a superior preprocessing methodology that permits testing of rotated scans. Prior to 

these results, the images could not have been properly rotated in MATLAB as their matrices 

were not square or 1:1. The results in this series of tests provided a powerful update to the 

preprocessing of the scans. Instead of losing data in future images by cropping them to match 

other ones, their aspect ratios can be reduced. The visual assumption that no significant data was 

lost in the aspect ratio modifications was supported by the continuation of 100% classification 

accuracy or complete misclassification of all the defective data sets. Finally, by proving the 

efficacy of reducing the aspect ratios, the artificial creation of defects using preexisting data by 

rotation was made viable. 

3.4 Investigation of Rotating Images 

Following the positive results in the testing of scans with modified ratios, experimentation on the 

model's ability to predict rotated samples was performed. First, the model was trained using a 
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baseline sample set identical to that used in the resizing experiments and with a regularization 

penalty of 1. It is important to note that this sample set did not include any rotated samples. 

Following the training of the network, a brand-new sample set was uploaded that included 

varying rotated data inputted to the neural network using the prior weights. The motivation 

behind rotating the scans is to move the defect data to new locations within the matrix and 

simulate a different defective block of cellular glass. Figure 9 shows a comparison of a defective 

sample before and after it was rotated to illustrate how it simulates a unique defective block. 

   

Figure 9. Artificial Defect Sample by Rotation 

The testing using rotated samples was held to 200 samples, as previous results showed zero 

effect on the model's accuracy when larger samples were used. Instead, the rotation amounts 

were varied along with having multiple sets of samples rotated in differing amounts. Ultimately, 

the model maintained 100% accuracy throughout all iterations of the test which are reported in 

Table 4.  
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Table 4. Rotation Results 

TEST METHOD REPORTED ACCURACY 

(PREDICTION = LABEL) 

90 deg of rotation 100% 

180 deg of rotation 100% 

Combined 90 and 180 def of rotation 100% 

 

The final test performed to find a model failure was incorporating regularization tests to the 

training data and then retesting the same three configurations of rotated images. The training of 

the neural network would continue to use an unrotated test set composed of 10 defective and 190 

healthy samples and now include varying penalty values for regularization. A new sample of 

rotated images was then inputted into the neural network in the same manner as the prior tests. 

Table 5. Regularization Testing with Rotated Images 

TEST METHOD REPORTED ACCURACY 

(PREDICTION = LABEL) 

Lambda = 5 

Combined 90 and 180 deg of rotation 95% 

Lambda = 2.5 

Combined 90 and 180 deg of rotation 95% 

Lamba = 1.5 

Combined 90 and 180 deg of rotation 97.5% 

Lambda = 1.37 

Combined 90 and 180 deg of rotation 100% 

Lambda = 1.25 

Combined 90 and 180 deg of rotation 100% 
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Table 5 reports the results of the iterative tests along with their respective lambda values. The 

results showed the model would become overgeneralized and misclassify all the defective 

samples as healthy when a regularization value as low as 2.5 was used. This was significantly 

lower than the lambda that caused this type of generalization when rotation was not completed. 

A lower level of regularization signals that rotating the images was successful in introducing 

more variety to defective samples. Additionally, when the model was trained using 1.5 as the 

regularization penalty half of the defective samples were misclassified. This was the only testing 

iteration to produce varying hypotheses for defective samples. All of the prior tests resulted in 

either fully accurate classification or complete misclassification of defects. However, once the 

images that were misclassified in the test were further inspected, they were revealed to all be 

rotated the same amount of 180 degrees.  

 

Figure 10. Idealized Illustration of the Model Applied to Rotated Scans 

Fig 10 illustrates how the rotated data and the model fit resulted in the isolated misclassification 

of the defective samples that were rotated 180 degrees, but not those rotated 90 degrees. Note the 



26 

figure is not representative of the true model and distribution. Rather, the figure serves as an 

idealized visual to illustrate the issue was underfitting.  

When the model misclassifies all of a certain type of defect (180 deg in this test) it is an issue of 

underfitting—not that it cannot classify the dataset at all, which is evident by slightly lower 

lambda resulting in 100% accuracy. Consequently, the misclassification by the model was 

determined to be caused by overgeneralization for those specific samples rather than a more 

terminal issue. In conclusion, the neural network proved to be applicable across a range of 

sample types and flawless in classification. 

3.5 Summary of Results 

The computational results of the testing on the design of the regularized neural network indicate it is a 

strong, reliable, and accurate method of defect identification and classification of cellular glass samples. 

