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Abstract

With the growing increase in demand for renewable energy sources, there has also been an in-
crease in demand for research techniques to improve their efficiency. The cost of fossil fuel energy
on the planet’s C02 levels requires an alternative and cleaner energy. One of the most common and
popular alternative energy are photovoltaics. This thesis will specifically focus on photovoltaic
(PV) systems. Common photovoltaic systems generally lose a lot of energy in the conversion
phases from solar to electrical energy. This loss of energy leads to the overall inefficiency of solar
panels. Because renewable energy systems are not very efficient there are many existing methods
that attempt to compensate for this deficiency. One technique to improve this inefficiency is called
next generation reservoir computing (NGRC), a branch of reservoir computing (RC). NGRC is a
subsection of machine learning (ML), using artificial intelligence to model human behavior and
better predict data of the systems. Machine learning is a subset of artificial intelligence. Within
machine learning, models are built based on existing data. NGRC differs from the older technique,
RC, because it requires less computational efforts and shows promising results. The algorithm an-
alyzes previous data and makes predictions for future outcomes. Given a specific training data set,
the algorithm of the ML can analyze this data and make suggestions for future recommendations
of PV operation. Based upon these predictions, PVs see an increase in power output, addressing
the need and dire demand for alternative energy replacements. NGRC analyzes the system using
training data sets and linear optimization; it is very efficient because it does not require large and
complicated calculations. NGRC is a promising system that with greater implementation may help
to better the efficiency of renewable energy like PVs.
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Chapter 1

Literature Review
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1.1 Photovoltaic Inefficiency
It is no secret that currently, renewable energy and photovoltaic (PV) systems are not efficient

in power output. Although recent advancements have seen increases in efficiency, greater im-
provements [1] are necessary to consolidate for rising global temperatures. The demand to update
older systems towards sustainable sources is extremely prevalent during these circumstances. This
increase in popularity and urgency has ultimately skyrocketed the demand in research on PV sys-
tems. Solar sources have been used to varying degrees of success. Solar cells are typically costly to
maintain and have a low energy conversion [1]. With the ever growing demand for a switch toward
renewable sources, there has been a global increase in solar power research. The need to recover
more energy from PVs is dire. These losses come from inverters, storage, and light gathering in-
efficiencies [1]. Currently, PV sources can recover about 32% of energy in a laboratory setting,
and 15-20% in a real life environment [2]. Figure 1.1 is a graphic from the National Renewable
Energy Laboratory showing the calculated efficiency of photovoltaic units from 1976 to present
day. In 1976, solar panel efficiency ranged from 1% to 24%. In 2023, efficiency levels reach as
high as 49%. The most common type of solar panels are crystalline silicon cells, indicated by the
blue lines on the graph. These includes single crystal and multicrystalline cells. The efficiency of
these type of PVs is around 21% to 27% [2].As seen from the general trend of the graph, the rela-
tionship between time and efficiency is a positive one, implying that with more time and research,
the efficiency of photovoltaic units will only continue to increase.

Figure 1.1: NREL graph of solar cell efficiencies from 1976-2023.

Because solar panels are typically located outside, the effects of weather and nature are ex-
tremely significant. PVs are subject to wind, rain and a varying range of moderate to extreme
weather phenomena; this can lead to damaging of the system and a loss in efficiency of the sys-
tem [3]. It is difficult to predict how solar panels will perform based upon these fickle outdoor
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Figure 1.2: Duck curve.

conditions. One important example of some of the problems with photovoltaics is called the Duck
Curve, shown in Figure 1.2. The Duck Curve is an example of photovoltaic over-generation, specif-
ically measured in California. It measures the hour of the day versus solar panel power output in
Megawatts [4]. The curve resembles the shape of a duck, hence the name. The Duck Curve repre-
sents several problems with solar panels. What happens is that PV’s generate a lot of power during
the peak hours of about 12 pm to 3 pm [4]. However, this also happens to be when people require
less electricity because it is sunny outside. This leads to an over generation of power, reducing
the environmental and economical benefits of solar cell systems. Also, there is a steep demand for
generators to produce a lot of electricity later in the day and the power output produced from PV
systems is less [4]. The Duck Curve is just one example of the problems of inefficiency that exist
within the PV world.

1.2 Existing Methods to Address PV Inefficiency
There are several current methods to address this problem of PV inefficiency. This paper will

explore three of them in the following sections. These methods typically relate to improving the
environment of the solar panel after it is constructed and implemented. Although these methods
work well in improving efficiency, there is still room for improvement.

1.2.1 Solar Tracking System
Having the PV track the sun is a popular method of increasing solar panel power output. By

tracking the sun, the PV can ensure that it is consistently exposed to the maximum amount of
solar energy possible. Tracking the position of the sun is relatively simple. It requires a stepper
motor and light sensor [1]. This method increases the efficiency of the power collection because it
allows the PV to always be at a right angle to the sun’s rays. The angle of the PV is essential as
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Figure 1.3: LDR approach to solar tracking.

Figure 1.4: Triangular set up of PV systems to obtain equal amounts of sunlight.

it determines the amount of sunlight absorbed. To maintain maximum power, the PV is tilted to
maintain an angle of incidence as close to 0° as possible. There are many different methods that
achieve this. One of the most typical is done with a Light Dependent Resistor (LDR) [1]. The LDR
simply detects when there are changes in light intensity on the surface of the resistor, signaling to
the motor that it needs to tilt the panel. Another method includes two phototransistors. Figure 1.3
shows the setup of this method. It starts at the beginning of the day; in State A, the tracker remains
in the state it was in from the previous day. Throughout the day, the phototransistors read the levels
of light and rotate the panel accordingly, until the panel reaches State C, signaling the end of the
day [1].

One problem with solar tracking system is that, specifically for the phototransistor system, it
has a narrow range of sensitivity and only operates under the conditions it has been initialized
with [1]. As a result of this, Figure 1.4 shows a proposed triangular set up with solar cells facing
opposite directions, allowing the system to receive equal amounts of sunlight regardless of the
sun’s position. The angle of incidence is equal in this case. Thus, unexpected weather conditions
can prove a fatal error for these systems, as they are ill-equipped to handle these sudden changes.
Additionally, adding a mechanical component will ultimately lead to maintenance problems com-
pared to mounted systems. Having a moving component leads to errors in machinery that can
negatively impact the efficiency of the PV system [1]. Finally, solar trackers are often extremely
large and are nearly impossible to install on rooftop locations. Therefore, these PV systems will
have to be installed in ground-mounted solar farms, leading to a increase in land use and resources.
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Figure 1.5: Improvement in solar efficiency for CPV system.

