
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF PHYSICS

CHAOS IN SEMI-CLASSICAL COSMOLOGICAL MODELS

MARIA LAN BRESSAN
SPRING 2023

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Physics
with honors in Physics

Reviewed and approved* by the following:

Martin Bojowald
Professor of Physics
Thesis Supervisor

Richard Robinett
Professor of Physics

Honors Adviser

* Electronic approvals are on file.

i

Abstract

Chaotic behavior has been observed in cosmological models but hasn’t been fully explored

yet. The purpose of the project is to investigate chaotic behavior in various cosmological models.

Adding quantum corrections to the cosmological models may affect the chaotic behavior. This will

be done by numerically solving the equations of motion given by different cosmological models

that exhibit chaos and observing the resulting trajectories. The goal is to better understand the

chaotic behavior of cosmological models and how adjusting the coefficient to our quantum correc-

tions affect the resulting behavior. In doing so, we can better understand parameters for the initial

conditions of the universe and the fluctuations in the CMB radiation.

ii

Table of Contents

List of Figures iv

List of Tables vi

Acknowledgements vii

Introduction 1

1.1 Geometry at Large Scales . 1

1.2 Cosmological Fluids . 2

Semi-Classical Model 4

2.1 Potential . 4

2.2 Semi-Classical Dynamics . 6

2.3 Cubic Term Coefficient . 8

Trajectories 11

3.1 Tunneling Trajectories . 11

Chaotic Behavior 14

4.1 Lattice Points . 14

Conclusion 17

Bibliography 18

iii

Appendix A

Python Code for Trajectories 19

Appendix B

Python Code for Lattice Plot 28

iv

List of Figures

2.1 Log of Potential, c = 0.0 . 8

2.2 Log of Potential, c = -0.2 . 8

2.3 Log of Potential, c = -0.4 . 8

2.4 Log of Potential, c = -0.6 . 8

2.5 Approximate left and right barries of potential. Adapted from Bojowald and Pe-

terson [1]. 9

2.6 Log of Potential, c = 0.0 . 10

2.7 Log of Potential, c = 0.2 . 10

2.8 Log of Potential, c = 0.4 . 10

2.9 Log of Potential, c = 0.6 . 10

3.10 Trajectory with y0 = (−0.1, 0, 0.1, 2.5), c = 0.1 12

3.11 Trajectory with y0 = (−0.1, 0, 0.1, 2.5), c = 0.2 12

3.12 Trajectory with y0 = (−0.1, 0, 0.1, 2.5), c = 0.3 12

3.13 Trajectory with y0 = (−0.1, 0, 0.1, 2.5), c = 0.4 12

3.14 Trajectory with y0 = (−0.1, 0, 0.1, 2.5), c = 0.5 12

3.15 Trajectory with y0 = (−0.1, 0, 0.1, 2.5), c = 0.6 12

3.16 Trajectory with y0 = (−0.4, 0, 0.8, 13.2), c = 0.9 13

4.17 Lattice Points, c = 0.1 . 14

4.18 Lattice Points, c = 0.5 . 14

4.19 Lattice Points, c = 0.2 . 15

v

4.20 Lattice Points, c = 0.4 . 15

4.21 Lattice Points, c = 0.6 . 15

4.22 Lattice Points, c = 0.8 . 15

vi

List of Tables

4.1 Fraction of Trajectories that Tunnel . 15

vii

Acknowledgements

I would like to thank Dr. Martin Bojowald for being an excellent thesis advisor and for inspir-

ing my interest in cosmology through his course on special and general relativity. His insightful

comments, constructive feedback, and support have been instrumental in the success of this thesis.

I would also like to thank Dr. Richard Robinett for being the most wonderful academic advisor

I could ask for. Furthermore, I would like to express my gratitude to the faculty, staff and students

at Penn State’s Department of Physics for making my undergraduate years extremely enriching

both academically and socially.

Lastly, I wish to thank my parents for their efforts in instilling a passion for learning from an

early age. Their sacrifices and encouragement have been critical in allowing me to pursue my

academic goals and have provided me with a strong foundation for success.

1

Introduction

Cosmological models have been the subject of intense study for many decades, as they provide

valuable insights into the early universe and its evolution. One particularly interesting phenomenon

that has been observed in these models is chaotic behavior. While this behavior has been seen in

various models, its implications and underlying mechanisms have not been fully explored. The

purpose of this project is to investigate chaotic behavior in different cosmological models and

assess how adding quantum corrections may affect this behavior. To achieve this, we will numeri-

cally solve the equations of motion for various early-universe models that exhibit chaotic behavior

and analyze the resulting trajectories. The ultimate goal of this research is to gain a deeper un-

derstanding of the chaotic behavior of cosmological models, particularly with respect to the initial

conditions of the universe and the fluctuations in the cosmic microwave background radiation. This

paper begins with a general overview of main concepts in cosmology and then focuses on deriving

the specific potential that we are investigating. We approximate this potential, adding a cubic term

which is the focus of analysis. Through this, we investigate the impact of the coefficient of the cu-

bic term in our approximation to chaotic behavior of this particular cosmological model, providing

insights into the nature of the early universe and its evolution.

