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ABSTRACT

The application of machine learning and probabilistic programming methods on stock
return prediction has grown in tandem with the availability of high frequency stock data. With
well recorded heteroskedasticity in historical stock returns, modeling attempts have evolved from
making general assumptions about the underlying data generating distribution to predicting
changes in the underlying distribution of returns. The increase in popularity of ‘tradable
volatility’ through derivative contacts and VIX futures over the past three decades has motivated
research efforts to model the variance of daily returns. Along this line of research, three schools
of thought have emerged to model return volatility; Time Series Models, Stochastic Models, and
Bayesian Models. Given that the preliminary assumptions underlying these models differ, the
nature of their results and the varying metrics used to calculate their respective accuracy makes it
difficult to directly compare them. Accordingly, the currently available pool of research has
diverged along these three separate paths making it unclear the advantages of each. Notably,
Bayesian models have largely been neglected in the current pool of research due to their
computational intensity. In this paper I derive ten time series and Bayesian models then provide a
comprehensive comparative study of the results on real stock data. I found that Bayesian models
with intractable posterior distributions significantly outperform time series models at predicting
directional change in future volatility, while the GARCH and FIGARCH time series models
generate the most accurate point predictions for future volatility. I hope the results outlined in
this paper better contextualize different volatility predictions and motivate the creation of more

accurate tradeable volatility models.
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1. Introduction

1.1 Motivation

With respect to daily US stock returns, consensus dictates that normalized returns and
detrended returns follow a log-normal distribution [4]. Further analysis across both U.S. and
international equity markets have found mixed evidence on the underlying distributions that most
accurately characterize daily price action; however, the recurrent appearance of mean reversion
and stationarity among other factors implies that the distribution of stock returns changes over
time. This understanding has led to continued attempts at modeling short-term stock returns,
specifically the variance/volatility of stock returns. From the perspective of fundamental
analysis, noticeable changes in the ‘typical’ volatility of daily stock returns are attributed to
different economic regimes. For example, periods of persistently high volatility are attributed to
economic uncertainty which then can be rationalized by a variety of qualitative talking points
including economic quadrant shifts, changes in federal reserve policy, global supply and demand
shocks, etc. The main takeaway here is that there are observable periods of noticeably high
volatility during times of economic uncertainty and low volatility during economic booms. This
indicates an intuitive understanding that daily returns do not follow a static log-normal
distribution as many models assume. A statistical interpretation of this phenomenon is that there
is inertia/clustering in the volatility of stock returns [13]. In other words, there is a tendency for

periods of high volatility to follow periods of high volatility.



1.2 Problem

Given these observations, there is a clear motivation to model the volatility of stock
returns as a function of time, however volatility in equity market is an ambiguous term. There are
two ways to measure volatility; realized volatility and implied volatility. Realized volatility is the
standard deviation of a stock’s price over the past X days. There are many variations of realized
volatility calculations based on either closing price or intra-day prices, and the number of
observations used to make the calculations. Implied volatility on the other hand is a parameter of
the Black Scholes Model which is forward looking in the sense that it indicates the market’s
expectation of future price volatility based on observed prices in the options market. From an
econometrics perspective, implied volatility represents a risk neutral measure of the aggregate
market risk premium [18] while realized volatility is deemed a risk adverse measure based on
observed historical prices. This explains why implied volatility and realized volatility measures
systematically differ. Since there is no clear indication which measure is more useful to predict,
there is a divide in pool of literature where some papers predict future realized volatility while
other predict implied volatility adding a layer of obscurity to model comparison. Although
neither realized volatility nor implied volatility is a perfectly accurate measure for the ‘true’
volatility of stock returns, in practice both are useful. Most economists focus on predicting future
realized volatility given that it can be directly observed from stock prices. There are natural
critiques of the accuracy of implied volatility given that Black Scholes model assumes that the
implied volatility function of an option should be flat and constant through time [7], which is
observably untrue in markets. However, the general adoption of the VIX as a tradeable volatility
benchmark and the increased availability of derivative contracts have made accurate predictions

of implied volatility a profitable indicator none the less. For example, a market maker who has



perfectly hedged all exposure to the greeks will be able to profit from a correct prediction of
future implied volatility movement [9]. Analytically there is an unclear correlation between
realized volatility and implied volatility that changes overtime, but for the sake of this analysis
both are used as independent target variables. Accordingly, this paper derives a variety of novel
heteroskedastic Bayesian and time series models to predict both realized and implied volatility.
The models are back tested on the current constituents of the S&P 500 and a cross sectional
analysis of the results is done by sector volatility classification. This paper is structured as
follows, section 2 is a literature review of volatility modeling, section 3 overviews the data sets
and methodologies used along with some required preliminaries for each of the models. Section
4 examines the results of the analysis and section 5 ends with a conclusion and a discussion of

future works.