1.2.2 Solar Concentration
Another solution to inefficiency of PV systems is solar concentration with simple mirrors and

cooling. Concentrated photovoltaic technology (CPV) revolves around optical lenses and mirrors
to focus beams of sunlight straight onto the PV [5]. Similar to the solar tracking system, this
increases the concentration of solar energy applied to the PVs. One advantage of CPV is that
it does not require as many solar cells as non-concentrated systems to produce the same power
output. This is because it increases the amount of energy applied to a single cell [5]. Another
problem that CPV addresses is temperature. The heat from the sun is a major factor in affecting
the operational capacity of PVs. High temperatures decrease the power output of PVs and this
is a significant problem. CPV attempts to fix this issue by implementing mirrors and cooling
systems. Figure 1.5 shows a graph of the improvement in efficiency when using three mirrors
without cooling and three mirrors with cooling throughout a 24 hour period. During hours 12-
13, the efficiency of the solar cells is maximum with around 50% [5]. These reflectors are cheap
and easy to handle. As long as the temperature of the solar cells are kept down by the cooling
mechanisms, the increase of concentration of sunlight on the PV by the CPV system can operate
efficiently. Despite these advantages, CPV is extremely costly for installation and maintenance is
expensive compared to traditional PV systems. Additionally, CPV systems can only be used in high
direct normal irradiance environments, limiting its range of ability. Direct normal irradiance is the
amount of solar energy received by the surface of the panel when it is directly held perpendicularly
to the rays of sunlight. So keeping this perpendicular state and straight lines of rays is essential to
CPV and misses all the other times when the panel is not directly perpendicular [5].
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Figure 1.6: Block diagram schematic for water immersion method.

1.2.3 Water Immersion Method
Similar to the CPV, the cooling of solar panel cells is critical to improving and maintaining ef-

ficiency. The water immersion method involves submerging the photovoltaic system into distilled
water at various degrees of depth [6]. Figure 1.6 shows a typical block schematic for a water im-
mersion of a solar panel. There are several different components including an electronic resistance
temperature detector (RTD) which senses the temperature of the solar panel. The figure also shows
a microcontroller, pumping circuit, comparator, and pump. This system is attached to the top of
the PV and releases water to cool it [6]. The comparator is used to track if the required temperature
is exceeded. If this temperature is exceeded, the microcontroller directs the pump circuit to release
water until the proper temperature is achieved. Because the solar panel only converts less than
20% of the irradiance into electrical energy, most of it is translated into heat within the cell [6]. As
temperature of the cell increases, the efficiency decreases; therefore, the water immersion method
seeks to decrease this temperature and increase efficiency. Typical losses from heat vary for each
cell, but this number averages around 0.5%. The water immersion method has shown to increase
PV efficiency with increasing water depth, the maximum being an 11% increase at a water depth
of 6 cm. This method also improves efficiency by reducing the reflection of light because the re-
fraction index within the water is lower [6]. It also leads to an absence of thermal drift, which is a
change in the operation of the solar panels due to a sudden change in temperature.

1.3 Machine Learning for PV Outcomes
Although the three above mentioned methods have been shown to successfully improve solar

panel function, there is one method that may surpass them all in efficiency. This method involves
artificial intelligence (AI), a promising and intriguing field that will certainly play a key role in
technological development. Specifically within the AI realm, this paper will specifically focus on
machine learning (ML), which is a sub-field of AI. ML focuses on the use of algorithms and data
to predict outcomes and mimic the way that humans learn, overtime improving its accuracy of said
predictions [7].

When it comes to PV systems, ML can be used to monitor for possible faults in operation. If a
fault occurs, due to weather, temperature, or some other factor, the quickness of the detection of the
problem is vital to maintaining operation of the system and the production of power [8]. Figure 1.7
shows an example of a common issue that can affect solar cell efficiency: dirtiness. Sand or mud
can cover up the solar cells and lead to loss of energy of capture. Additionally, solar farms can be
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Figure 1.7: Photovoltaic shown in three different ways: clean, sandy, muddy (from left to right).

quite large; this mass of scale can lead to more lag in fixing the fault. These two examples show
where ML techniques can be extremely helpful. ML can predict when said faults will occur and
inform workers to preemptively fix this problem [8]. If the data looks wrong or askew from mud,
the system can inform the worker to clean it. Or if there is an issue at a far end of the solar farm, the
use of ML techniques can tell this disruption to a worker to go fix the issue. Additionally, patterns
can be identified of the use of solar energy for distribution systems, helping power companies to
adjust the power load. With greater development of AI systems, the cost of solar panel installation
and maintenance may see a decrease as well. With more powerful and detailed models, efficiency
of PV systems may see a rapid advancement of information analysis [8].

There are several models that exist to predict the outcome of solar panels using ML techniques.
Because the ultimate goal of ML is to imitate behavior, it can be used to perform complex tasks.
The objective of machine learning is to predict more accurate outcomes based upon collected
data [9]. This sample data (training data) is used to make decisions based upon the best possible
outcome. Developing systems to predict outcomes can help to model and design technologies,
for further efficiency and dynamics [8]. Figure 1.8 is a flowchart of the photovoltaic system with
active ML learning, monitoring, and analysis. As seen in the figure, the solar PV is connected
to the typical hardware units, including inverter, storage, power distribution network, and utility.
These allow for power distribution; however, one difference when it comes to ML is the alternative
connections to the PV. This mainly includes the use of the Internet for external data. The use of the
internet provides a better baseline data for the algorithm to create predictions. Machine learning
is a field with exciting applications. It can be used for a variety of purposes including, medicine,
agriculture, computers, and in the case of this thesis, renewable energy [9].
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Figure 1.8: Flowchart of PV system with machine learning integration.
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Chapter 2

Next Generation Reservoir Computing
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2.1 Machine Learning Techniques
To understand the applications for PV systems,it is essential to recognize how machine learning

works and can be used. Over the past two decades, ML has seen significant progress in develop-
ment. ML is the choice branch of AI to deal with computer and software development because the
research has shown that it is easier to train a computer by providing it examples of desired behavior
rather than manually programming it [7]. Many ML algorithms are so widely developed that they
can cover a wide range of data and problem types that a system could possibly encounter. ”Concep-
tually, machine-learning algorithms can be viewed as searching through a large space of candidate
programs, guided by training experience, to find a program that optimizes the performance met-
ric” [10]. This means that ML algorithms differ greatly from each other because they have to
represent a large array of systems. Algorithms have to sift through two categories to accurately
predict data outcomes: representative candidate programs(mathematical functions, programming
languages, decision tree diagrams), and the space of programs, which means how the algorithm is
optimized with well developed search methods [10]. The learning algorithm of machine learning
can be broken up into three parts as shown in Figure 2.1.

Figure 2.1: Flowchart for machine learning process.