1.1 Geometry at Large Scales

At large scales, the universe is isotropic and homogeneous. Maps of the cosmic background

radiation and the distribution of galaxies show that no one direction or position is preferred. There-

2

fore, the geometry of spacetime can be approximated by a line element of the form

ds2 = −dt2 + a2(t)dL2 (1.1)

where dL2 is the line element of a three-dimensional space that is time-independent, isotropic and

homogeneous [2]. These are called Robertson-Walker metrics. There are three possibilities for

Robertson-Walker metrics, the simplest of them being the flat Robertson-Walker metric. In polar

coordinates, it is

ds2 = −dt2 + a(t)(dr2 + r2(dθ2 + sin2 θdϕ2). (1.2)

The case where a(t) increases with time describes an expanding universe where the physical dis-

tance between two objects is defined as

d(t) = a(t)dcoord. (1.3)

We can then measure the Hubble constant

H0 =
ȧ(t0)

a(t0)
≈ 72 km/s/Mpc (1.4)

from experimental values and approximate the age of the universe with the Hubble time, tH =

1/H0 ≈ 13.6 Gyr.

1.2 Cosmological Fluids

In the Friedmann-Robertson-Walker (FRW) models, space is filled with three types of non-

interacting cosmological fluids: pressureless matter, radiation, and vacuum. We can use this to

determine how the scale factor a(t) depends on time. Applying the first law of thermodynamics

gives
d[ρ(t)a3(t)]

dt
= −p(t)

d[a3(t)]

dt
. (1.5)

3

A special case of the Friedman equation,

ȧ2 − 8πρ

3
a2 = 0 (1.6)

gives the relation between ρ, the total matter energy density, and a, the scale factor. In a matter

dominated universe, a(t) = (t/t0)
2/3, in a radiation dominated universe, a(t) = (t/t0)

1/2, and in a

vacuum dominated universe, a(t) = eH(t−t0) [3].

4

Semi-Classical Model

2.1 Potential

In this chapter, we motivate the potential of a semi-classical cosmological model used in the

analysis. We use a spatially isotropic cosmological model derived in Ref [1] with positive spatial

curvature and an energy density given by

ρ(a) = Λ +
σ

a
+ ρϕ (2.7)

where Λ < 0 and σ > 0. Using this energy density, the Friedmann equation becomes

ȧ2

a2
+

k

a2
=

8πF

3

(
Λ +

σ

a
+ ρϕ

)
(2.8)

and can be rewritten as

0 = ȧ2 + ω2(a− γ/ω)2 + k − γ2 − p̃2

a2
= ȧ2 + Uharmonic(a)−

p̃2

a4
(2.9)

where

Uharmonic(a) = ω2(a− γ/ω)2 + k − γ2 (2.10)

and

p̃ =

√
4πG

3
pϕ. (2.11)

5

Uharmonic(a) is a standard harmonic-oscillator potential with

ω =

√
−8πGΛ

3
(2.12)

and

γ =

√
−2πGσ2

3Λ
. (2.13)

We use canonical methods and therefore use the canonical momentum of a given by

pa = − 3

4πG
aȧ. (2.14)

to substitute for the scale factor. We perform a canonical transformation from a, pa to (α, pα) using

a logarithmic scale factor

α = ln(ωγa) (2.15)

which also gives

pα = apa = − 3

4πG
a2ȧ. (2.16)

We then have the energy equation for (α, pα) as

0 =
16

9
π2G2p2α +

1

ω4γ4
e4αUharmonic(a(α))− p̃2. (2.17)

The dynamical equation

0 = p2α + Up(α) (2.18)

is then obtained with the potential

Up(α) =
e4α

β2

(
k − 2eα +

e2α

γ2

)
− p2 (2.19)

where β and p are defined as

β =
4πG

3
ω2γ2 (2.20)

6

and

p =
3

4πG
p̃. (2.21)

2.2 Semi-Classical Dynamics

Semi-classical dynamics are obtained by interpreting variables like α and pα as expectation

values of corresponding operators in an evolving quantum state. If a potential is not harmonic, it

means that its variables are coupled to fluctuations, correlations, and higher moments, which leads

to dynamics in a configuration space of higher dimension. The coupling terms can be obtained by

applying a Poisson bracket to the moments and using them in the Hamiltonian expectation value,

calculated using the same state in which the moments were determined. We formulate the semi-

classical description using the expectation values of basic operators in a state coupled to higher

moments and fluctuations,

∆(αapbα) =
〈
(α̂− ⟨α̂⟩)a(p̂α − ⟨p̂α⟩)b

〉
symm (2.22)

in symmetric ordering. We define the Poisson bracket to be

{〈
Â
〉
,
〈
B̂
〉}

=

〈[
Â, B̂

]〉
iℏ

(2.23)

and extend it to moments using the Leibniz rule to obtain a phase-space structure. The Poisson

bracket of moments is non-canonical meaning the Jacobi identity is not satisfied. For example,

{∆(α2),∆(p2α)} = 4∆(αpα). We apply a transformation from three dimensional space of second-

order moments to new variables (s, ps, U), such that

∆(α2) = s2 (2.24)

∆(αpα) = sps (2.25)

7

and

∆(p2α) = p2s +
U

s2
. (2.26)

Taylor expanding Eqn. (2.19) gives the momentum-corrected constraint

0 =
〈
p̂α

2
〉
+∆(p2α) + Up(⟨α̂⟩) + Σinf

n=2

1

n!

dnUp(⟨α̂⟩)
d ⟨α̂⟩n

∆(αn). (2.27)

Including moments of second order and using the new variables (s, ps, U), we have or semiclassical

constraint,

0 = p2α + p2s +
U

s2
+ Up(α) +

1

2
U

′′

p (α)s
2. (2.28)

This can be approximated using an all-orders closure proposed in Ref [4] where

∆(αn) = sn (2.29)

for even n and

∆(αn) = 0 (2.30)

for odd n. Using this closure, Eqn. (2.19) becomes

0 = p2α + p2s +
U

s2
+

1

2
(Up(α + s) + Up(α− s)) . (2.31)

The approximation is further improved when we include a cubic and quartic term in s such that

0 = p2α + p2s +
U

s2
+

1

2
(Up(α + s) + Up(α− s)) +

1

12
U

′′′′
s4 + cU

′′′
s3. (2.32)

The quartic term brings the approximation closer to gaussian form, such that ∆(α4) = 3s4 instead

of ∆(α4) = s4, while the cubic term is the first non-gaussian contribution.

