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ABSTRACT 

 

The purpose of this thesis is to explore the viability of machine learning in the stock 

market. The stock market is an inherently chaotic system, as complicated and intricate as it is 

vast. Human stockbrokers tend to perform sufficiently after years of training and education. 

Given the advancements made in machine learning in recent years, it seems reasonable to test a 

model in one of the most extreme environments possible. Proficiency in the stock market would 

demonstrate the endless possibilities of machine learning. While this thesis will not shake the 

field of economics to its core, it can be one that can be built and expanded upon in future studies. 

For this project, a sequential neural network has been constructed. It is trained on a 

stock’s price and numerous other technical analysis indicators like the Exponential Moving 

Average and the Stochastic Relative Strength Index. All of the data is divided based on its 

interval, leaving four intervals of data to use: one-minute, five-minute, fifteen-minute, and one-

day intervals. There are four labels that this model can choose from when predicting. It will 

predict whether the price of a stock is a peak, uptrend, downtrend, or valley. Effectively, the 

model is predicting the best times to buy and sell a certain stock. The accuracy scores of this 

model’s predictions vary based on the time interval. From an average accuracy of around forty 

percent with a one-day time interval to an overfit high of one hundred percent with a five-minute 

or one-minute interval. Additionally, the model’s actual performance on the stock market was 

simulated using paper trading simulation on historical stock data. The model produced gains on 

sixty-two and a half percent of its paper trading simulations. Further studies can build upon this 

model’s foundation and attempt to increase its accuracy and gain potential. 
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Chapter 1  

 
Introduction 

Machine learning is the process by which computers mimic the learning behaviors 

exhibited by humans. Namely, the ability to analyze the patterns within data and apply that 

pattern to infer attributes about other data. For this research, the domain of machine learning is 

crossed with the capital market domain, specifically in relation to stocks. There are commonly 

known terms and ideas, like the peaks and valleys of a stock price. These are the points where 

the price of a stock is at a high value and where it is at a low value, respectively. Additionally, 

this research utilizes the practice of technical analysis, which is the evaluation of stock patterns 

to determine the optimal time to buy or sell shares of a stock. Throughout this thesis, terms will 

be explained as they are introduced in the relevant chapters. The intersection of machine learning 

and capital market has certainly been studied before and the literature review in Chapter 2 will 

further explore other studies that have been conducted and relate to this one. 

 This research serves as the foundation of any future studies that would wish to reference 

it. For any field of research, there first needs to be foundational studies to show that continued 

and increasingly specific research in that field is warranted. For this project, the goal is to 

identify the viability of machine learning in the stock market. Specifically, whether a machine 

learning model can identify the peaks, valleys, and general trend of a stock’s price. Analyzing a 

model’s performance can help demonstrate the potential and useability of machine learning 

within the stock market. If the machine learning model is given sufficient high-quality data, by 

harvesting data from reliable sources and further processing it through technical analysis, it will 
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produce acceptable results. The aim is to achieve a sixty to seventy percent accuracy by the 

model when predicting what times are best to buy or sell a stock. The model will also be given 

various simulated stock portfolios to manage. If the model can produce gains on at least fifty-five 

percent of these simulated stock portfolios, it would also constitute a success. The remaining 

chapters of this thesis will outline the process of collecting the needed data, labeling, and 

expanding the data, building the machine learning model, improving the machine learning 

model, and the takeaways of this project. 

Chapter 2  

 
Literature Review 

The intersection of machine learning and the stock market is by no means unique to this 

study. There are studies, as discussed below, that date back to the 1990s showing similar 

experimentation. However, the field of machine learning has changed quite a bit in just the past 

decade alone. It would be fruitful to continue to examine the viability of machine learning in the 

stock market as newer and more advanced models and practices are developed. 

When it comes to most of the popular studies that tackle machine learning in the stock 

market, they tend to focus on stock price prediction. In the “A Machine Learning Model for 

Stock Market Prediction” paper published in the International Journal of Computer Science and 

Telecommunications in 2013. The model attempts to “determine the future value of a company 

stock or other financial instrument traded on a financial exchange” (Hegazy et al.). Our study 

deviates from this one and many others like it. Our goal is not to predict the price of a stock, but 

rather to predict when the best moments are to buy and sell a certain stock. While the desired 
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results are similar, the methodologies are rather different. A comparison between the results of 

two studies that use these differing methodologies could be quite interesting. 

Another noteworthy paper was published in the 1990 IJCNN International Joint 

Conference on Neural Networks and authored by T. Kimoto, K. Asakawa, M. Yoda, and M. 

Takeoka. Like our own study, it was not focused on the price prediction of stocks, but rather the 

prediction of when to buy and sell stocks. Key differences arise from which stock market was 

used and the type of neural network used. This study utilized modular neural networks on the 

Tokyo Stock Exchange, while our study will focus on a sequential neural network being utilized 

on the New York Stock Exchange (Kimoto et al.). This project was also much bigger in scope 

than our own. Within modular neural network, “each independent neural network serves as a 

module and operates on separate inputs to accomplish some subtask of the task the network 

hopes to perform” (Azam). The results of our study could help to show the progression of 

machine learning since the 1990s. Perhaps the task that once required a network of 

interconnected neural networks can now be accomplished with a single neural network. 

Of course, this study also needs to examine previous studies and articles that can 

illuminate certain aspects of the economics side of this project. Namely, sources were consulted 

to evaluate the potential of numerous technical analysis indicators. One paper examined the use 

of certain indicators like the Relative Strength Index (RSI) and Moving Average 

Convergence/Divergence (MACD) on the Spanish stock market (Rosillo et al.). In summary, it 

was found that the strength of an indicator greatly depends on the stock that it is being applied to. 

One study that is extremely relevant to this work was published in the Proceedings of the 

International MultiConference of Engineers and Computer Scientists and authored by K. 

Kannan, P. Sekar, M. Sathik, and P. Arumugam. This paper focused on the use of data mining 
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and predictive technologies to analyze the hidden patterns within historical data and predict the 

future direction of the stock’s price (Kannan et al.). Not only did the paper utilize the methods of 

“Typical Price (TP), Bollinger Bands, Relative Strength Index (RSI), [Candlestick Momentum 

Index] CMI and Moving Average (MA)” but it also “investigated various global events and their 

issues predicting on stock markets” (Kannan et al.).  