In part one, the decision, given an inputted data, the algorithm can create an estimated pattern
from the data. Next, the error function, the prediction from the decision process is evaluated.
Given any provided examples, the machine can compare and contrast the data and assess for any
possible errors. Finally, the model optimization, the machine checks to see if any adjustments can
be made. This includes determining if the model fits better to the training data. This data is adjusted
to compensate for any inconsistencies between the estimate and the given. This process will be
repeated in the form of ”evaluate and optimize” [10], updating the outcome as time progresses.
This will occur until the accuracy threshold is achieved [11].

2.2 Reservoir Computing
One type of machine learning is called reservoir computing (RC). This algorithm is a highly

advanced, best-in-class system that processes information created by dynamical systems from ob-
served discrete data. RC is relatively easy to use as it requires a small amount of training data and
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Figure 2.2: Reservoir computing flow chart.

uses linear optimization [11]. Figure 2.2 shows a simplified diagram of an RC system. Here there
is an input, reservoir, and output layer. Each layer consists of its own algorithm, whereas the major
computational work occurs in the reservoir layer. The input layer typically consists of the training
data, and the output layer is the predictions. RC is particularly well suited for dynamic machine
learning; it can handle systems with complex problems when efficiently optimized. However,
despite these advantages, there are some drawbacks to reservoir computing. For example, reser-
voir computing uses a set of randomly sampled matrices which define the underlying network,
ultimately leading to more optimization of certain parameters. Therefore, the next generation of
reservoir computing (NGRC) is now gaining more traction, as it consists of nonlinear vector auto-
regression; this requires no random matrices, produces results equivalent to reservoir computing,
and has less parameters [11]. Another key advantage, specifically for machine learning, from next
generation reservoir computing, is that the training data required for producing accurate results is
even smaller than just reservoir computing. The development of models is necessary to forecast
behavior. Recent advancements made within the ML paradigm have generated algorithms that
require a lot of data; this can be an issue when it comes to complexity of the system [11].

An RC is composed of a reservoir which feeds data into the network and an output layer
displaying the state of the network. Figure 2.3 shows this arrangement. In the figure, both the
processes for an RC and NGRC are displayed. Focusing first on the RC, the sampled data is
inputted into a matrix and reservoir, ultimately displaying a forecasted dynamic and predicted
outcome.

However, despite these advantages, there are some drawbacks to reservoir computing. For
example, reservoir computing uses a set of randomly sampled matrices which define the underly-
ing network, ultimately leading to more optimization of certain parameters. Therefore, the next
generation of reservoir computing is now gaining more traction, as it consists of nonlinear vector
auto-regression (NVAR); as mentioned earlier, the use of this NVAR leads to no requirements for
random matrices, produces results equivalent to reservoir computing, and has less parameters for
optimization [11]. Another key advantage, specifically for machine learning, from next generation
reservoir computing, is that the training data required for producing accurate results is even smaller
than just reservoir computing. This fact proves that a NVAR system can exist and perform as well
as an RC optimized system; this suggests that within an NVAR, RC is implicitly defined. As a
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result, it is generally simple to create an NVAR system for three of the most common RC chal-
lenges: predicting short-term dynamics, reproducing the long-term outcomes of a chaotic system,
and interpreting any unseen data within a dynamic system [11]. NVAR is used within the NGRC
system, giving it these advantages to overcome those three key issues found within RC. It is essen-
tial to have forecasting with high accuracy and to not overlook the data that is unseen. The NVAR
makes up for these issues by using extremely specific data sets and overcomes any difficulties with
parameters that arise from the installation of an RC system. Recent advancements have focused
upon the next generation of reservoir computing (NGRC) to make up for any disadvantages. The
NGRC is more advanced than a traditional RC system because it incorporates an implicit RC and
is much more efficient than RC.

It is essential to truly understand the diagrams within Figure 2.3 because it shows the process
and differences of both RC and NGRC systems. In the top of Figure 2.3, the process for the
traditional RC is shown. This is times-series data that is associated with a strange attractor [11]. A
strange attractor revolves around algorithms. It is the state of a mathematical system that is chaotic,
or moves to disorder, instead of towards the trends. This strange attractor is indicated by the blue
graph located within the x,y, and z planes in the left/middle of Figure 2.3. The RC network uses an
artificial recurrent neural network, which is a type of network that is commonly utilized with time
series data [11]. This is important because time series systems take measurements at increments
of time for a certain period. The predicted strange attractor, as indicated by the red 3D graph on
the right/middle, shows the weight of all the reservoir states in a linear relationship. The ground
truth dynamics indicates the data that is being input into the algorithm as training data, to teach
the algorithm how to make predictions based upon past principles; the data goes through the RC
system is displayed as the forecasted dynamics, or expected outcome [11]. The actual RC system
will be explored further in more detail later in this paper.

Also in Figure 2.3 is the diagram for the NGRC system. One difference between NGRC and
RC is that NGRC makes predictions based upon a linear weight of the delayed time states of the
time-series data as well as the nonlinear portions of the data [11]. This means that the NGRC is
using more input data points, as indicated by the extra dots on the ground-truth dynamics graph
for the NGRC system. Like the RC system, this data is fed through the NGRC algorithm and out-
putted as the forecasted dynamics, with an extra data point, with comparison to the traditional RC
system [11]. This extra data and more advanced system makes the NGRC system more powerful
than RC. The actual NGRC system will also be explored further in more detail later in this paper.

As shown in Figure 2.3, RC systems work through the following process: inputted data X is
broadcasted into the next dimension of the reservoir network, which consists of N nodes connected
internally. These two are connected to an output, Y , as a reservoir state, which is very similar to
the desired output Yd [11]. Matrix A shows the node-to-node connections and their strength; these
are randomly chosen and kept fixed. The input data, X is processed through the reservoir of an
input layer that has an assortment of fixed coefficients, W , in Figure 2.3 [11]. The equation of the
reservoir system is represented by

ri+1 = (1− γ)ri + γf(Ari +WXi + b) (2.1)

where ri is an vector with N-dimensions, or ri = [r1,i, r2,i, ..., rN,j]
T . In this vector is the compo-

nent rji, which, at time t, represents the state of the jth node. i is the ith time step. γ represents
the nodal rate of decay and is the same for every node, f represents the applied activation function
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Figure 2.3: (top) Traditional RC process and (bottom) New NGRC process.
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that is given to each component of the vector, and b is the node bias vector and is also the same for
every node. Time is discrete at sample dt, where dt = ti+1 − ti. When r is incremented by ri+1,
this implies consecutive time steps within the reservoir state [11].