The testing of the initial parameters revealed that the model performed as anticipated. In that testing, 

insight was gained into the statistical distribution of defective and healthy samples. In the narrow data set, 

both sample types were deemed to be mutually exclusive. These results fueled further investigations on 

larger sample sizes (3.2) and new defect types (3.3 – 3.4 ) to increase the variety of defective samples. 

The motivation of these investigations was to observe the misclassification of only a portion of defective 

samples rather than the all or none results seen in 3.1. The testing of larger sample sizes failed to produce 

the failure characteristic aimed for; instead, it further supported the theory of mutual exclusivity of 

defective and healthy samples. Finally, the artificial creation of new defects was explored by first 

reducing the aspect ratios of each sample to 1:1 followed by rotations. The 100% accuracy observed in 

the aspect ratio experiments provides two important developments: 1. the cropping of the scans in the 

preprocessing step could be replaced with an improved method, and 2. rotating existing defective samples 
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was made possible with each scan now stored in a square matrix. The rotation trial results continued to 

support that all available defective samples were statically significant for healthy ones. The testing in this 

research concluded that the neural network design succeeded at the goal of identifying defective from 

healthy samples of cellular glass using CT scans.  
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Chapter 4  

Conclusions 

Cellular glass is an insulation material applied in an array of projects because of its high 

compressive strength-to-weight ratio and low thermal conductivity. Existing research has proven 

that the density profile of a sample of cellular glass drives those material properties across a large 

range: 1.5 – 5 MPa. Currently, manufacturers lack a process for defect identification and 

classification of cellular glass products.  

This research set out to establish a regularized neural network capable of identifying defective 

samples of cellular glass from healthy ones. Experiments were conducted on the neural network 

using CT scans of one defective sample and a separate healthy one. The testing included baseline 

tuning of the model, expansion of the sample size, and artificial creation of new defective 

samples. It concluded that the model was highly accurate at separating the defects. However, a 

major limitation of this research was the lack of availability of additional defective samples. The 

defective scans were manipulated through various rotations in an attempt to increase variation. 

However, the only misclassification observed across the array of tests was caused by 

regularization, causing the model to underfit the data. 

Future research should investigate the inclusion of a larger pool of defective and healthy 

samples. This would result in improved comprehension of the regularization requirements for a 

full-scale application. As previously stated, the material properties of cellular glass vary across a 

large range and are driven by the density profile of a given sample. Therefore, expanding the 

labels to cover the range of material properties rather than only defective or healthy should be 

tested. Finally, testing of the sample block before and after defects are created should be 
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performed. A limitation in this research was the lack of access to healthy and defective scans 

with minimal differences other than the defects. Instead, the samples used were different sizes 

which could have increased the model’s ability to detect them from one another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

BIBLIOGRAPHY 

 

[1] C. P. SMOLENSKI Mgr, “Cellular Glass Foams,” Pittsburgh, 1984. 

[2] R. W. Gerrish, “D-2 Cellular Glass Insulation For Load· Bearing Application In Me Storage Of 

Cryogenic Fluids,” Adv Cryogenic Engineering, pp. 242–250, 1977. 

[3] A. G. Ryan, S. Kolzenburg, A. Vona, M. J. Heap, J. K. Russell, and S. Badger, “A proxy for 

magmatic foams: FOAMGLAS®, a closed-cell glass insulation,” Journal of Non-Crystalline 

Solids: X, vol. 1, Mar. 2019. 

[4] M. Osfouri and A. Simon, “Study on the thermal conductivity and density of foam glass,” Pollack 

Periodica, Nov. 2022. 

[5] P. M. Gammell and M. A. Adams, “Detection of Strength Limiting Defects in Cellular Glasses by 

Dielectric Measurements,” J Nondestr Eval, vol. 2, no. 2, pp. 113–118, 1981. 

[6] B. Alramahi, “Applications of Computerized Tomography (CT) to Characterize the Internal 

Structure of Geomaterials: Limitations and Challenges,” American Society of Civil Engineers, pp. 

88–95, 2006. 

[7] Y. Nikishkov, L. Airoldi, and A. Makeev, “Measurement of voids in composites by X-ray 

Computed Tomography,” Compos Sci Technol, vol. 89, pp. 89–97, Dec. 2013. 

[8] M. Goueygou, Z. Lafhaj, and F. Soltani, “Assessment of porosity of mortar using ultrasonic 

Rayleigh waves,” NDT and E International, vol. 42, no. 5, pp. 353–360, Jul. 2009. 