8

2.3 Cubic Term Coefficient

In Ref [1], the constraint in Eqn. (2.32) is studied without the final cubic term. The main focus

of this analysis is to study how the addition of the cubic term and the adjustment of its coefficient

affects the tunneling dynamics. Figure 2.1 shows the logarithm of the potential without the cubic

Figure 2.1: Log of Potential, c = 0.0 Figure 2.2: Log of Potential, c = -0.2

Figure 2.3: Log of Potential, c = -0.4 Figure 2.4: Log of Potential, c = -0.6

term (c = 0). We can define left and right barriers approximated in Ref [1] to characterize trajec-

tories of particles in this potential. These barriers are shown in Figure 2.5 and are approximated

by

αmax(s) ≈ ln(2k/5)− s (2.33)

αleft(s) ≈ ln(k/2)− s (2.34)

and

αright(s) ≈ ln(2γ2)− s. (2.35)

9

Figure 2.5: Approximate left and right barries of potential. Adapted from Bojowald and Peterson
[1].

Trajectories that cross the green line, αleft are considered tunneling trajectories. Additionally,

we call the region between αleft and the red line, αright, a channel. Trajectories that start in the

channel will often remain there as s increases and α decreases.

Figures 2.3-2.4 show the logarithm of the potential with varying negative coefficients. The

green regions represent negative potential and the blue regions represent positive potential. Tra-

jectories start with zero total energy so they are restricted to the green region. As the coefficient

becomes more negative, the channel becomes less pronounced. It is not clear to define a region

that trajectories can tunnel out of. Therefore, the focus of analysis is on positive values for the

coefficient.

Figures 2.6-2.9 show the logarithmic of the potential with varying positive coefficients. As the

coefficient increases, it is no longer possible for trajectories that start near the origin to travel up

the channel. Trajectories that grow to large s within the channel are not well approximated by

our constraint. Therefore, we restrict the tunnelling analysis to the region around the origin where

−1.5 < α < 0 and 0 < s < 1.5.

10

Figure 2.6: Log of Potential, c = 0.0 Figure 2.7: Log of Potential, c = 0.2

Figure 2.8: Log of Potential, c = 0.4 Figure 2.9: Log of Potential, c = 0.6

11

Trajectories

3.1 Tunneling Trajectories

We analyze the trajectories resulting from the potential with different coefficients for the cubic

term. This is done with python by numerically solving the Hamiltonian. The particles have zero

energy so the initial constraint is that H = 0. The Hamiltonian is given by

H = p2α + p2s +
U

s2
+

1

2
(Up(α + s) + Up(α− s)) +

1

12
U

′′′′
s4 + cU

′′′
s3 (3.36)

and we numerically solve for the trajectories using Hamilton’s equations,

α̇ =
∂H(α, pα, s, ps)

pα
(3.37)

ṗα =
∂H(α, pα, s, ps)

α
(3.38)

ṡ =
∂H(α, pα, s, ps)

ps
(3.39)

and

ṗs =
∂H(α, pα, s, ps)

s
. (3.40)

Figures 3.10-3.15 show the resulting trajectories with initial conditions α = −0.1, pα = 0, and

s = 0.1, and varying coefficients c. We obtain the initial value of ps by solving H = 0 with

the other three initial variables. The python code used to produce these trajectories is supplied

12

in appendix A. For the trajectories in Figures 3.10-3.16, ps varies slightly but is approximately

2.5. The orange line shows the trajectory in positive time and the blue line shows the trajectory

in negative time. When c = 0.1, the trajectory escapes in negative time and when c = 0.3, the

trajectory escapes in both positive and negative time.

Figure 3.10: Trajectory with
y0 = (−0.1, 0, 0.1, 2.5), c = 0.1

Figure 3.11: Trajectory with
y0 = (−0.1, 0, 0.1, 2.5), c = 0.2

Figure 3.12: Trajectory with
y0 = (−0.1, 0, 0.1, 2.5), c = 0.3

Figure 3.13: Trajectory with
y0 = (−0.1, 0, 0.1, 2.5), c = 0.4

Figure 3.14: Trajectory with
y0 = (−0.1, 0, 0.1, 2.5), c = 0.5

Figure 3.15: Trajectory with
y0 = (−0.1, 0, 0.1, 2.5), c = 0.6

13

Figure 3.16: Trajectory with
y0 = (−0.4, 0, 0.8, 13.2), c = 0.9

The trajectory shown in Figure 3.16 is an example of one that escapes in both negative and

positive time. As the particle exits the channel bound by αleft, its trajectory is largely unchanged

and it acts like a free particle.

There is no clear way to predict if the trajectory will escape or not. The qualitative outcome of

the trajectory is extremely sensitive to the initial conditions and this chaotic behavior is the focus

of discussion in the next chapter. We discuss how the probability of tunneling is affected by the

coefficient of the cubic term.