Even though there have been similar studies before, there is always more room for 

experimentation and discovery. There is a paper by Gandhmal and Kumar, one of many others 

like it, that compares and reviews fifty research papers that cover a variety of techniques used for 

stock prediction. Papers like this help to find the problems and challenges within existing 

research and allow for their correction and rectification in future studies (Gandhmal and Kumar). 

Ideally, someone may someday read this paper and notice a problem that could be fixed to 

further improve it. 

Our study is not the very first of its kind and will certainly not be the very last either. The 

main goal of this study is to build upon the ones that have come before it and provide an even 

greater foundation for future studies to build off. 

Chapter 3  

 
Stock Data Collection 

3.1 Data Requirements 

The overarching idea behind the field of machine learning is to use algorithms to mimic a 

sense of learning. The computer slowly and gradually improves upon itself and improves its 
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accuracy. To accomplish this goal, a machine learning model requires a vast amount of data. As 

a general guideline, it requires a number of data points equal to ten times the number of features 

you are using. That is, if your machine learning model examines 19 features on each data point, 

190 data points are needed. Having a large amount of data allows the model to search for and 

analyze patterns within the parameters and use those patterns to predict information. There are 

numerous approaches to machine learning, and each requires slightly different data input. For 

this project, a supervised learning approach has been taken. Simply put, a supervised learning 

approach means that all data must be labeled. Since this model aims to predict when to buy and 

sell stocks on the stock market, every data point we gather must indicate whether a stock should 

be bought or sold. 

Diving down into the deeper mechanics of machine learning is the use of training datasets 

and test datasets. When building a supervised learning machine learning model, the data that will 

be used must be broken into two sets. The first of these sets is the training set. Data within the 

training set is used for the construction and training of the model, as the name implies. Once the 

model has been fully constructed, the test set comes into play. The test set contains portions of 

the data sectioned off from the rest and not allowed for training. Instead, this data is used to 

evaluate the accuracy and performance of the machine learning model after it has been built and 

trained. To better illustrate this concept, imagine, if you will, a child that you are tutoring in 

basic mathematics. At first, you work with the child on the basic concepts, going through sample 

problems and giving them the answers as you go. That is the purpose of the training set, data 

from which the model can learn and improve. When you want to test their knowledge, you do 

not simply give them the same problems that you used to teach them the concepts. Instead, you 

create fresh problems that help to truly test their knowledge of the concepts. That is the purpose 
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of the test set, unfamiliar problems that can be used to test the model’s accuracy and 

effectiveness. 

3.2 Data Sources 

Finding such a large quantity of data can be a daunting task, especially given the fact that 

high-quality data is necessary. Blank fields in a dataset or mislabeled entries can negatively 

affect a machine learning model. With these prevalent factors in mind, there are a plethora of 

online sources that can give high-quality dataset files for free. One such source is Kaggle.com, 

which boasts an extensive collection of datasets that range from data on TripAdvisor hotel 

reviews to information about rice production by each country from 1961 to 2021 (Find Open 

Datasets and Machine Learning Projects).  

Once a titan of the internet during the 1990s, Yahoo has a repository of financial 

information available through Yahoo Finance. Yahoo Finance allows for the download of daily, 

weekly, or monthly historical stock data dating back years. In the case of Tesla, the historical 

data goes back to June 28th, 2010. For longer standing companies, the data can go back even 

further. Yahoo Finance claims to have IBM stock records dating back to June 1st, 1962. All this 

data can be easily downloaded as comma separated values, also known as a .csv file. 

Of course, Yahoo Finance does not have any sort of monopoly on stock data and other 

sources have appeared throughout recent years. Another source of data is Alpaca, a website and 

API (Application Programming Interfaces) built for trading. One major strength of Alpaca is the 

interval of its data. While Yahoo Finance offered daily, weekly, and monthly data, Alpaca offers 

one-day, fifteen-minute, five-minute, and 1-minute intervals. Alpaca also has a certain 
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component that other sources lack: paper trading. Using the Alpaca API, you can create a 

program that participates in paper trading, which is a term used to describe a stock market 

simulator, where one can pretend to trade stocks using simulated currency. The Alpaca API 

provides the resources and functionality needed for a true test of the model’s accuracy. 

Integrating with the Alpaca API could allow our model to fully simulate the buying and selling 

of stocks using accurate, up-to-date information (Developer-First API for Trading). Success 

would evolve from being a percentage of correct predictions in the test set to tangible results, 

namely how much money the model made of lost while paper trading. Given the value of this 

functionality and the availability of high-quality data to boot, Alpaca was chosen as the data 

source for this project. 

3.3 Data Labeling 

 The Alpaca datasets contain numerous helpful parameters for each data entry, but there is 

a key component that is missing. Since this project utilizes supervised learning, each data entry is 

required to have a label. Within this project's scope, each stock data entry would require a label 

denoting whether it should be bought or sold at that given time and price. There are no such 

high-quality datasets with this needed information that could be easily found. Instead, a method 

of automatic labeling was utilized. Using the price point of each data entry, an algorithm could 

be used to determine the appropriate label. Automatic labeling also comes with the added benefit 

of customization. Rather than having to use labels that came preloaded onto a dataset, specific 

labels could be generated that better suit this project. With this benefit in mind, four labels were 

created: peak, valley, upward trend, and downward trend. A peak represents the price point at 
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which a stock should be sold, a valley represents the price point at which a stock should be 

bought, and the last two labels denote an upward trend and a downward trend in the stock’s 

price, respectively. 

 Once the labels were defined, the next step was to implement an algorithm that would 

assign a label to each data point in the dataset. There are an absurd number of peak detection 

algorithms available to choose from, too many in fact. Manually comparing each algorithm 

would be a long and laborious process on par with just manually labeling the data. Ideally, a tool 

or program could be used to visualize each algorithm's performance. If the label for each data 

point was plotted onto a graph, a human eye could easily scan them and search for any mistakes 

or flaws. Taking a visual approach like this would simplify the algorithm selection process. 

Thus, the Midas program was created to facilitate the selection of a peak detection algorithm. 

Written in Python, this program allows for the testing of peak detection algorithms on numerous 

datasets. Different algorithms could be added to the options available within the Midas program. 