[9] J. S. Popovics and K. V. L. Subramaniam, “Review of Ultrasonic Wave Reflection Applied to 

Early-Age Concrete and Cementitious Materials,” J Nondestr Eval, vol. 34, no. 1, Mar. 2015. 

[10] T. M. Meksen, B. Boudraa, R. Drai, and M. Boudraa, “Automatic crack detection and 

characterization during ultrasonic inspection,” J Nondestr Eval, vol. 29, no. 3, pp. 169–174, Sep. 

2010. 



31 

[11] M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M. A. Tschopp, and L. Bian, “Porosity 

prediction: Supervised-learning of thermal history for direct laser deposition,” J Manuf Syst, vol. 

47, pp. 69–82, Apr. 2018. 

[12] S. Lee et al., “A deep learning model for burn depth classification using ultrasound imaging,” J 

Mech Behav Biomed Mater, vol. 125, Jan. 2022. 

[13] R. Li, X. Gu, Y. Shen, K. Li, Z. Li, and Z. Zhang, “Smart and Rapid Design of Nanophotonic 

Structures by an Adaptive and Regularized Deep Neural Network,” Nanomaterials, vol. 12, no. 8, 

Apr. 2022. 

[14] Z. Waszczyszyn and L. Ziemia Nski, “Neural networks in mechanics of structures and materials ± 

new results and prospects of applications,” Computers and Structures, vol. 79, no. 1, pp. 2261–

2276, 2001.  

[15] I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image 

processing using a combination of convolutional neural networks and recurrent neural networks,” 

Microsyst Nanoeng, vol. 5, no. 1. 

[16] R. Li, X. Gu, Y. Shen, K. Li, Z. Li, and Z. Zhang, “Smart and Rapid Design of Nanophotonic 

Structures by an Adaptive and Regularized Deep Neural Network,” Nanomaterials, vol. 12, no. 8, 

Apr. 2022. 

[17] A. G. Ryan, S. Kolzenburg, A. Vona, M. J. Heap, J. K. Russell, and S. Badger, “A proxy for 

magmatic foams: FOAMGLAS®, a closed-cell glass insulation,” Journal of Non-Crystalline 

Solids: X, vol. 1, 2019. 

[18] “Standard Test Method for Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat 

Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal 

Conductivity Method 1”. 

  

 



32 

  



33 

Appendix A 

Front End Code 

 

%% Image Upload 

 testdata=zeros(200,3826600);     % 200 defective + 10 healthy  

% Defective sample upload 

for iii= 1:10 

[img,map] = imread(['Sample1_with_defects\Sample1_with_defects'  num2str(iii,'%05.f')], 'tif'); 

          %[h, w, c] = size(img); 

          %n_w = uint16(1900); 

          %n_img = imresize(img, [h n_w]); 

          % %r_img = rot90(n_img); %rotating images 90 deg 

          %temp = r_img(:) 

          %temp = n_img(:); 

    temp = img(:); 

    testdata(iii,:)=temp'; 

 end 

% Healthy Sample Upload 

for jjj=1:190 

[img,map] = imread(['Sample4\Sample4' num2str(jjj,'%05.f')], 'tif'); 

          % Aspect Ratio Processing 

          %[h, w, c] = size(img); 

          %n_w = uint16(1900); 

          %n_h = uint16(1900); 

          %n_img = imresize(img, [n_h n_w]); 

          % %r_img = rot90(n_img); %rotating images 90 deg 

          %temp = r_img(:) 

          %temp = n_img(:);       

    temp = img(100001:3926600); 

    testdata(jjj+10,:)=temp';       

end 

% 
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X = testdata; 

y = ones(200,1); % Defective Label 

y(11:200,1) = 2; % Healhty Label 

 

%% Preallocation 

m = size(X); 

input_layer_size = length(X); %Number of pixels in the scans 

hidden_layer_size = 25; 

num_labels = 2;  

 

%% Random Initialization 

initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size); 

initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels); 

 

 

%% Learning Parameters 

% Unroll parameters 

initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)]; 

 

tic 

options = optimset('MaxIter', 40); 

lambda = 30; 

 

costFunction = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, num_labels, X, y, 

lambda);  % shorthand 

 

% Now, costFunction is a function that takes in only one argument (the neural network 

parameters) 

[nn_params, ~] = fmincg(costFunction, initial_nn_params, options); 

 

Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), hidden_layer_size, 

(input_layer_size + 1)); 
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Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), num_labels, 

(hidden_layer_size + 1)); 

%% Prediction and Accuracy 

% rp = randi(110); 

pred = predict(Theta1, Theta2, X); %(predictor using a random image from the test data) 

% fprintf('Neural Network Prediction: %d \n', pred) 

fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100); 

toc 

 

 

Random Initialization Function 

function W = randInitializeWeights(L_in, L_out) 

%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in 

%incoming connections and L_out outgoing connections 

%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights  

%   of a layer with L_in incoming connections and L_out outgoing  

%   connections.  