14

Chaotic Behavior

4.1 Lattice Points

To study the chaotic behavior of the trajectories and their sensitivity to initial conditions, we

take a lattice of initial condition points and characterize the trajectories qualitatively. A trajectory

escapes if it crosses to the left of the green line approximation, αleft. The trajectories that don’t

escape are red, those that escape in either positive or negative time are blue, and those that escape

in both positive and negative time are green. The code for this algorithm is provided in appendix

B.

Figure 4.17: Lattice Points, c = 0.1 Figure 4.18: Lattice Points, c = 0.5

Figures 4.17 and 4.18 show the characterization of lattice points for coefficients of 0.1 and 0.5

respectively. In the area around −2 < α < 0 and 0 < s < 2, the outcome of the trajectories is

sensitive to initial conditions and trajectories will randomly tunnel out.

15

Figure 4.19: Lattice Points, c = 0.2 Figure 4.20: Lattice Points, c = 0.4

Figure 4.21: Lattice Points, c = 0.6 Figure 4.22: Lattice Points, c = 0.8

Figures 4.19-4.22 show the characterization of points in the region of interest for different

coefficients. We can compare the fraction of points within the channel that tunnel for different

coefficients, given in table 4.1.

Coefficient Red Blue Green

0.1 0.6413 0.2448 0.1139
0.2 0.7600 0.1724 0.0676
0.4 0.8565 0.1297 0.0138
0.6 0.8877 0.0959 0.0164
0.8 0.8964 0.0965 0.0071
1.0 0.9133 0.0843 0.0024

Table 4.1: Fraction of Trajectories that Tunnel

We observe that a smaller coefficient for the potential term corresponds to a higher fraction, or

16

probability, of tunneling outside of the region. This is consistent with a widened trapped region

and smaller gap to escape for the larger coefficient shown in the potential in Figure 4.19 compared

to the smaller coefficient shown in Figure 4.22. Note that the absolute value of the probability

of escaping is likely dependent on time steps and end time used in the numerical integration of

the Hamiltonian. For this particular analysis, we chose 100 time steps and ended at time t = 50.

A longer end time would likely correlate to a higher fraction of escaping trajectories. However,

the relative probability between two different coefficients is still a good indication of tunneling

probabilities because the same value for the time steps and end time were used throughout the

numerical computations.

17

Conclusion

The addition of a cubic term to our approximation of the semi-classical cosmological model

exhibits chaotic behavior in the trajectories of zero-energy particles. As the coefficient of the cubic

term increases, the negative region of the potential changes shape and the resulting trajectories

change. Various trajectories were studied and their outcomes were qualitatively classified.

With approximately the same initial point, varying the coefficient of the cubic term changed the

outcome in an unpredictable way. Because the system is so sensitive to initial conditions, changing

the coefficient changed the initial condition very slightly to maintain the H = 0 constraint and

therefore varied the trajectory drastically.

The most direct way to analyze the chaotic nature of the trajectories is through classifying

the tunneling of a lattice of initial points. This was done by defining three types of trajectories:

trajectories that escape to the left, trajectories that escape to the right, and trajectories that do not

escape. There was large variability in the outcome of trajectories starting from certain areas of

the potential and a finer lattice was probed in the area of interest. Within the finer lattice, varying

outcomes were also exhibited, suggesting that the true pattern is fractal.

The main result is observing how the cubic term changes the potential, the resulting trajectories,

and the chaotic nature of the system. A larger coefficient for the cubic term cooresponds to a

lower probability of tunneling. Additionally, the chaotic nature of the system suggests that fractal

behavior and a fractal dimension can be observed, as calculated for another potential by Cornish

and Levin [5]. The analysis could be furthered by using a finer lattice and calculating this fractal

dimension.

18

Bibliography

[1] Martin Bojowald and Pip Petersen. Tunneling dynamics of an oscillating universe model.

Journal of Cosmology and Astroparticle Physics, 2022(05):007, may 2022.

[2] Martin Bojowald. Canonical description of quantum dynamics. Journal of Physics A: Mathe-

matical and Theoretical, 55(50):504006, dec 2022.

[3] James B. Hartle. Gravity: An introduction to einstein’s general relativity. American Journal

of Physics, Oct 2003.

[4] Bekir Bayta, Martin Bojowald, and Sean Crowe. Canonical tunneling time in ionization ex-

periments. Physical Review A, 98(6), dec 2018.

[5] Neil J. Cornish and Janna J. Levin. Mixmaster universe: A chaotic farey tale. Physical Review

D, 55(12):7489–7510, jun 1997.

19

Appendix A

Python Code for Trajectories

1 import numpy as np

2 from scipy.integrate import odeint

3 import matplotlib.pyplot as plt

4 import math

5 from sympy import *

6 from matplotlib import cm

7 import argparse

8 import pickle

9 import time

10 start_time = time.time()

11

12 ’’’

13 Initial values and coefficent are parsed.

14 Goes for negative and positive times

15

16 Creates three figures:

17 1. trajs_... Subplots of a, pa, s, ps vs t

18 2. traj_... plots trajectory, s vs a

19 3. potent_... log of potential ’’’

20

21 parser = argparse.ArgumentParser()

20

22 parser.add_argument(’a0’, type=str)

23 parser.add_argument(’pa0’, type=str)

24 parser.add_argument(’s0’, type=str)

25 parser.add_argument(’coeff’, type=str)

26 args = parser.parse_args()

27

28 timesteps = 200

29 end_time = 50

30 pixels = 500

31

32 t = np.linspace(0,end_time,timesteps)

33 t_plot = np.linspace(-end_time,end_time,2*timesteps)

34 # note that graph is slightly off: the value at t=0 occurs twice

35

36 ln = False # Create ln plot of potential?