As for the output expressed through the RC, this can be seen as the equation Yi+1. This output
is expressed as a linear transformation of the feature vector Ototal,i+1. This vector is constructed
from the aforementioned reservoir state through the following equation:

Yi+1 = Wout +Ototal,i+1 (2.2)

Here, Wout is the weight of the output matrix. The subscript ’out’ implies that the variable can
be composed of either non-linear, linear, or constant terms. Typically, in an RC system, the terms
for the nodes would be chosen to be in a non-linear form. The output layer is represented by

Ototal,i+1 = Olin,j+1 = ri+1 (2.3)

And for the output layer, a linear feature vector would be chosen. Using a concept called
regularized least-squares regression, the RC is trained and supervised. This process generates
training data points and matches Y to the desired Yd output, using the Tikhonov regularization (a
strategy to regularize ill-formed data) to get the following equation for Wout:

Wout = YdOtotal
T (OtotalOtotal

T + αI)
−1

(2.4)

Here, I is the identity matrix and α is the regularization parameter and is used to prevent the
over fitting of the sampling data.

Another approach to RC is to change the location of the nonlinear data set from the reservoir
to the output layer of the system. When this is the case, the nodes are given the function f(r) = r,
which induces linear activation [11]. Because of this, the feature vector Ototal becomes nonlinear.
This function is given below.

Ototal = r ⊕ (r ⊙ r) = [r1, r2, ..., rN , r
2
1, r

2
2, ...r

2
N ]

T (2.5)

In equation 2.5, the Hadamard product is given by

(r ⊙ r) = [r1
2, r2

2, ..., rN ]
T (2.6)

In equation 2.5, ⊕ represents the operation of vector concatenation. This alternative approach
to the traditional RC approach is an equivalent method with a linear reservoir with a nonlinear
output.

On the other hand, the NGRC system also has a vector that comes directly from the inputted
sample data with no requirement for a neural network, where O = c ⊕ O;onOnonlin. Here, c is a
constant and Ononlin is the nonlinear part of the vector. Similar to the RC system, for the NGRC
system, the output is gathered from the same components found in equation 2.4. Olin is a set of
observations of input vector X spaced apart by the previous k − 1 steps from consecutive data
observations. When Xi = [x1,i, x2,i, ..., xd,i]

T , Olin,i can be expressed by

Olin,i = Xi ⊕Xi−s ⊕Xi−2s ⊕ ...⊕Xi−(k−1)s (2.7)
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where s is the space of the time steps. K is taken to be relatively large due to the theory
of universal approximation, which states that networks can approximate functions by increasing
width.

One important advantage of the NGRC as opposed to the traditional RC system is that it has a
warm up period that only takes a specific amount of time steps (sk) needed to create the necessary
vector for processing [11]. The RC system takes much longer to warm up. A shorter warm up time
is even more important when there it is particularly difficult to obtain data. For example, set s = 1
and k = 2, and only two warm up data points are required. In a traditional RC system, a common
warm-up time can be within the upper range of 103 to 105 data points, which is substantially higher
than the NGRC’s two data points [11].

Ononlin, as the subscript suggests, is the nonlinear portion of Olin. It is most typical and prac-
ticed to use polynomials for the nonlinear function as they provide solid predictability, specifically
low order polynomials [11]. An example of such polynomial could be composed of (dk)(dk+1)/2
molynomials when Olin ⊗Olin. ⊗ can be defined as the collector of unique molynomials within a
vector. Thus, the nonlinear portion of can be found by the following equation:

Ononlinear = Olin⌈⊗⌉Olin⌈⊗⌉...⌈⊗⌉Olin (2.8)

Recent methodologies have proven that it has been shown that the linear RC model with a non-
linear output results in the same outcomes as the NVAR method; however, the RC method requires
much more computational effort and requires parameter optimization. The NGRC method, which
utilizes NVAR, is much simpler and more efficient. The NGRC does the same work as the RC
network, just without much of the complicated computational efforts [11].

2.3 NGRC Performance Modeling
There are several models used for showing the performance of the NGRC system. The training

data used in this model comes from a weather system model developed by Lorenz, represented by
the equation,

ẋ = 10(y − x), ẏ = x(28− z)− y, ż = xy − 8z/3 (2.9)

Here, the state X(t) ≡ [x(t), y(t), z(t)]T is a vector of the Rayleigh-Benard convection, which
establishes principles of chaos and sensitivity dependence to initial conditions. This system con-
sists of three differential and coupled nonlinear equations. These equations show several charac-
teristics, including sensitivity of the system to initial conditions [11].

The NGRC is used to predict the behavior of a double-scroll electrical circuit through the
following equations

V̇1 = V1/R1 −∆V/R2 − 2Irsinh(β∆V ), (2.10)

V̇2 = ∆V/R2 + 2Irsinh(β∆V )− I, (2.11)

İ = V2 −R4I (2.12)
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where ∆V = V1−V2, R1 = 1.2, R = 3.44, R4 = 0.193, β = 11.6 and Ir = 2.25∗ 10−5. These
numbers were specifically chosen to satisfy the Lyapunov time condition. This means that the
vector field is not in polynomial form and it proves that ∆V will be large enough to ensure that the
series expansion of the system will provide large differences within the expected attractor. To use
the NGRC system, a listening phase is created to achieve the outcome X(t+ dt) = WoutOtotal(t).
From this outcome, the NGRC system is finally an autonomous and dynamical system which
successfully predicts the system’s outcome because the predicted outcome is fed back to the input,
updating the training data [11].

The double scroll system has an odd symmetry and a zero mean for every parameter. These are
specific characteristics that are represented by

Ototal = Olin ⊕Ononlinear (2.13)

The NGRC adapts simultaneously with its new knowledge from the vector and instantiates an
integrator that is one step ahead of the data to create accurate predictions, creating a mapping of
the data. This is helpful because it allows for next steps predictions without having to learn each
vector field separately, also known as a flow dynamical system [11]. The NGRC learns the flow of
the data from this system. A Euler integration is used to teach the NGRC the simpler and smaller
steps of this integration by modifying Eq. 2.2 to get

Xi+1 = Xi +WoutOtotal,i (2.14)

The double scroll NVAR is an attractor made of 4 linear circuit elements - 2 capacitors, 1
inductor, and 1 resistor [12]. This circuit can be applied to work as non polynomial vector field
instead of a polynomial form.

In the methods used to predict outcomes, the NGRC anticipates the dynamics of the Lorentz
and the double scroll systems. During the testing phase, the components of the input are not fed
back to the NGRC and the predicted output is provided back to the input. This is essential because
it indicates that the NGRC is an autonomous and dynamical system which can predict the system’s
outputs [11].