When running the program, a stock dataset, time interval, and peak detection algorithm are 

selected, and the program generates a graph showing what points the algorithm labeled as peaks 

and valleys. Additionally, a specific date range within the stock dataset can be selected to narrow 
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the size of the displayed graph. The Midas program makes comparing peak detection algorithms 

easier and faster. 

 

Figure 1. Midas GUI (Graphical User Interface) 

Chapter 4  

 
Peak and Valley Detection and Labeling 

4.1 The NumPy Indicator 

The first peak detection algorithm added to the Midas program for testing was from the 

NumPy package. NumPy is one of the fundamental packages needed when using Python for 

scientific computing or machine learning. Within the NumPy package, there are two key 
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functions needed for peak detection. The first function is named diff() and is used to “calculate 

the n-th discrete difference along the given axis” (Numpy.diff). The second function is the sign() 

function, which simply returns negative one if passed a negative number as a parameter, zero if 

passed zero, or positive one if passed a positive number (Numpy.sign). Figure 2 demonstrates 

how these functions can be weaved together to detect the local extrema, local minimums, and 

local maximums within a given dataset. In simple terms, the function is checking whether the 

difference between two data points is positive or negative. The addition of a one at the end of 

each line is done to counteract one of the effects of the diff() function. Whenever used, the diff() 

function reduces the original index number by one and simply adding one to the variables 

resolves this issue. Overall, the NumPy detector is simple and compact. While it certainly works 

in theory, the aforementioned Midas program allows users to look at its performance with their 

own eyes and judge accordingly. 

 

Figure 2. NumPy Detector Code 

The NumPy detector is already preloaded for use in the Midas program, allowing it to be 

selected and used on any valid stock dataset. Figure 3 shows the Midas program after the NumPy 

detector had been run. The dataset being used is that of Tesla stock closing prices from February 

7th, 2022, to February 8th, 2022, on a one-minute interval. The graph shows the point of each 

peak and valley marked by the NumPy detector and it immediately stands out that there are a lot 

of peaks and valley detected, too many in fact. Technically, there is absolutely nothing wrong 

with this detector, but for our purposes it does not work. Each and every time the stock price 

changes its price trend, there is a peak or valley created and that is too sensitive. Stock prices 
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fluctuate quite a bit and if every single peak or valley, no matter how minute, is detected and 

marked, the dataset will be flooded with harmful data. Within Figure 3, take specific note of the 

peak and valley marked around February 7th, 2022, at 10:00 a.m. (both the date and specific peak 

and valley have been highlighted in yellow for convenience). These two points are not ones that 

should be labelled in our data as there are more extreme peaks and valleys located nearby. The 

second peak and fifth valley, when going from left to right, are proper peaks and valleys for our 

data (both have been highlighted in blue for convenience). These two points are the most 

extreme peak and valley before February 7th, 2022, at noon. None of the points between the true 

peak and valley should be marked at all as they are not as extreme of a peak or valley. 

Unfortunately, NumPy does not have any sort of sensitivity parameter that could be used to 

adjust this detector. Therefore, attention was shifted away from NumPy and towards other 

algorithms that were better suited for this research work. 
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Figure 3. NumPy Detector Sample 

4.2 Zig-Zag Indicator 

For the next peak detection algorithm, we looked towards the ZigZag package. A small 

package and project with the sole goal of providing useful functions for Python projects using 

stock market data. The methodology used for this detector is rather fascinating, as the ZigZag 

detector simply finds the trendline of the stock in question. Basically, the detector creates a line 

of best fit for the price data of a stock. To determine where the peaks and valleys are, the 

detector simply looks for the pivots within the trendline and reports those as either a peak or a 

valley, depending on how the price is changing. Figure 4 shows the exact same scenario, Tesla 

stock closing prices from February 7th, 2022, to February 8th, 2022, on a one-minute interval. The 

only difference is that the ZigZag detector is being utilized instead of the NumPy one. Notice the 
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points around February 7th, 2022, at 10:00 a.m. again (highlighted in blue for convenience). The 

detection is ideal, as there are no points marked between the two of them. It may seem 

counterintuitive to prefer a detection algorithm that marks less peaks and valleys, but it all relates 

to data quality. There needs to be a significant disparity between the price of a valley and the 

price of a peak. Otherwise, the machine learning model could learn to sell as soon as the price 

begins to rise and sell as soon as it begins to dip. Such a trading strategy would be suboptimal 

and have the potential for losses. However, there are some points that the ZigZag indicator 

misses, namely around February 7th, 2022, around 9 p.m. where a valley should be marked. 

Further adjustments to the sensitivity of the detector could help to alleviate this problem. 

 

Figure 4. ZigZag Detector Sample 
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Since the ZigZag detector was able to pass the first stage of testing, it could progress to 

the next stage. The peaks and valleys are detected, but there are two other labels. Namely, when 

the price is up trending and when it is down trending. Achieving this was relatively simple, as 

shown in Figure 5. First, a note is made of the trend value at the current. If the trend value is 1, 

that means it was marked as a peak; likewise, if the trend value is -1, the point was marked as a 

valley. Whenever one of these marked points is detected, they are updated to 2 and -2 

respectively. Additionally, a note is made of whether the price is down trending or up trending 

based on whether the last observed extreme was a peak or a valley. Finally, a check is made to 

see if the current index has a trend of 0; meaning that it was not marked as a peak or a valley. If 

this is the case, its trend is updated based on the stored trend variable. Once this is done, the 

trend of each data point shows a 2 for peaks, 1 for up trending, -1 for down trending, and -2 for 

valleys.  