37 pickles = False # Pickle dump ln plot?

38 traj = True # Create plot of traj? (s vs alpha)

39 trajs = False # Create plot of trajs? (a, pa, s, ps vs t)

40 overlay = True # Should traj plot be overlayed with potential?

41 ##

42

43 x = Symbol(’x’)

44 a = Symbol(’a’)

45 pa = Symbol(’pa’)

46 s = Symbol(’s’)

47 ps = Symbol(’ps’)

48

49 var = [x, a, pa, s, ps]

50

51 def Up(x):

52 b= 0.1

53 k=1.0

54 g= 1.05

21

55 p=1.0

56 var = [x]

57 Up = exp(4*x)/b**2*(k-2*exp(x)+exp(2*x)/g**2)-p**2

58 return Up

59

60 def H(a,pa,s,ps,coeff):

61 var = [a,pa,s,ps]

62 U = 10**(-2)/4

63 return pa**2+ps**2+U/(s**2)+(1/2)*(Up(a+s)+Up(a-s))+1/12*diff(diff(diff(

diff(Up(a),a),a),a),a)*s**4+coeff*diff(diff(diff(Up(a),a),a),a)*s**3

64

65 def ps0_solve(a0,pa0,s0,coeff):

66 var = [x]

67 U = 10**(-2)/4

68 Up_plus = Up(x).subs(x,a0+s0)

69 Up_minus = Up(x).subs(x,a0-s0)

70 U_ppp = diff(diff(diff(Up(x),x),x),x).subs(x,a0)

71 U_pppp = diff(diff(diff(diff(Up(x),x),x),x),x).subs(x,a0)

72 return (-(pa0**2+U/s0**2+(1/2)*(Up_plus+Up_minus)+1/12*U_pppp*s0**4+coeff*

U_ppp*s0**3))**(1/2)

73

74 def PotPlot(anum,snum,coeff):

75 var = [x]

76 U = 10**(-2)/4

77 Up_plus = Up(x).subs(x,anum+snum)

78 Up_minus = Up(x).subs(x,anum-snum)

79 U_ppp = diff(diff(diff(Up(x),x),x),x).subs(x,anum)

80 U_pppp = diff(diff(diff(diff(Up(x),x),x),x),x).subs(x,anum)

81 H = U/snum**2+(1/2)*(Up_plus+Up_minus)+1/12*U_pppp*snum**4+coeff*U_ppp*

snum**3

82 return H

83

84 def potent(y,t):

22

85 var = [a,pa,s,ps]

86 #Determines the canonical equations

87 adot = expand(diff(H(a,pa,s,ps,coeff),pa))

88 padot = expand(-diff(H(a,pa,s,ps,coeff),a))

89 sdot = expand(diff(H(a,pa,s,ps,coeff),ps))

90 psdot = expand(-diff(H(a,pa,s,ps,coeff),s))

91 #Creates an array for each of the solved canonical variable outputs

92 for i in range(4):

93 adot = adot.subs(var[i],y[i])

94 padot = padot.subs(var[i],y[i])

95 sdot = sdot.subs(var[i],y[i])

96 psdot = psdot.subs(var[i],y[i])

97 return[adot,padot, sdot, psdot]

98

99 coeff_str = args.coeff

100 coeff = float(args.coeff)

101 a0 = float(args.a0)

102 pa0 = float(args.pa0)

103 s0 = float(args.s0)

104 ps0 = float(ps0_solve(a0,pa0,s0,coeff)) #solve for ps0 by setting H=0

105 y0str = np.array([args.a0,args.pa0,args.s0,str(round(ps0,1))])

106 y0= np.array([a0,pa0,s0,ps0]) #initial conditions (a,pa,s,ps)

107 y0_neg = np.array([a0,-pa0,s0,-ps0])

108

109 print(’begin cubic.py’)

110

111 savedata = ’(’+y0str[0]+’,’+y0str[1]+’,’+y0str[2]+’,’+y0str[3]+’)_coeff=’ +

coeff_str

112 print(’savedata: ’+savedata)

113

114

115 if traj or trajs:

116 print(’begin odeint for y0’)

23

117 y = odeint(potent,y0,t)

118 print(’begin odeint for y0_neg’)

119 y_neg = odeint(potent,y0_neg,t)

120 print(’end odeint’)

121

122 a= np.flip(y_neg[:,0],0)

123 pa= np.flip(y_neg[:,1],0)

124 s= np.flip(y_neg[:,2],0)

125 ps= np.flip(y_neg[:,3],0)

126

127 a=np.append(a,y[:,0])

128 pa=np.append(pa,y[:,1])

129 s=np.append(s,y[:,2])

130 ps=np.append(ps,y[:,3])

131

132 if trajs:

133 fig,axs=plt.subplots(6)

134 fig.suptitle(’Trajectories, y0=(’+y0str[0]+’,’+y0str[1]+’,’+y0str[2]+’,’+

y0str[3]+’), coeff=’ +str(coeff))

135 fig.set_figheight(20)

136 fig.set_figwidth(10)

137 axs[0].set_title("a", fontsize=20)

138 axs[1].set_title("pa", fontsize=20)

139 axs[2].set_title("s", fontsize=20)

140 axs[3].set_title("ps", fontsize=20)

141 axs[4].set_title("Potential", fontsize=20)

142 axs[5].set_title("H", fontsize=20)

143 plt.xlabel("time", fontsize=10)

144 plt.ylabel(" ", fontsize=10,verticalalignment=’center’,y=2.5)