One key aspect of the NGRC is that it simultaneously learns both the vector field and the
mapping from one state to the next as an integrator that is one-step-ahead [11]. This ultimately
means that NGRC is learning the flow of the dynamical system. To ensure that the NGRC can still
focus on the smaller and more subtle details of the flow, a Euler-like step for integration is included
as a low order approximation. This allows the NGRC to learn the difference between the state of
the order, i.e. a current or future step.

As seen in Eq. 2.14, there are three variables account for, x,y and z. However, during testing
of this Lorenz equation, only x and y are used and the variable z is inferred. This is for when it is
possible to obtain quality data in a laboratory setting, but not in an actual real world environment.
In a field setting, the sensory information is used to infer the missing data (z) [11].

2.4 Results
The Lorenz attractor is shown in Figure 2.4; this shows the forecasting of the dynamical system

using the NGRC system. This figure shows the true Lorenz strange attractor, or the reference. For
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Figure 2.4: True Lorenz strange attractor.

training, there is a specific array of data used, graphs b-d in Figure 2.5. These graphs show the
training data with predicted behavior overlapped. This figure also shows the various phases of data
prediction. Each graph consists of 400 data points with a time interval (dt) of 0.025, where k = 2
and s = 1. Additionally, α = 2.5 ∗ 10−6 [11]. The normalized root mean square error (NRMSE)
which compares differences between various number of models, is 1.06 ± 0.01 ∗ 10−4. These
numbers were chosen, as alluded to before earlier in this paper, for optimization. The graphs b-d
are all within the training phase with a computational time of less than 10 ms. Running on a Python
based system, the values for Ototal and Wout are 28 and 3x28, respectively [11]. This dimension
is necessary to ensure that the trajectory is large enough to examine both sides of the graph in
Figure 2.4.

After these ground truths are established, the prediction phase is next. The NGRC is moved
to the prediction phase. Figure 2.6 shows the NGRC outcome for the predicted data. The graphs
of both Figure 2.4, the basis, and Figure 2.6, the prediction are almost identical. This proves that
in the long run, the NGRC replicates the Lorenz system. The NGRC system’s ability to make
these predictions indicates that it is a useful algorithm for increasing a machine’s efficiency [11].
Figure 2.7 shows the predicted data of the NGRC system in red, overlapping the true data in blue in
graphs f-h. As seen from these graphs, the NGRC almost identically imitates the true data during
the forecasting phase. Here, the NRMSE is 2.40 ± 0.53 ∗ 10−3. This data is comparable to a
traditional optimized RC system, once again proving that NGRC is more efficient and effective for
prediction models [11].

After examining the dynamical NGRC system, the next phase is the double-scroll system. For
the double-scroll, the Lyapunov is used instead of the Lorenz63 system. Therefore, the training
time for the NGRC is extended from 10 to 100 units. After this, the NGRC is put through a
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Figure 2.5: Training set of data for NGRC.

Figure 2.6: Testing data set for NGRC Lorenz strange attractor.
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Figure 2.7: Predicted data outcomes for Lorenz strange attractor.

prediction phase, in which it can inspect the quality of the data predicted. One timing note is that
the Lyapunov system for the double scroll is much longer in duration than the Lorenz system [11];
thus, the the training time of the NGRC system is lengthened to ensure that this is not an issue.
This leads to an equal comparison time of both cases. In the double scroll system, the NGRC
system uses 400 data points, similar to the Lorenz system. The timing interval is set to 0.25,
and d = 3, k = 2, and s = 1 to make up for this timing difference. This leads to a total of
62 components in Ototal. The results of this can be seen in Figure 2.12, showing that ultimately
the NGRC system can predict similar outcomes to the double scroll system within the Lorenz
system [11].

Finally, the last component of the system is to test and infer the dynamics that were not ex-
plicitly shown in the NGRC within the testing phase described above. The variables x,y, and z are
provided during training and then a short set of training data is observed of 400 points. This is a
good performance and can be seen in Figure 2.7, where the training data is compared to the NGRC
data predictions. This inference of data is specifically for the z component, as x and y are provided
to the NGRC system during the testing phase [11].

Besides the variable modifications as indicated above, the forecasting of the double scroll sys-
tem is almost identical to the Lorenz63 system. These results can be seen in the Figures 2.8 -
2.12. As seen from these graphs, the results are pretty identical to the Lorenz63 results. There are
differences in the true and predicted strange attractor graphs for the Lorenz and the double scroll;
but as seen in Figures 2.8 and 2.10, the true and predicted outcomes for the strange attractor are
similar for the double scroll [11].

The last major component of this testing system is to predict any data or dynamics that are not
explicitly shown in the NGRC system. In this example, k = 4, s = 5, and dt = 0.05. These param-
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Figure 2.8: True double-scroll strange attractor.

Figure 2.9: Training set of data for NGRC for double scroll.
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Figure 2.10: Predicted data set for double scroll strange attractor.

Figure 2.11: Predicted data outcomes for double scroll strange attractor.
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Figure 2.12: Training data for inferred dynamics.

Figure 2.13: Predicted data outcomes for inferred dynamics.

eters are set to ensure that a full attractor is generated for comparison to other components [11].
Once again, the variables x,y, and z are used for observation and the training data consists of
400 points. Figure 2.12 shows the initial data for these inferred dynamics. The training data is
overlapped with the NGRC data [11].

Figure 2.13 shows the predicted data outcomes. And as seen in comparison to the previous
figures established in the NGRC Lorenz and double scroll data sets, the predictions are almost
identical in the testing phase.

Overall, the NGRC is much faster at computational efforts than a traditional RC method. This
is due to several reasons but most importantly due to a smaller vector size. A smaller vector size
allows for fewer parameters, which allows the algorithm to learn with a smaller training data set.
This increases efficiency and lowers the learning curve for the AI. Additionally, the training time
and the warm-up for the NGRC is significantly shorter than the traditional RC system, shortening
computational efforts again [11]. Finally, the NGRC system does not have as many meta parame-
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ters to optimize, again shortening the computational time. The NGRC is a product of the complex
history of AI work. It comes from previous work on nonlinear systems. The NGRC system is
closely related to a multiple input and output system with a nonlinear auto-regression, also known
as NARX. The NGRC combines the best of the NARX methodology along with modern regression
theories to create the successful outcomes described in this paper [11].



24

Chapter 3

Photovoltaic Modeling
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3.1 System Modeling
To understand the conclusions that this thesis is testing for, it is necessary to understand model-

ing of photovoltaics. PVs generate DC power instead of AC power and a power electronic interface
is then used to convert this DC to AC power. Figure 3.3 shows the mathematical model of a singular
PV cell [13].

Using Kirchhoff’s Current Law at the location of the red oval, an equation for the output current
(I) can be established as the following:

I = Iph − Id − Ip (3.1)

where Iph is the photon current that depends upon the light intensity and its wavelength, Id is
the Shockley temperature-dependent diode current and Ip is the PV cell leakage current [13].