 

Figure 5. Trend Detection Code 

Finally, the range of the peaks and valleys needs to be expanded. The detector marks the 

highest and lowest relative prices as peaks and valleys; however, those are not the only prices 

that should be considered acceptable. Imagine that you bought a stock for $5, and its price is 
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trending upwards. Eventually, the stock price reaches $19, and you decided to sell it. The stock 

price continues to climb to $20 before crashing back down to $6. It would be inaccurate to say 

that selling the stock for $19 was unwise or a mistake. Without a peak range, a machine learning 

model would label such a situation as a mistake since it did not sell the stock at the highest 

possible relative price. Therefore, we need to mark the points within a certain price range of each 

peak and valley as peaks and valleys themselves to give the machine learning model a reasonable 

range of prices that it could decide to buy or sell stocks at. To accomplish this, a function is run 

after all other detection has finished. First, there is a defined sensitivity for this function that 

determines the size of the reasonable price range; for this project, a sensitivity of half a percent 

was chosen. For each peak or valley, the function determines the reasonable price range by 

multiplying the point’s price by the sensitivity value. That product is then subtracted from the 

original price and added to the original price to obtain the minimum and maximum, respectively, 

of the acceptable range. Once the range is calculated, nearby points are evaluated, and if they are 

within the reasonable range, they are marked appropriately. The function looks both forwards 

and backwards from the selected extreme to ensure that every appropriate data point is observed. 

Looking at Figure 6, we can see the final results of these detection steps. There are large and 

healthy ranges in which the machine learning model can decide to buy or sell the stock, as 

denoted by the color coded “X” markings. Additionally, the uptrend and downtrend detections 

are accurate, giving the machine learning model more information on the price’s current 

trajectory. Overall, the ZigZag detector is a strong contender given its flexible parameters and 

suitability for this type of project. 
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Figure 6. Full ZigZag Detector Sample 

4.3 Relative Extrema Indicator 

While the ZigZag detector is a clear frontrunner, there was one more peak detection 

algorithm that we wanted to investigate. The SciPy package, an open source, has a function 

dedicated to the calculation of relative extrema within data known as argrelextremea() that will 

henceforth be referred to as Relative Extrema (Scipy.signal.argrelextrema). The code for the 

Relative Extrema is exceedingly simple as it only requires four lines to operate as shown in 

Figure 7. First, we call the Relative Extrema function, passing in our original price data and the 

NumPy greater function. This tells the function that we want to find the peak values within our 

dataset. This is then repeated with the NumPy less function to find the valley values within our 
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dataset. The second line, where the array is reassigned to itself, is used to convert the NumPy 

array back to a regular one for ease of use. 

 

Figure 7. Relative Extrema Detector Code 

By testing out the Relative Extrema detector within the Midas program, we can see that it 

suffers from the same problems as the NumPy detector. As Figure 8 shows, the troublesome 

points around February 7th, 2022, at 10:00 a.m. are once again present (highlighted in yellow for 

convenience). It is still an improvement over the NumPy detector, as there are less extraneous 

labels; however, it is nowhere near the standard that the ZigZag indicator has set. 
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Figure 8. Relative Extrema Detector Sample 

4.4 Indicator Selection and Rationale 

Our experimentation with peak and valley detectors only scratched the surface of what is 

available. Numerous other packages and implementations exist; however, this project’s goal is 

not the evaluation of peak detection algorithms. The ZigZag indicator provides exemplary data in 

an easily workable form. As the clear frontrunner, the ZigZag indicator was selected as the peak 

detection algorithm that would be used for our research project. Not only did the other detectors 

fail to live up to the standard set by the ZigZag indicator, but the ZigZag indicator produced 

almost exactly what we sought. The odds of another indicator blowing ZigZag out of the water is 

slim; thus, it is not necessary to invest mor time into algorithm analysis.
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Chapter 5  

 
Building the Machine Learning Model 

5.1 Additional Parameters and Normalization 

With the peak and valley detection sorted, there are still a few additional parameters that 

need to be calculated and added to our data points. The first of those is the Exponential Moving 

Average (EMA). The EMA helps with “measuring trend direction over a period of time” and the 

“EMA applies more weight to data that is more current” which helps make the EMA more 

accurate to the actual price (What Is EMA? - Exponential Moving Average). For our data, we 

measure three different EMAs with the difference between the EMAs being the number of data 

points they consider in their calculations. We utilize EMA20, EMA30, and EMA60 which 

calculate the EMA using the nearest twenty, thirty, and sixty data points, respectively. 

The second parameter is the Stochastic Relative Strength Index (SRSI). The SRSI 

“ranges between 0 and 1” and “[SRSI] reading above .8 is considered overbought, while a 

reading below 0.2 is considered oversold” (Hayes). Knowing when a stock is being overbought 

or oversold helps to “alert traders that the RSI is near the extremes of its recent readings” 

(Hayes). Simply put, this parameter helps determine when a stock is reaching an unusually high 

or unusually low price given its recent activity. When a stock has crossed the overbought 

threshold, that is a good indication that the stock should be sold. Likewise, when the oversold 

threshold is crossed, it is a suitable time to buy that stock. For both parameters, we utilize the 
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pandas-ta python package. This package allows us to easily call function that calculates the 

values and adds them to our dataset. 

For the final part of our data preprocessing, the data needs to be normalized. 

Normalization is required whenever parts of a dataset have different ranges. Imagine that you 

have a dataset about houses containing the number of occupants (ranging from 1-10) and the 

price of the house (ranging from $50,000-$1,000,000). Due to the larger range and values of the 

price data, it will influence the machine learning model more than the number of occupants. 

However, depending on the problem you are trying to solve, the price may not be a more 

important indicator than the number of occupants. This example illustrates that in machine 

learning, there is an inherit bias that occurs when different number ranges are used. The model 

will give greater weight than it should to numbers on a larger numerical scale. Data is 

normalized to be on the same numerical scale to remove this bias. Normally, this range is from 0 

to 1 or -1 to 1 but can vary depending on the data being normalized or the method of 

normalization. 

There are two different ranges within our data, so normalization is necessary. Two types 

of normalization were employed, and either can be used for a run of our neural network. The first 

type of normalization is Min-Max normalization. The purpose of this normalization is to make 

sure that each data point is between the values of 0 and 1. The equation, as show in the left side 

of Figure 9, is the data value minus the minimum value throughout all the data. Then, that 

difference is divided by the difference of the maximum and minimum values in the data. The 

second type is Z-Score normalization which normalizes “every value in a dataset such that the 

mean of all of the values is 0 and the standard deviation is 1” (Bobbitt). The equation for Z-Score 

normalization is shown in the right side of Figure 9. Each value in the dataset first has the mean 
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of all the data subtracted from it; then it is divided by the standard deviation of all of the data. 

Currently, our project utilizes Min-Max normalization, but it could be easily switch to Z-Score 

normalization if desired. 