145

146 W_plot = []

147 H_plot = []

148 for i in range(len(a)):

24

149 W_plot.append(PotPlot(a[i],s[i],coeff))

150 H_plot.append(PotPlot(a[i],s[i],coeff)+pa[i]**2+ps[i]**2)

151

152

153 axs[0].plot(t_plot,a)

154 axs[1].plot(t_plot,pa)

155 axs[2].plot(t_plot,s)

156 axs[3].plot(t_plot,ps)

157 axs[4].plot(t_plot,W_plot)

158 axs[5].plot(t_plot,H_plot)

159

160 fig.savefig(’trajs_’+savedata+ ’.png’)

161 print(’saved fig: ’+ ’trajs_’+savedata+ ’.png’)

162 plt.clf()

163

164 if traj:

165 fig = plt.figure()

166 ax = plt.axes()

167 ax.plot(a[0:int(len(a)/2)], s[0:int(len(s)/2)], label=’t<0’)

168 ax.plot(a[int(len(a)/2):len(a)], s[int(len(s)/2):len(s)], label = ’t>0’)

169 ax.legend()

170 plt.xlabel(r’α’)

171 plt.ylabel(’s’)

172 plt.title(’Trajectory, y0=(’+y0str[0]+’,’+y0str[1]+’,’+y0str[2]+’,’+y0str

[3]+’), coeff=’ +str(coeff))

173 if overlay:

174 bounds = [np.min(a),np.max(a),np.min(s),np.max(s)]

175 #anum = np.linspace(bounds[0]-0.1*abs(np.min(a)-np.max(a)),bounds

[1]+0.1*abs(np.min(a)-np.max(a)),pixels)

176 #snum = np.linspace(bounds[2]-0.1*abs(np.min(s)-np.max(s)),bounds

[3]+0.1*abs(np.min(s)-np.max(s)),pixels)

177 with open(’vars/anum_’+str(coeff), ’rb’) as f:

178 anum = pickle.load(f)

25

179 with open(’vars/snum_’+str(coeff), ’rb’) as f:

180 snum = pickle.load(f)

181 with open(’vars/p_’+str(coeff), ’rb’) as f:

182 pos = pickle.load(f)

183 with open(’vars/n_’+str(coeff), ’rb’) as f:

184 neg = pickle.load(f)

185 ### If potential is not stored in file: ###

186 ’’’anum = np.linspace(-5,0.5,pixels)

187 snum = np.linspace(0,4,pixels)

188 pos = np.empty((len(anum),len(snum)))

189 neg = np.empty((len(anum),len(snum)))

190 pos[:] = np.NaN

191 neg[:] = np.NaN

192 for p in range(len(anum)):

193 for m in range(len(snum)):

194 value = PotPlot(anum[p],snum[m],coeff)

195 #print("value: ",value)

196 #print(math.isnan(value))

197 if not math.isnan(value):

198 if value > 0:

199 pos[-m-1,p]= math.log(value)

200 if value<0:

201 neg[-m-1,p]= math.log(-value)’’’

202 snum, anum = np.meshgrid(snum, anum)

203

204 plt.imshow(pos, extent =[anum.min(), anum.max(), snum.min(), snum.max

()], cmap=’Blues’)

205 plt.imshow(neg, extent =[anum.min(), anum.max(), snum.min(), snum.max

()], cmap=’Greens’)

206 fig.savefig(’traj_y0=’+savedata+ ’.png’)

207 else:

208 fig.savefig(’traj_y0=’+savedata+ ’.png’)

209 print(’saved fig: ’+’traj_y0=’+savedata+ ’.png’)

26

210 plt.clf()

211

212

213 #ln of potential and plot

214 ###

215 if ln:

216 print(’begin ln’)

217 if coeff == 0.1:

218 amin = -1.8

219 smax = 1.9

220 elif coeff == 0.2:

221 amin = -1.7

222 smax = 1.9

223 elif coeff == 0.3:

224 amin = -1.6

225 smax = 1.8

226 elif coeff >= 0.4:

227 amin = -1.5

228 smax = 1.7

229 else:

230 print(’coeff error: ’, coeff)

231 anum = np.linspace(amin,0.5,pixels)

232 snum = np.linspace(0,smax,pixels)

233

234 pos = np.empty((len(anum),len(snum)))

235 neg = np.empty((len(anum),len(snum)))

236 pos[:] = np.NaN

237 neg[:] = np.NaN

238 for i, p in enumerate(range(len(anum))):

239 print(str(i)+’ out of ’+str(pixels))

240 for m in range(len(snum)):

241 value = PotPlot(anum[p],snum[m],coeff)

242 if value > 0:

27

243 pos[-m-1,p]= math.log(value)

244 if value<0:

245 neg[-m-1,p]= math.log(-value)

246 if pickles:

247 print(’begin pickle dumping’)

248 with open(’vars/p_’+str(coeff), ’wb’) as f:

249 pickle.dump(pos,f)

250 with open(’vars/n_’+str(coeff),’wb’) as f:

251 pickle.dump(neg,f)

252 with open(’vars/anum_’+str(coeff), ’wb’) as f:

253 pickle.dump(anum,f)

254 with open(’vars/snum_’+str(coeff), ’wb’) as f:

255 pickle.dump(snum,f)

256 snum, anum = np.meshgrid(snum, anum)

257

258 fig = plt.figure()

259 ax=plt.axes()

260 ax.set_title(’Log of Potential, coeff=’+coeff_str)

261 ax.imshow(pos, extent =[anum.min(), anum.max(), snum.min(), snum.max()],

cmap=’Blues’)