To determine the values of Iph, Id, and Ip, there are also several equations and parameters that
must be established. Iph is dependent on light intensity and wavelength and can be determined
from the following equation,

Iph =
S

Sref

[Iphref + CT (T − Tref )] (3.2)

where S is the value of irradiance, Sref is the irradiance reference value (typically 1000 W/m2),
CT is the temperature coefficient, T is the temperature (in Kelvin), and Tref is the temperature
reference value (typically 298 K) [13].

As seen from this model, a feature of the photon current is that it shares a positively linear
relationship with irradiance, meaning as Iph increases, so does S. This is because of the principle
of conservation of energy, as the kinetic energy of the electrons in the cell are linearly proportional
to the frequency of the radiation of light. When the light that is being received is very weak,
there is no output for the photovoltaic [13]. This intensity of the light equates to the number of
photons available. To produce the necessary electrons, the highest wavelength for when the photon
energy is still large enough is 1.15 µ. The kinetic energy is also independent of the intensity
of the radiation [13]. Figure 3.1 shows the relationship between kinetic energy and frequency
and Figure 3.2 shows the relationship between kinetic energy and light intensity. Frequency and
kinetic energy share a linear relationship, while kinetic energy and light intensity are independent
variables [13]. Similarly, as temperature increases Iph also increases due to the relationship in
equation 3.2.

To further develop the model shown in Figure 3.3, it is necessary to include the addition of the
Shockley diode, which is a semiconductor that helps control the system. In Figure 3.3 the diode
is added to the original diagram in parallel to the other components. The Shockley temperature-
dependent diode current can be obtained from the equation,

Id = Is(e
q(U+IRs)

ηkT − 1) = Is(e
q(U+IRs)

ηVT − 1) (3.3)

where Is is the diode reverse saturated current (typically 100 pA), k is the Boltzmann constant
(1.38047 ∗ 10−23 J

K
), q is the electron charge (1.60201 ∗ 10−19C), η is the empirical ideal constant

for silicon (around 1.2 and 1.8), and VT is the equivalent temperature where, VT = kT
q

.
Is can be found from the following equation,
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Figure 3.1: Graphical relationships between kinetic energy and frequency.

Figure 3.2: Graphical relationships between kinetic energy and light intensity.
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Figure 3.3: Mathematical Model of PV Cell

Figure 3.4: Series and parallel connections of singular PV cells to form entire solar panel

Is = Isref (
T

Tref

)3e
qEg
ηk

( 1

Tref− 1
T

) (3.4)

The last component of the output current equation is the PV cell leakage current, Ip, which can
be modeled from the equation,

Ip =
U + IRs

Rsh

(3.5)

In an ideal case, Ip would be zero, but in the case of this thesis it will have a value.
Figure 3.3 shows the mathematical model of a singular PV cell. Each solar panel is composed

of many PV cells, so to understand the model of the entire system, Figure 3.4 shows the mathe-
matical model of the whole solar panel. Each solar cell is connected in series with the next; in the
case of Figure 3.4 there are three cells connected together. The number of cells connected in series
is represented by Ns. These three cells are then connected to two other series connected groups
of three in parallel for a total of nine connected PV cells. The number of PV cells in parallel is
represented by Np.

Figure 3.5 is a generalized representation of this mathematical model, showing that the number
of PV cells connected in series and parallel can vary for the size of the solar panel [13]. To
determine the mathematical model of the PV array the following equation can be applied:
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Figure 3.5: Generalized mathematical model of solar panel systems

Iarray = Iph − Id − Ip (3.6)

where
Iph = Np ∗ Iph (3.7)

Id = NpIs(e
1

ηVT
(
Uarray

Ns
+

Iarray
Np

Rs) − 1 (3.8)

Ip =
Np

Rsh

(
Uarray

Ns

+
IarrayRs

Np

) (3.9)

When equations 3.7, 3.8,and 3.9 are plugged into equation 3.6, the resulting mathematical
model for the PV array is

Iarray = NpIph −NpIs(e
1

ηVT
(
Uarray

Ns
+

Iarray
Np

Rs) − 1− Np

Rsh

(
Uarray

Ns

+
IarrayRs

Np

) (3.10)

Similar to a single PV cell, in an ideal case Ip will be zero in an ideal case.
The output characteristics of a solar panel can be determined by examining different circuit

cases. When the voltage of the array (Uarray)is 0, the circuit is open and the characteristics of the
output can be seen in Figures 3.6 and 3.7.Figure 3.6 shows the current/voltage relationship for sev-
eral different irradiances (900 W

m2 , 1000 W
m2 , and 1100 W

m2 ). Meanwhile, Figure 3.7 shows the active
power/voltage relationship for those same irradiances. From these graphs it can be determined that
as the irradiance increases, the power output of the photovoltaic array also increases.

It can be seen from these two graphs that as the irradiance increases, the current of the short
circuit increases a significant amount. On the contrary, as the irradiance increases, the open circuit
voltage also increases, but not as much or as rapidly as the short circuit current [13]. To represent
this within a mathematical model, equation 3.10 is set equal to 0, to solve for Uarray in the following
way:

Iarray = 0;Uarray = ηVTNsln(
Iph
Is

+ 1) (3.11)
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Figure 3.6: Current/Voltage relationship with short circuit current and open circuit voltage labeled

Figure 3.7: Active Power/Voltage relationship
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Figure 3.8: Tree diagram of branches of machine learning.

Similarly, as the irradiance increases, the open circuit voltage also increases but not by a lot.
This can be seen in Figure 3.6 Another characteristic of photovoltaic output is that as temperature
increases, the open circuit voltage decreases, as shown in Figure 3.7; however, as the temperature
increases, the short circuit current does not increase by a lot [13].

3.2 Machine Learning for Mathematical Prediction of PV Out-
put

The mathematical prediction of these models can be represented and established through ma-
chine learning, which is the point of this thesis. Machine learning provides the system with the abil-
ity to learn automatically from experience and data sets to improve without having to be explicitly
programmed to do so [13]. Figure 3.8 is a visual tree diagram of the possibilities of ML techniques
for PV power output array. In this figure, there are many different types of machine learning and
subsets, including a range from completely supervised learning to unsupervised learning. Machine
learning itself is a very broad category.

There are many different approaches to photovoltaic modeling, but Figure 3.9 shows two: a
data driven model (a), and a predicted outputs model (b) [13]. In Figure 3.9(a), historical irradi-
ance, historical temperature, and historical outputs are programmed for the system to predict future
outcomes based upon the past. In Figure 3.9(b), the predictions for the irradiance and temperature
are applied into the data driven model from Fig 3.9(a) to ultimately be able to predict PV outputs
without needing explicit programming [13].