 

Figure 9. Normalization Equations 

5.2 Sequential Neural Network 

Now that all of our data has finally been prepared, the actual machine learning model that 

will train and test off of this data needs to be constructed. Thankfully, there is a Python package 

that makes the construction and operation of machine learning models easy and efficient: Keras. 

It is an Application Programming Interface (API) based on TensorFlow, an “end-to-end open 

source platform for machine learning” that was developed by Google (TensorFlow | Google 

Open Source Projects). Keras was “developed with a focus on enabling fast 

experimentation. Being able to go from idea to result as fast as possible is key to doing good 

research” (Keras Documentation: About Keras). 

Before getting into the specifics of the neural network, it is important that we establish a 

baseline understanding of the terms and functions of neural networks. First, we will tackle what 

exactly a neural network is. At its core, a neural network is a type of machine learning that is 

designed to mimic the human brain. There are layers of neurons that communicate with one 
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another. Importantly, neurons within the same layer can never communicate with each other. The 

first layer is the input layer, and its number of neurons is arbitrary. User experimentation is the 

best method for finding the number of neurons that works best; however, what does matter is the 

input dimension of the layer. For the first layer, the input dimension needs to be equal to the 

number of attributes your data has. In our case, we have seven attributes: price, trend, nEMA20, 

nEMA30, nEMA60, nSRSI_k, nSRSI_d. That means that our input dimension is equal to seven. 

After the input layer is the hidden layer(s). There is no limit to the number of hidden layers in a 

neural network, but there needs to be at least one. After the hidden layer(s) is the output layer. 

This layer basically determines the answer that the neural network gives for a problem. When 

processing data, each of the neurons that has a connection with another neuron uses that 

connection to affect the signal strength. Each layer also has an activation function, which is how 

a node outputs its signal. Finally, the output layer has a number of neurons equal to the number 

of labels possible. The neurons in this layer determine what answer the neural network will give. 

Imagine you have an output layer of two neurons. These neurons are used to determine whether 

the neural network is looking at a picture of a cat or a dog. The dog neuron has a signal of .45 

and the cat neuron has a signal of .55. In that case, the neural network would say that it is 

currently looking at a picture of a cat. While quite simplified, this is the basics of how neural 

networks operate. 

By utilizing the Keras API, a neural network can be designed and structured with a few 

lines of code as shown in Figure 9. First, the type of model that will be created is denoted. For 

our project, a sequential neural network is used. A sequential model simply means that our inputs 

move from layer to layer in order. After that, we can add the needed layers and denote their 

parameters. Further details of the model layers will be covered in the next chapter, Chapter 5.3. 
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Figure 10. Sequential Neural Network Code 

5.3 Neural Network Layers 

The neural network that we created only has three layers with each of them being a dense 

layer. The structure of the model and its layers are shown in Figure 9 and a more detailed look at 

each individual layer is found in Table 1. There are 16 neurons within the first layer that is 

denoted by the first parameter. As previously established, we require an input dimension of 

seven due to the seven attributes our data has. Finally, the input layer has the “relu” activation 

parameter. This means that this layer will be utilizing a rectified linear unit activation function. 

This function returns 0 if the number is negative and returns the number itself if it is greater than 

or equal to 0. The next layer is the singular hidden layer within this model. It has 12 neurons 

within it and a “sigmoid” activation parameter. The sigmoid activation function takes the input 

value and returns a value between zero and one. The larger the input value, the closer to one the 

output value will be. As expected, that means that the smaller the input value is, the closer to 

zero it will be. 

For the final layer, the output layer, there are a total of four neurons. This layer uses the 

SoftMax activation function. The SoftMax activation function assigns values to each neuron 

such that the total sum of all neurons in the layer is one. As mentioned before, this function 

distributes values between the four neurons such that the sum of all four neurons’ values will be 

one. Whichever of the neurons has the highest value determines which label the neural network 
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applies to this specific problem. For our specific project, this means that whichever of the 

neurons is the strongest will determine whether the data point is predicted to be a valley, 

downtrend, uptrend, or peak. 

Finally, Table 2 gives additional information about the layers. Namely, the first column 

shows the layer’s type. All of the layers of this model are dense, meaning that each neuron in the 

layer is connected to every neuron in the next layer. Additionally, this table shows the number of 

parameters that each layer has and the total amount of parameters in the model. Overall, this 

model structure is on the simpler side, but that is not necessarily a problem. If the model proves 

to be effective, then it does not matter how many layers it has. There is no set-in stone guideline 

for the number of layers required in a neural network. 

 

Table 1. Sequential Neural Network Layers 

Layer (type) Output Shape Param # 

input (Dense) (None, 16) 128 

hidden (Dense) (None, 12) 204 

output (Dense) (None, 4) 52 

Total Params: 384 

Trainable Params: 384 

Non-trainable Params: 0 
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Chapter 6  

 
Improving the Machine Learning Model 

6.1 Initial Accuracy 

With the model fully built, it was time to put it to the test. The first run of the model 

utilized Tesla stock data with a one-day time interval. Before the model was built and compiled, 

the Tesla data was split into two subsets. A training subset consisting of eighty percent of the 

original data and a testing subset containing the remaining twenty percent. The model is built and 

compiled using the training subset and then evaluated using the test subset. After roughly five 

initial runs, the average accuracy of the model was around thirty three percent. A deeper look 

into the model’s results reveals its pattern of guessing. For its predictions, it would always 

choose one label, whichever label had been the most used in the training data. Since the model 

was producing the same result, no matter the parameters, it indicated that the model did not have 

enough data to formulate a pattern. Thus, it would simply resort to continuously guessing based 

on what the most commonly correct answer during its training had been. To rectify this, the 

model needed more data points. With a larger number of data points, it would be easier for the 

model to analyze and decipher any patterns within the data. Switching to the fifteen-minute 

interval greatly increased the number of data points available and showed a startling increase in 

accuracy. The model went from a mere thirty-three percent to an average of eighty-seven 

percent. Likewise, the model produced accuracies in the nineties and near one hundred percent 

when utilizing the five-minute interval and one-minute intervals. For each of these time intervals, 

the data was first split into training and testing sets to be used for compilation and evaluation, 

respectively. No longer was the model purely guessing based on the most popular label in the 
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training data. The model was quite accurately establishing a pattern within the data and most of 

the time correctly predicting the label. However, there were occasional runs that would reach an 

accuracy of one hundred percent. While a high accuracy can be a good sign, a consistent 

accuracy of one hundred percent could be evidence of overfitting. Further discussion of 

overfitting and its relevance to the model will be discussed in Chapter 6.2. 