262 ax.imshow(neg, extent =[anum.min(), anum.max(), snum.min(), snum.max()],

cmap=’Greens’)

263 ax.set_xlabel(r’α’)

264 ax.set_ylabel(’s’)

265 fig.savefig(’potent_’+str(coeff)+’.png’)

266 print(’saved fig: ’+ ’potent_’+str(coeff)+’.png’)

267

268 print("complete in "+str(round((time.time() - start_time)/60,2))+" min")

269

270 ###

28

Appendix B

Python Code for Lattice Plot

1 import numpy as np

2 from scipy.integrate import odeint

3 import matplotlib.pyplot as plt

4 import math

5 from sympy import *

6 from sympy import Symbol

7 from sympy import pi

8 from sympy import exp

9 import time

10 import argparse

11

12 parser = argparse.ArgumentParser()

13 parser.add_argument(’points’, type=int)

14 parser.add_argument(’tsteps’, type=int)

15 parser.add_argument(’tend’, type=int)

16 args = parser.parse_args()

17

18 start_time = time.time()

19 tsteps = args.tsteps

20 points = args.points

21 tend = args.tend

29

22

23 coeff = 0.1

24 t = np.linspace(0,tend,tsteps)

25 outfilename = ’lr_points’+str(points)+’_tsteps’+str(tsteps)+’_tend’+ str(tend)

+’_coeff’+str(coeff)+’.png’

26 print(outfilename)

27 ### Characterizes initial conditions for a lattice of points: no escape,

escape to the left, escape to the right ###

28 ##

29

30 x = Symbol(’x’)

31 a = Symbol(’a’)

32 pa = Symbol(’pa’)

33 s = Symbol(’s’)

34 ps = Symbol(’ps’)

35

36 var = [x, a, pa, s, ps]

37 k = 1.0

38 g = 1.05

39

40 def Up(x):

41 b= 0.1

42 k=1.0

43 g= 1.05

44 p=1.0

45 var = [x]

46 Up = exp(4*x)/b**2*(k-2*exp(x)+exp(2*x)/g**2)-p**2

47 return Up

48

49 def H(a,pa,s,ps,coeff):

50 var = [a,pa,s,ps]

51 U = 10**(-2)/4

52 return pa**2+ps**2+U/s**2+(1/2)*(Up(a+s)+Up(a-s))+1/12*diff(diff(diff(diff

30

(Up(a),a),a),a),a)*s**4+coeff*diff(diff(diff(Up(a),a),a),a)*s**3

53

54 def ps0_solve(a0,pa0,s0,coeff):

55 var = [x]

56 U = 10**(-2)/4

57 Up_plus = Up(x).subs(x,a0+s0)

58 Up_minus = Up(x).subs(x,a0-s0)

59 U_ppp = diff(diff(diff(Up(x),x),x),x).subs(x,a0)

60 U_pppp = diff(diff(diff(diff(Up(x),x),x),x),x).subs(x,a0)

61 return (-(pa0**2+U/s0**2+(1/2)*(Up_plus+Up_minus)+1/12*U_pppp*s0**4+coeff*

U_ppp*s0**3))**(1/2)

62

63 def PotPlot(anum,snum,coeff):

64 var = [x]

65 U = 10**(-2)/4

66 Up_plus = Up(x).subs(x,anum+snum)

67 Up_minus = Up(x).subs(x,anum-snum)

68 U_ppp = diff(diff(diff(Up(x),x),x),x).subs(x,anum)

69 U_pppp = diff(diff(diff(diff(Up(x),x),x),x),x).subs(x,anum)

70 W = U/snum**2+(1/2)*(Up_plus+Up_minus)+1/12*U_pppp*snum**4+coeff*U_ppp*

snum**3

71 return W

72

73 def potent(y,t):

74 var = [a,pa,s,ps]

75 #Determines the canonical equations

76 adot = expand(diff(H(a,pa,s,ps,coeff),pa))

77 padot = expand(-diff(H(a,pa,s,ps,coeff),a))

78 sdot = expand(diff(H(a,pa,s,ps,coeff),ps))

79 psdot = expand(-diff(H(a,pa,s,ps,coeff),s))

80 #Creates an array for each of the solved canonical variable outputs

81 for i in range(4):

82 adot = adot.subs(var[i],y[i])

31

83 padot = padot.subs(var[i],y[i])

84 sdot = sdot.subs(var[i],y[i])

85 psdot = psdot.subs(var[i],y[i])

86 return[adot,padot, sdot, psdot]

87

88 #solve for ps0 by setting H=0

89 a_range = np.linspace(-1.5,0,points)

90 s_range = np.linspace(0,1.5,points)

91 ps_vals = []

92 panum = 0

93

94 print(’begin fractal_lr.py’)

95

96 a_list = []

97 pa_list = []

98 s_list = []

99 ps_list = []

100 aneg_list = []

101 paneg_list = []

102 sneg_list = []

103 psneg_list = []

104 grid = np.zeros((len(s_range),len(a_range)))

105 grid[:] = np.NaN

106 color_list = [’Red’, ’Green’, ’Blue’, ’Purple’]

107 count = 0

108 fig = plt.figure()

109

110 for a_index in range(len(a_range)):

111 for s_index in range(len(s_range)):

112 anum = a_range[a_index]

113 snum = s_range[s_index]

114 ps0 = ps0_solve(anum,panum,snum,coeff)

115 if type(ps0) != Mul:

32

116 psnum = float(ps0)

117 ps_vals.append(psnum)

118 y0= np.array([anum,panum,snum,psnum]) #initial conditions (a,pa,

s,ps)