Photovoltaic modeling can be performed through Simulink, an environment of Matlab. It al-
lows the user to simulate hardware without having to write code, as block diagrams display the
necessary information. For example, Figure 3.10 shows an model of a photovoltaic. Figure 3.10 is
a portion of a greater model, but it shows the general idea and visual understanding of photovoltaic
modeling. The various logic and hardware instruments are connected via wires to the PV system,
as well as any other algorithms necessary for solar panel function. Oscilloscopes are set up for
certain measurements. The point of this modeling is to predict the outcomes of solar panels, and
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Figure 3.9: Machine learning application for PV systems.

Simulink is just one tool to do this. Using machine learning could make this process more efficient
and economical.
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Figure 3.10: Simulink model of photovoltaic.
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Chapter 4

Simulation Results
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4.1 Code Results
The algorithm described in Chapter 2 above is created through a lengthy coding block. This

code is written in the Python language and ran through Anaconda. This thesis was written using
the Spyder 5.2.2 console (Python 3.9) through the Anaconda Navigator. This code specifically
requires certain libraries, including NumPy SciPy, and Matplotlib. A Python environment like
Anaconda already has these libraries installed. If not using Anaconda, it still is possible to run
the code, but the creation of a virtual environment using a command will install the most recent
requirements to make the libraries available [14]. Then, individual scripts can be run. This code is
the results based upon the Next Generation Reservoir Computing paper. They are complements. It
is sectioned into 10 different parts, each of which simulates a part of the algorithm. It is necessary
to understand the code to understand the algorithm and ultimately the machine learning. There are
sections describing the double scroll, NVAR, time delay, Lorenz63, Lyapunov, training data, and
prediction data. The code is necessary to truly understand the details and methodology described
in Chapter 2 of this paper. Three of the most important sections will be detailed and described in
sections 4.1.1 and 4.1.2 of this paper. Each of these parts will be analyze and broken down with
provided examples of code.

4.1.1 NVAR Double Scroll
First is the Double Scroll for the NVAR with incorporated time delays for forecasting. All

three of the aforementioned libraries — NumPy, SciPy, and Matplotlib — are imported. The
NumPy library supports large arrays and matrices. SciPy solves initial value problems for ordinary
differential equations (ODEs); it also takes the min/max of objective functions and solves for
nonlinear programming. Matplotlib is a state based interface that provides an implicit way of
plotting functions. After calling in these function, the first trial of the NVAR is run, with an allotted
given warm-up time. There are certain parameters that are established early on, including the time
step (dt), training time, testing time, and the time of the Lyapunov function for the double-scroll
system [14]. After these variables are declared, they are transformed into discrete time versions of
themselves, by dividing by the specific time step, dt. The dimensions of the system are declared
and the vector is created. Figure 4.1 shows a code snippet of the function used to establish the
double scroll system. The equations are initialized as dV, dy0, dy1, and dy2. These equations
depend on variables, r and g that are previously established within the double scroll metric. The
double scroll system is then established using several of the previously mentioned parameters.
The NVAR is synthesized for three different RC problems: ”forecasting the short term dynamics,
reproducing the long term climate of a chaotic system, and inferring the behavior of any unseen
data of a dynamical system” [14]. An array is created to hold the linear part of the feature vector
and the linear parts are filled in correspondingly at all times. The non-linear part is then filled in.
Next, a place is generated to store feature vectors for predictions. Finally, a prediction is performed
using a for loop function. Figure 4.2 shows the data outcome for the NVAR double scroll.

The NVAR is ran as many times times as necessary to calculate the NRMSE at fixed points.
There are three training phases and a prediction attractor that works to establish the data found in
Figure 4.2.
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Figure 4.1: Double scroll function.

Figure 4.2: Outcome for NVAR double scroll.
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Figure 4.3: Parameters for NVAR with time delays.

Figure 4.4: Portion of Lorenz63 algorithm.

4.1.2 NVAR with Time Delays for Lorenz Forecasting
The next significant piece of code written was regarding the installment of the NVAR with

the time delays for Lorenz forecasting. First, a certain number of parameters are established.
Figure 4.3 shows a code snippet for these parameters, where ’npts’ is the number of NRMSE
trials, the start time, units for time, and ridge parameter for regression are all set [14].

After this parameter establishment, a warm up trial is run given the initial warm up time, ’start’.
This is done through a function which is looking for any errors in the system. The time step is set
to 0.25, and the Lyapunov time is established for the Lorenz system [14]. After these variables
are the discrete-time variables versions, which is done by dividing the variables by the time step,
’dt’. Next, a 3x2 matrix is created and both the linear and nonlinear portions of the feature vector
are distinguished. As mentioned in Chapter 2, the both the linear and nonlinear portions of the
feature vector as important. Figure 4.4 shows a code snippet of the Lorenz 63 algorithm. Lorenz is
a 3 dimensional system, as shown by dy0, dy1, and dy2. These three variables are formed into an
array, and then the maximum, minimum and mean values are found for all three of the components
using a for loop.

The NVAR algorithm is next tested. An array is created that holds the linear portion of the
feature vector. For all times, t, the linear part of the vector is filled in and this data is put into an
array for holding. The nonlinear part is done in a similar fashion, using a for loop for a range of
the linear data. The ridge regression is then conducted, where Wout is trained to map out the array
for the NVAR linear full feature vector to the Lorenz63 system. Wout is then applied to to train the
feature vector, and NRMSE is calculated from the true Lorenz output and the training data [14].

The next key is step is actually performing the predictions that have been mentioned in this
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Figure 4.5: NVAR time delay Lorenz forecasting outcome.

Figure 4.6: Alternative NVAR time delay Lorenz forecasting outcome.

paper. This prediction is performed through a for loop within a specific range. The linear data is
copied into the whole feature vector and the nonlinear part of the data is filled in. The delay taps are
also filled in for the next state of the algorithm, and then the prediction is performed [14]. Finally,
in the NVAR with time delays for Lorenz forecasting section, a function is created to perform a
single step NVAR prediction for a fixed point. Figure 4.5 shows the outcome of this code.

The left hand column indicates which variables are being printed, including, start time, ridge
regression parameter, warmup time, and the normalized distance from the real to the predicted fixed
point data. The type of integer is shown as well as the size of the variable. Finally, the values are
displayed. As seen from the value column, the ridge parameter is sized at 2.5 ∗ 10−6. Figure 4.6
also shows another view of the outcome of the NVAR. The mean for the training NRMSE is
given at about 0.00106 and the mean for the testing NRMSE is found at about 0.002401. Some
other significant data points to note are the normalized differences between the true and predicted
data,represented by the fp0-2 variables. These have a range from 0.00127 - 0.00369 [14].