During these initial runs, the model had a slightly different layer composition than it does 

now. Namely, the second layer, known as the hidden layer, had a SoftMax activation function 

rather than a sigmoid activation function. This minor change in the model had quite an effect on 

the model’s accuracy and will be further discussed, along with the rationale for the change, in 

Chapter 6.3. 

6.2 Additional Validation Metrics 

While the initial accuracies are quite good, there are no details to them. To better 

understand the true accuracy of the model, several additional validation metrics were added that 

provide greater context for the accuracy scores. The first of these metrics is k-cross validation. 

To utilize k-cross validation, a given training dataset is split into k-number of equally sized 

datasets. Take our project for example, where the k value is five. As mentioned previously, the 

original data set is split into two subsets. There is the training dataset with a roughly eighty 

percent share of the original data and the testing dataset that contains the other twenty percent of 

the original data. For k-cross validation, the training dataset is further split into five equally sized 

subsets. For the first run, also known as a fold, the first four subsets of the training dataset are 

used for training and the fifth subset is reserved for validating the model. Once the model has 



27 
been compiled using the training and validation sets, it is evaluated using the test set that was put 

aside at the very start. Since this testing set has data that the model has never seen before, it 

provides more authentic accuracy metrics. The model is then completely discarded, rebuilt, and 

trained again, this time utilizing all the training subsets except the fourth, which is now the 

subset that is reserved for validation. As before, once the model has been compiled, it is 

evaluated using the testing set which this newly trained model has never seen before. These folds 

are repeated for the value of k, such that each training subset is used for validation once. The 

accuracy metrics from each of the model’s testing evaluations are then averaged to summarize 

the capability of the model. K-cross validation ensures that every data point is being used to test 

the model, without compromising the integrity of the accuracy score. Additionally, k-cross 

validation helps to avoid overfitting. In machine learning, overfitting is when a model has 

become too trained on a set of data, such that it will perform horribly on any new data and be 

unable to make accurate predictions.  

Furthermore, accuracy is not the only metric by which a model’s performance can be 

measured. Three of the most popular metrics are precision, recall, and F-1 score. Precision is 

calculated by dividing the number of true positives by the sum of the true and false positives and 

its formula can be seen in Figure 11b. Normally, precision is relied upon as a metric when the 

consequences of a false positive are rather detrimental. Imagine if a facial recognition model was 

used to find criminals. A false positive would have the potential to derail or even ruin an 

innocent person’s life. Then there is recall, which is calculated by dividing the true positives by 

the sum of the true positives and false negatives as shown in Figure 11c. Recall is the other side 

of the coin when compared to precision and is used when the consequences of a false negative 

are severe. An example of this would be a model that predicts whether a patient has cancer or 
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not. If the model were to report that a patient did not have cancer when they did, a false negative, 

it would be disastrous and potentially cost someone their life. Finally, there is the F-1 score 

metric that is calculated by dividing the product of precision and recall by the sum of precision 

and recall and multiplying all of that by a factor of two as seen in Figure 11d. The F-1 score 

settles in a niche between precision and recall, normally finding use when there is not an even 

distribution between the labels of a model. Ideally, precision and recall should be .75 or greater 

and the F-1 score should be as close to one as possible. In this project, both the consequences of 

a false positive and a false negative could be severe. Within the context of this project, both false 

positives and false negative could equate to improper trade actions. A false positive means a 

trade is marked where there should not be one and a false negative means that the model missed 

a lucrative trade price. Trading at the wrong time on the stock market could lead to significant 

losses or a significantly reduced gain. Therefore, an F-1 score would be a valuable metric to 

have. As discussed, the calculations for the F-1 score require both precision and recall; therefore, 

those metrics have also been tracked and displayed for the model. 

The final validation metric added to the model was a confusion matrix. A confusion 

matrix displays the predicted labels of the model in comparison to their true labels. Essentially, it 

shows where the model is going wrong. An example of a confusion matrix can be seen in Figure 

12. In this case, the model is mislabeling all valleys as downtrends, but accurately predicting 

every other label. Breaking down the model’s error in this way help to isolate potential problems 

with the model. In specific regards to the original model, the confusion matrix shows that the 

model mislabels valleys as downtrends, meaning that further tuning to the layers or the addition 

of parameters can be done to rectify this issue. 
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Figure 11. Validation Metrics Formulas 

 

Figure 12. Initial Model’s 1-Minute Confusion Matrix 

6.3 Current Accuracy 

In addition to the added validation metrics, there was one more tweak made to the model. 

As mentioned in Chapter 6.1, the hidden layer of the model previously employed a SoftMax 

activation function, but that has now been switched to a sigmoid activation function. Switching 

the activation function was done to better follow standard conventions. Normally, the SoftMax 

activation function is reserved for the output layer of a neural network. It was prudent to switch 

the hidden layer’s activation function to one that was better suited for use in a hidden layer. The 
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average accuracy, precision, recall, and F-1 scores of the folds with the current model structure 

for the fifteen-minute data interval are shown in Figure 13. The peak validation metrics are 

consistently strong, averaging a precision of .61, a recall of .8, and an F-1 score of .68. Likewise, 

the valley validation metrics average a precision of .67, recall of .8, and F-1 score of .73. 

Additionally, Figure 14 showcases the confusion matrix of one of the folds. These metrics 

increase to near one hundred percent values within the one-minute and five-minute data intervals 

of the Tesla and Apple stock datasets. Once again, this could be evidence of overfitting. It is 

possible that these intervals have too many data points. When a model trains too long on a single 

sample set of data, it can end up become too in tune to the data’s pattern and begin overfitting. 