119 y0neg = np.array([anum, -panum, snum, -psnum])

120 y = odeint(potent,y0,t)

121 yneg = odeint(potent,y0neg,t)

122

123 a_list.append(y[:,0])

124 pa_list.append(y[:,1])

125 s_list.append(y[:,2])

126 ps_list.append(y[:,3])

127 aneg_list.append(yneg[:,0])

128 paneg_list.append(yneg[:,1])

129 sneg_list.append(yneg[:,2])

130 psneg_list.append(yneg[:,3])

131

132 VALUE = 0 #value of 0 (Red) is no escape; 1 (green) is left, 2 (

blue) is right

133 if y[-1,0] < math.log(k/2)-y[-1,2] or yneg[-1,0] < math.log(k/2)-

yneg[-1,2]:

134 VALUE = 1

135 elif y[-1,0] > math.log(2*g**2)-y[-1,2] or yneg[-1,0] > math.log

(2*g**2)-yneg[-1,2]:

136 VALUE = 2

137 grid[a_index,s_index] = VALUE

138 plt.scatter(anum,snum, color=color_list[VALUE])

139 count +=1

140 print(str(count) + ’/’+str(points**2)+ ’ completed in ’ + str(

round((time.time() - start_time)/60,2)) +’ min: (’+str(anum)+’,’+str(panum

)+’,’+str(snum)+ ’,’+str(round(ps0,1))+’), value=’+str(VALUE))

141 else:

142 count+=1

33

143 print(str(count) + ’/’+str(points**2)+ ’ is imaginary: (’+str(anum

)+’,’+str(panum)+’,’+str(snum)+str(ps0)+’)’)

144

145 bounds = [np.min(a_range),np.max(a_range),np.min(s_range),np.max(s_range)]

146 anum = np.linspace(bounds[0]-0.1*abs(np.min(a_range)-np.max(a_range)),bounds

[1]+0.1*abs(np.min(a_range)-np.max(a_range)),100)

147 snum = np.linspace(bounds[2]-0.1*abs(np.min(s_range)-np.max(s_range)),bounds

[3]+0.1*abs(np.min(s_range)-np.max(s_range)),100)

148

149 pos = np.empty((len(anum),len(snum)))

150 neg = np.empty((len(anum),len(snum)))

151 pos[:] = np.NaN

152 neg[:] = np.NaN

153 for p in range(len(anum)):

154 for m in range(len(snum)):

155 value = PotPlot(anum[p],snum[m],coeff)

156 if value > 0:

157 pos[-m-1,p]= math.log(value)

158 if value<0:

159 neg[-m-1,p]= math.log(-value)

160 snum, anum = np.meshgrid(snum, anum)

161 plt.imshow(pos, extent =[anum.min(), anum.max(), snum.min(), snum.max()], cmap

=’Blues’)

162 plt.imshow(neg, extent =[anum.min(), anum.max(), snum.min(), snum.max()], cmap

=’Greens’)

163 plt.title(’Characterization of Trajectories’)

164 fig.savefig(outfilename+’.png’)

 Maria Lan Bressan

EDUCATION
The Pennsylvania State University, Schreyer Honors College University Park, PA
Eberly College of Science Expected Graduation: May 2023
B.S. in Physics, Minor in Mathematics

RESEARCH EXPERIENCE
Pennsylvania State University University Park, PA
Senior Thesis Research January 2022 – Current

• Investigating chaos in quantum cosmological models under Martin Bojowald from Penn State’s
Department of Physics.

• Numerically solving hamiltonians with Python and MATLAB to study dynamics.

U.S. State Department CERN Program Meyrin, Switzerland
Research Intern September 2022 – December 2022

• Analyzing QCD Instantons with the ATLAS collaboration under Tancredi Carli to either measure or
set limits on its cross section.

• Studying the applications of neural networks and algorithms that identify b-hadrons at low
momentum to the search.

Cornell University Ithaca, NY
Research Experience for Undergraduates June 2022 – August 2022

• Searching for long-lived particles at the Large Hadron Collider with Ritchie Patterson’s group.
• Understanding efficiencies of new vertex reconstruction algorithms by utilizing CERN’s ROOT

framework with Monte Carlo simulated CMS data.

Pennsylvania State University University Park, PA
Research Intern January 2021 – May 2022

• Investigated a method to predict the color of a chlorophyll-like structure on an exoplanet under
Suvrath Mahadevan and Joe Ninan from the Department of Astronomy & Astrophysics.

• Synthesized knowledge in Astrophysics and Biology to simulate the absorbance of chlorophyll given
a spectral irradiance input using Python.

LEADERSHIP
Pennsylvania State University University Park, PA
Learning Assistant August 2020 - December 2021

• Learning Assistant for Introductory Mechanics, Electricity & Magnetism, Fluids and Thermal Physics,
and Wave Motion and Quantum Physics.

• Facilitated learning in a classroom of approximately 50 students by guiding them through in-class
learning activities and holding office hours.

WORK EXPERIENCE
Cozy Thai Bistro State College, PA
Shift Manager November 2018 - July 2021

• Supervised a staff of 10 workers including scheduling and training. Maintained high standards of
customer service and assisted guests by addressing questions and complaints directly.

TECHNICAL SKILLS
MATLAB, Python, LaTeX, Mathematica, Excel, ROOT, C++

HONORS AND ORGANIZATIONS
John and Elizabeth Holmes Teas fellowship
Society of Physics Students
Caltech FUTURE Ignited 2022
Sigma Pi Sigma
Phi Beta Kappa