 

W = zeros(L_out, 1 + L_in); 

 

eps_init = sqrt(6) / sqrt(L_in +L_out); 

W = rand(L_out, 1+ L_in) * eps_init - eps_init; 

Neural Network Training Function 

function [J grad] = nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels, 

X, y, lambda) 

% NNCOSTFUNCTION Implements the neural network cost function for a two-layer 

% neural network which performs classification 

%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... 

%   X, y, lambda) computes the cost and gradient of the neural network. The 

%   parameters for the neural network are "unrolled" into the vector 
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%   nn_params and need to be converted back into the weight matrices.  

 

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices 

% for a 2-layer neural network 

Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... 

                 hidden_layer_size, (input_layer_size + 1)); 

 

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... 

                 num_labels, (hidden_layer_size + 1)); 

 

% Variable Set Up 

m = size(X, 1); 

          

J = 0; 

Theta1_grad = zeros(size(Theta1)); 

Theta2_grad = zeros(size(Theta2)); 

 

% Part 1: Feedforward the neural network and return the cost in the 

%         variable J. After implementing Part 1, you can verify that your 

%         cost function computation is correct by verifying the cost 

%         computed in ex4.m 

% 

% Part 2: Implement the backpropagation algorithm to compute the gradients 

%         Theta1_grad and Theta2_grad. You should return the partial derivatives of 

%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and 

%         Theta2_grad, respectively. After implementing Part 2, you can check 

%         that your implementation is correct by running checkNNGradients 

% 

% Part 3: Implement regularization with the cost function and gradients. 

 

%% Cost Function (feed forward and implementing the cost function) 

X = [ones(m,1), X]; 
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a1 = X; 

z2 = a1*Theta1'; 

a2 = sigmoid(z2); 

a2 = [ones(size(a2,1),1), a2]; 

z3 = a2*Theta2'; 

a3 = sigmoid(z3); 

H_x = a3; 

 

y_vec = (1:num_labels)==y; 

J = 1/m * (sum(sum(-y_vec.*log(H_x) - (1-y_vec).*log(1-H_x)))); 

 

%% Backpropogation to find grad_1 and grad_2 

 

del3 = a3 - y_vec; 

del2 = (del3*Theta2) .* [ones(size(z2,1),1) sigmoidGradient(z2)]; 

del2 = del2(:,2:end); 

 

%DELTA3 = A3 - y_Vec;  

%DELTA2 = (DELTA3 * Theta2) .* [ones(size(Z2,1),1) sigmoidGradient(Z2)];  

%DELTA2 = DELTA2(:,2:end);  

 

Theta1_grad = (1/m) * (del2' * a1); 

Theta2_grad = (1/m) * (del3' * a2); 

 

%% Regularization 

J = J + (lambda/(2*m)) * (sum(sum(Theta1(:,2:end).^2)) + sum(sum(Theta2(:,2:end).^2))); 

 

Theta1_grad = Theta1_grad + (lambda/m)* [zeros(size(Theta1,1),1) Theta1(:,2:end)]; 

                                    

Theta2_grad = Theta2_grad + (lambda/m)* [zeros(size(Theta2,1),1) Theta2(:,2:end)]; 

 

% Unroll gradients 
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grad = [Theta1_grad(:) ; Theta2_grad(:)]; 

end 

end 

Predict Function 

function p = predict(Theta1, Theta2, X) 

%PREDICT the label of an input given a trained neural network 

%   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the 

%   trained weights of a neural network (Theta1, Theta2) 

 

% Useful values 

m = size(X, 1); 

num_labels = size(Theta2, 1); 

 

p = zeros(size(X, 1), 1); 

 

h1 = sigmoid([ones(m, 1) X] * Theta1'); 

h2 = sigmoid([ones(m, 1) h1] * Theta2'); 

[dummy, p] = max(h2, [], 2); 

 

end 
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