Despite the high validation metrics for the one-minute, five-minute, and fifteen-minute 

intervals, and the possible overfitting of the five-minute and fifteen-minute intervals, the one-day 

interval is not nearly as accurate. The scores in Figure 15 show the average validation metrics for 

the Tesla stock when utilizing the one-day interval. As seen in Figure 16, the model has trouble 

identifying peaks and valleys after having been trained on the one-day data interval. This is a 

major problem, as the model identifies no peaks and no valleys. Peaks and valleys make up a 

disproportionally small portion of the dataset when compared to uptrends and downtrends, but 

they are the most vital labels. The peaks and valleys determine when a stock is sold and bought, 

respectively. If there are no peaks or valleys, then the model will never buy or sell a stock and it 

will continue to hold onto it forever unless a human force intervenes. However, the mislabeling 

is not as bad as it could be. Valleys are being mislabeled as downtrends and peaks are being 

mislabeled as uptrends. It would be far worse if the peaks were to be mislabeled as downtrends 

or valleys, as that would indicate a deeper problem with the model or the data itself. For now, the 
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one-day interval is simply unviable for training the model, but further research could seek to 

rectify this. Further details about future research potential can be found in Chapter 7.2. 

 

Figure 13. 15-Minute Validation Metrics 

 

Figure 14. Current Model's 15-Minute Confusion Matrix 
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Figure 15. Current Model's 1-Day Validation Metrics 

 

Figure 16. Current Model's 1-Day Confusion Matrix 

6.4 Simulating Paper Trading with the Current Model 

 With the model producing acceptable predictions, the next step was to truly test it 

through paper trading. Since the implementation of paper trading was done on a per fold basis, 

the final portfolio value was the average of all the fold’s ending portfolio values. To simulate 
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paper trading, the model fold is given a starting portfolio value. For this model, the starting 

portfolio value was set at $100,000. Once the model is trained within the fold, it moves on to 

making predictions on the unseen test set. As these predictions are made, the model can choose 

to buy stocks at valleys and sell them at peaks. The investment portfolio is updated for each trade 

to accurately reflect its value, with currently held stocks not being counted in its available 

capital. Additionally, there are standard safeguards put into place. Crucially, the model can only 

sell stocks if it has some in its possession. Currently, the model is set to buy and sell in groups of 

ten, but this variable can easily be tweaked. Due to the number of peaks and valleys in the data, a 

cooldown system is also in place. These are custom variables that dictate the amount of time 

between trades. For example, imagine that the price is approaching a peak. Without a cooldown, 

the model would instantly sell as soon as it predicts the first peak. However, this model does not 

predict a singular peak or valley, but rather a range of them. Therefore, it is more desirable for 

the model to wait for a few peaks to be detected before selling or for a few valleys to be detected 

before buying. That way, the trade happens closer to the highest peak or valley as they should be 

located closer to the middle of the predicted extrema range. By utilizing the cooldown variables, 

the model will ignore a specified number of peaks or valleys it detects before making a trade. 

When the model begins to predict downtrends or uptrends again, these cooldown variables are 

reset in anticipation of the next extrema cluster. Finally, once the model has reached the end of 

its test data, any stocks that are still held by the model are sold for the last price point available to 

completely liquidate the portfolio.  

 Four popular stocks were chosen for paper trading within this model: Tesla (TSLA), 

Apple (AAPL), Microsoft (MSFT), and Nvidia (NVDA). Each of these stocks were simulated in 

the folds of models built using the one-minute, five-minutes, fifteen-minute, and one-day data 
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intervals. Table 2 shows the average portfolio value for each stock’s models after simulating 

paper trading. Across every data interval, the model lost money using the Tesla stock. The Apple 

portfolio performed successfully on every interval except for the one-day interval. This is to be 

expected given the poor predictions made by the model on one-day interval data. For both the 

Microsoft and Nvidia stock data, the model was rather successful across all data intervals. One of 

the most peculiar results is the fifteen-minute portfolio for Microsoft. A further look, specifically 

at the confusion matrices, shows that the model was unable to predict valleys or peaks and as 

such never bought or sold any stocks, leaving the portfolio unchanged.  

 Overall, the results are quite promising, with ten out of the sixteen simulations producing 

gains. Of course, there is obviously still a lot of room for improvement. As previously 

mentioned, the model was limited to selling or buying ten stocks at a time, which limits both the 

potential gains and potential losses. For most of the losses, they are not the result of poor trades 

being made by the model. Instead, they result from the model being forced to liquidate its assets 

at the end of the dataset. Normally, the model would wait for another peak to appear, but the 

stocks need to all be liquidated once the end of the test set has been reached. The main outlier is 

the one-day Tesla portfolio. Namely, there is a fold that predicts all points as valleys. This tanks 

the average of the portfolio, as the other folds tend to perform quite normally, only reporting 

losses due to reaching the end of the test set. Since every point is predicted as a valley, that 

particular fold buys stocks when it most certainly should not, including when the price is at a 

peak. This is to be expected, given the poor accuracy of the one-day interval’s predictions. 

Without proper predictions, the paper trading is not going to perform well. The one-day interval 

is still considered unviable but was included in the paper trading simulations to give a complete 

picture of the model’s performance. 
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Table 2. Average Investment Portfolios After Paper Trading 

 

Stock Name 

 

 

One Minute 

Portfolio 

 

Five Minute 

Portfolio 

 

Fifteen Minute 

Portfolio 

 

One Day 

Portfolio 

 

Tesla (TSLA) 

 

 

$98,276.62 

 

$99,604.04 

 

$99,900.74 

 

$96,990.96 

 

Apple (AAPL) 

 

 

$102,853.36 

 

$100,688.86 

 

$100,072.30 

 

$99,574.18 

 

Microsoft 

(MSFT) 

 

$101,968.88 

 

$100,723.94 

 

$100,000 

 

$100,196.5 

 

Nvidia (NVDA) 

 

 

$101,377.56 

 

$101,344.72 

 

$100,448.18 

 

$100,546.58 

 

Chapter 7  

 
Conclusion 

7.1 Takeaways 

When examining the results of any project, the first thing to look at is the hypothesis. In 

Chapter 1, it was hypothesized that the machine learning model would be able to achieve an 

accuracy between sixty and seventy percent and make gains on fifty-five percent of tis paper 

trading simulations. This model exceeded the expectations set by the hypothesis when using any 

data interval other than the one-day one. The fifteen-minute interval produced an average overall 

accuracy in the low nineties. The one-minute and five-minute intervals produced accuracies near 

one hundred percent; however, overfitting seems to be a problem. Numerous additional 
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validation metrics were employed to gain a better understanding of these scores and the fifteen-

minute interval showed the most promise. The precision, recall, and F-1 scores are near the ideal 

thresholds. As previously mentioned, precision and recall should around .75 or greater and the F-

1 score should be as close to one as possible. As for the paper trading simulations, the model was 

able to produce gains in sixty-two and a half percent of its test runs, exceeding the anticipated 

fifty-five percent. These results are a strong indicator that machine learning is quite potent within 

the stock market. Of course, there are nuances to its validity and numerous questions, ideas, and 

improvements that could be explored in future research. 