4.1.3 NRMSE vs Training Time
The next significant piece of coding revolves around NRMSE in comparison to training time.

The training time is very important regarding the performance of the machine. A quicker training
time means that the algorithm can learn quicker and is ultimately more efficient. To accurately
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Figure 4.7: Establishment of NRMSE vector.

assess the efficiency of this training time, a comparison between the NRMSE and the training time
is performed. The code is similar to the previous sections, 4.1.1 and 4.2.2, with some specific
modifications [14]. After establishing the number of NRMSE trials as a variable at 20, as well
as NRMSE training time at 21, the algorithm for this comparison is created. A vector is created
using both the warmup and training times. This vector is then divided into different spaces of the
original number of NRMSE trials (20) segments of length, set to the variable traintime. Figure 4.7
shows an example of this code. In the figure, the vector is created and represented by variable
traintime v. The np.arrange formats the array with evenly spaced intervals per the interval [14].
The warmup data is then initialized to return a new array without any entries given the command,
np.empty. A for loop is created to test the range of the training NRMSE trials, in which the vector
is then arranged in the aforementioned way. Finally, the testing data and any errors that might have
occurred are put into an np.empty vector.

4.1.4 Results
The graphical outcomes of the described outcome can be seen in Chapter 2 of this paper. For

example, shown in Figures 2.12 and 2.13 is the graphical outcome of the Lorenz63 system for
the inferred dynamics. The variables written in the coded section directly create the metrics seen
within these graphs. The algorithm written, the machine learning system, creates this data which
suggests possible outcomes for a PV system.

Figure 4.8 shows the outcome of the NRMSE vs the training data points. The NRMSE shows
the differences between models at different points. It measures the model performance using the
mean of the data. As shown from the figure, as the training data set size in increased, the NRMSE
decreases. A lower NRMSE indicates a better fit, suggesting that as the training data set size
increases in size, the predictions of the algorithm are more accurate.

Figure 4.9 is another outcome of the algorithm described in the sections above, where it shows
the inferred Lorenz63 data of Wout. The figure is a graphical representation of Wout at different
time intervals. The blue bars represent the useful data points. Any noise has been filtered out of
this graph, as it is just focusing on the relevant data. As seen from the graph, Wout ranges from
-0.2 to 0.2, and 0 to 2 [14]. The y interval is the various time intervals that are being tested. This
data shows how different intervals effect Wout. There are two different cases being tested in this
figure, as indicated by the two plots.

For comparison to Figure 4.9, 4.10 shows the predicted outcomes for Wout. This graph has
three separate outcomes for Wout, as indicated by the three plots. Additionally, unlike Figure 4.9,
4.10 has noisy data. This noise is indicated by the red sections. This figure shows the test in all
three dimensions, x,y, and z. The data shows the various outcomes for Wout as predicted when put
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Figure 4.8: NRMSE vs training data.

Figure 4.9: Inferred Lorenz data.
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Figure 4.10: Predicted Lorenz data.

through the NGRC algorithm [14]. The noise can be filtered out, but it was kept in for comparison
to Figure 4.9, which does not have any noise.

4.2 Trajectory
There are still many considerations necessary to truly understand reservoir computing and next

generation reservoir computing. The possibilities surrounding NGRC and RC are endless and there
is still much to be learned. For example, in related research, data drive linearization methods have
been on the rise. These methods suggest the use of a vector field with projection on a linear yet
finite space, represented through simple monomial functions [11]. Contrasting to NGRC, this type
of modeling aims to create a model of the vector field directly from the data, ultimately learning
the dynamical flow over a finite period of time. Some of the larger components of Wout can be
found from the vector field, suggesting that the NGRC predictions and flow are different from the
vector field. Another possibility comes from the fact that a few components of Wout are small,
indicating that features can be removed without harming the integrity of the test [11].
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There are also some limitations of this thesis that must be further explored. First, this study
considers only noise-free generated data. The noisy data is disregarded for ease of interpretation.
The use of regularized regression allows for this noise tolerance, as the best model is chosen
regardless of any noise or uncertainty. Another limitation is that only low-dimensional dynamics
were considered. There has been previous work done using a traditional RC system, but this paper
only uses low dimensional dynamics [11].
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Chapter 5

Conclusion
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5.1 Further Direction and Conclusion
There are so many possibilities when it comes to machine learning. It truly is the future. There

is a lot of fear and misinformation surrounding artificial intelligence, but there are so many oppor-
tunities and advancements that can be made from machine learning, this thesis highlighting one
of them. NGRC has many important applications for the learning process of dynamical systems.
It is an ideal system for these systems because it requires the optimization of fewer parameters
and therefore has a quicker learning time compared to traditional RC systems. Having a shorter
learning time means that the algorithm can identify patterns quicker within the data. The NGRC
has underlying and hidden implicit components that allow it to perform metrics that the traditional
RC system would be unable to do. This suggests that the possibilities and applications of NGRC
are plentiful, in comparison to the traditional system. For example, the NGRC could be applied
with only observed data to create a digital twin for the systems, limiting the amount and type of
training data needed to create accurate predictions [11]. NGRC could also be used for nonlinear
control; this is important for making up for any losses that come from the nonlinear portion of the
featured vectors.

To truly understand the context of the topics described in this paper, an astronomical amount of
research and base comprehension was necessary. NGRC and machine learning are both complex
and diverse topics that still require a lot of research and learning. Given more time and more
resources, and now with this baseline understanding of artificial intelligence, this would be an
interesting project to continuing researching. Considering the prevalence of AI for the future,
understanding how it works is truly an advantage. Through the work that I have done in this thesis,
I now have a greater understanding and appreciation for the processes of machine learning.

When it comes to energy technological advancement, as described earlier in this paper, the ap-
plication of machine learning technologies towards renewable energy resources, specifically pho-
tovoltaic systems is an essential step forward. Currently, photovoltaic systems lack a high level
of efficiency. With better data analysis, this efficiency of energy conversion will rise. NGRC can
increase efficiency of PV systems because with more testing and trials, the training data will see
a decrease in the learning curve for the algorithm. This research cannot come soon enough how-
ever, as the need for renewable energy is ever growing. Rising global temperatures are leading to
a greater demand for alternative energy sources and this demand will lead to greater allocation of
resources and research to make alternative sources as efficient as fossil fuels. This increase in re-
search will allow methodologies like machine learning, water immersion, or solar concentration to
improve the power production of PV systems. It is clear that these advancements are the future and
continuing research within these fields will continue to improve the power output of photovoltaic
system, ultimately benefiting the world in dire need of a climate crisis solution.
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