One nuance of the machine learning model’s performance is the time interval of the 

dataset. Currently, the sequential neural network is able to achieve a near one hundred percent 

accuracy on the one-minute and five-minute intervals. However, that accuracy dips to an average 

of forty percent when the dataset has a one-day interval. As discussed in the previous chapter, 

Chapter 6.3, the confusion matrix shows that the model struggles to identify the peaks and 

valleys when using the one-day data interval. However, there is a small upside to the one-day 

interval accuracy. The model is misidentifying peaks as uptrends and valleys as downtrends. 

Obviously, a misidentification is never the ideal result; however, it is promising that the model 

still properly identifies the direction of the stock price perfectly. It would be much more alarming 

if the model misidentified a peak as a downtrend or especially if it were misidentified as a valley. 

Within the scope of this project, the one-day interval has shown to be suboptimal; however, it is 

not unsalvageable. Overall, even when utilizing the one-day interval, there were certain folds that 

showed impressive accuracy metrics. 

The main nuance to the model’s performance is due to the outstandingly high accuracy it 

is reporting on certain time intervals. Overfitting is a critical concern for this model. Despite the 
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implementation of k-cross validation, the model seems to be preforming too well. Overfitting can 

occur when the training set and test set are not properly separated. As mentioned in Chapter 3.1, 

separating the two sets is vital. Otherwise, the model is being tested on the problems that it 

already practiced. However, this does not appear to be the case for this model. The training and 

test datasets appear to be separating properly, as shown in Figure 17. Within Figure 17 are two 

arrays, there is the training data array on the left and the test data array on the right. Inside of the 

arrays are index numbers correlating to entries within the stock dataset. As can be seen, indexes 

are not appearing in both arrays and the training set is about four times as large as the testing set. 

This is indicative of a properly split data set. Additionally, the split preserves the order of the 

data, with the testing set containing the newest data from the original dataset. This is crucial for 

stock data as the order of the values needs to be preserved. If the model were to be continuously 

fed new data, it could help to definitively identify whether overfitting is occurring. This could be 

accomplished through the Alpaca API and is further detailed in the next chapter, Chapter 7.2. 

 

Figure 17. Training and Testing Dataset Split 
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7.2 Future Research Potential 

The results of this thesis project are certainly promising. Perhaps the most exciting aspect 

of this study is the potential questions that can be researched in the future. First, there is the 

improvements that could be made to the paper trading simulations. As previously mentioned in 

Chapter 3.2, paper trading is when someone or something participates in the stock market 

without using actual capital. It allows for a testing of mettle within the stock market without any 

of the real gain or real risk. The data collection for this project was done using the Alpaca API, 

which also has paper trading functionality. Within this study, the paper trading was simulated 

using the test subsets of the historical stock data gathered. Future studies could further augment 

the model with the Alpaca API and allow it to harvest real-time stock data and simulate paper 

trading with that data. Real-time harvesting covers a wider variety of market conditions and 

limitless test data. Such studies could also provide more insight into the possibility of an 

overfitting phenomenon occurring. 

Other future studies could further explore the one-day interval and determine what other 

layers need to be added or what other data processing needs to be done to bring it in line with the 

other time intervals. Alternatively, it could be a matter of data points. It could be that the one-day 

interval simply suffers because there are not enough data points for the machine learning model 

to properly establish a pattern within the data. Of course, those are simply ideas for future studies 

that build directly from this one. 
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ACADEMIC VITA 
 

NOLAN STEVENSON 
 

EDUCATION 

 The Pennsylvania State University 

 Bachelor of Engineering    Expected Graduation: May 2023 

 Major: Computer Science         Minor: Game Development                                                                   

 Academic Awards & Honors: Dean's List 2019-2023, National Honor Society, Behrend 

Honors Program, Schreyer Honors College 

ACADEMIC PROJECTS 

The Pennsylvania State University | Erie, PA 

Game Development Capstone - Chainbound     Spring 2023 

● Designed and implemented key game systems in Unity. 

● Led team meetings and delegated project duties. 

● Mentored three team members through pair programming. 

● Released as an open-source title. 

 

The Pennsylvania State University | Erie, PA 

 Schreyer Honors Thesis        Spring 2023 

● Harvested enormous quantities of data for an SQLite database. 

● Labeled the peaks and valleys of stock prices through three different indicators. 

● Predicted when to buy and sell stocks through a sequential neural network. 

 

The Pennsylvania State University | Erie, PA 

Penn State Behrend Wrestling Team Scraper    Spring 2023 

● Obtained massive quantities of data from numerous webpages. 

● Filtered data based on desired parameters. 

● Cataloged data into Excel spreadsheets for ease of use and organization 



 

 

The Pennsylvania State University | Erie, PA 

Advanced Game Design Final Project – Night    Spring 2022 

● Developed enemy behavior using state machines in Godot. 

● Created clean and informative User Interfaces. 

● Directed the opening cutscene. 

● Contributed to player animations and art assets. 

 

EXPERIENCE 

Tops Markets, LLC | Jamestown, NY 

Cashier        June 2017-Present 

● Received payment by cash, check, credit cards, vouchers, or automatic debits. 

● Answered customers’ questions and provided information on procedures or 

policies and item locations. 

● Updated price tags throughout the store on a weekly basis. 

 

RELATED COMPETENCIES & SKILLS 

● C | C++ | Java | Python 

● HTML | CSS | JavaScript | SpringBoot | Qt 

● MIPS | MARS | LOGISIM 

● Unity | Godot | C# | GDScript 

● GitHub | Gradle  

 