2. Literature Review

This section provides an overview of the current literature on volatility modeling. The
subsections are broken down based on the three primary schools of thought as outlined in the
survey paper Samsudin and Mohamad (2016) [37]. The original volatility models were based
purely on observed trading ranges. Parkinson (1980) [35] derived the extreme value method for
estimating the variance of stock returns based on the distribution of observed extreme values.
Garman and Klass (1980) [19] developed an estimator for historical volatility based on observed
daily high, low, and closing prices synthesized by the Average True Range (ATR). Rogers and
Satchell (1994) [36] developed a more accurate range estimator for daily volatility based on daily

high, low, and closing prices by incorporating a historical look back period. Finally, Yang and
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Zhang (2001) [43] modified the Garman and Klass estimator to be independent of the drift and

expected return of an underlying asset further improving performance. In a comparative study of
the above range estimators by Shu and Zhang (2006) [39] the researchers found that all
estimators were effective at capturing past realized volatility if prices followed a geometric
Brownian motion with small drift. Both Rogers and Satchell’s estimator as well as Yang and
Zhang’s estimator were shown to be resistant to drift components, but only Yang and Zhang’s
estimator was resistant to large initial jumps. These range estimators were the starting point for
modern volatility modeling; however, their results were by and large snap shots of past price

action.

2.1 Time Series Volatility Models

The time series family of volatility models started with the introduction of the ARCH
class of models by Engle (1982) [17] which improved variance predictions by allowing the
conditional variance of returns to be a function of previous price action. Engle accomplished this
by incorporating past squared error terms into future predictions. This model was further
improved by Bollerslev (1986) [10] who developed the GARCH model which allowed past
conditional variance terms alongside past squared error terms to influence predictions. Nelson
(1991) [30] developed the EGARCH model, which extended the GARCH model by allowing
there to be asymmetry in the impact of positive and negative shocks with the goal of
incorporating the leverage effect into predictions. Bollerslev and Mikkelsen (1996) [11]
furthered the development of this family of models by comparing the performance of the

ARFIMA (Auto-regressive Fractionally Integrated Moving Average) model, the HYGARCH



(Hyperbolic GARCH) model, and their newly proposed FIGARCH (Fractionally Integrated
GARCH) model to incorporate the long memory of stock returns, in other words the observed
persistence in volatility tendencies. Outside of expanding the types of regressors in the ARCH
family of models, more recent research has looked at changing the underlying assumptions of
market structure. Ghysels, Santa-Clara, and Valkanov (2006) [20] looked to optimize time series
volatility predictions by implementing a MIDAS (Mixed Data Sampling) framework. Curto
(2009) [14] found that the performance of the standard GARCH model could be greatly
improved by changing the distributional assumptions from normal/log-normal to the student’s t
distribution or the stable Pareto distribution. Chistoffersne, Jacobs, and Minmouni (2010) [12]
further altered the GARCH model by incorporating realized variance into the Square Root Model
(SQR) through a non-affine expansion resulting in the Realized GARCH model. Ardia and
Hoogerheide (2010) [5] improved the efficiency of implementing the GARCH models with an
assumed Student’s t distribution by proposing the use of Bayesian Inference for parameter
selection instead of Maximum Likelihood estimation. Ahoniemi (2008) [1] applied the GARCH,
EGARCH, and ARIMA-GARCH family of models to tradeable volatility in the form of VIX
futures where the latter were found to significantly improve directional prediction accuracy.
Rosy, Dong Wan, and Man-Suk (2017) [32] combined many of these previous innovations and
prosed a combined ARFIMA and GARCH with Student’s T innovations using Bayesian
Inference for parameter selection through the use of JAGS. One of the most recent innovations is
the space is the development of the HAR (Heterogenous Autoregressive) model by Gong and Lin
(2019) [21], which uniquely takes into account realized volatility and uses ensemble empirical
mode decomposition to decomposed realized volatility into pure volatility and the leverage

effect. Continued research in the time series family of models looks at further altering the



distributional assumptions which in many cases is computationally expensive leading to further
research in Bayesian methods for parameter approximation. In addition to its use for parameter
selection in time series models, an entire family of volatility models is derived using Bayesian

inference which is covered next.

2.2 Bayesian Volatility Models

Unlike the other estimators which solve for a point estimate of a parameter, Bayesian
models generate a probability distribution of the target variable. For volatility modeling,
Bayesian models are directly applicable because they can capture how the distribution of
volatility changes over time. Anecdotally, during times of economic uncertainty where stock
prices are extremely volatile the resulting distribution of a Bayesian model will ‘spread out’. In
other words, Bayesian models assume that volatility itself has an underlying data generating
distribution, allowing the predictions to reflect changes in both the scale and location parameters
of volatility. Karolyi (1993) [27] was the first to use the Bayesian framework to price options
contracts using the inverse gamma and normal conjugate pair. The resulting options prices from
his implied volatility estimates were more accurate than both implied volatility pricing models
and an ex-post estimator (realized volatility). Cunha and Rao (2014) [15] validated these results
on a larger set of data where uninformed priors were still able to accurately converge to the
observed realized volatility. Yang and Lee (2011) [44] further extended this method using a
Bayesian Kernel to generate accurate credible intervals for implied volatilities. Oostdam (2021)
[33] applied a Bayesian model to tradeable volatility by generating credible intervals for VIX

future contracts, he found that the No-U-Turn sampler significantly improved the efficiency of



drawing from the posterior compared Metropolis Hastings and other Hamilton MC methods.
Although the literature supports the usefulness of Bayesian inference to predict both implied and
realized volatility, the computationally expensive nature of the calculations and the need for
advanced Markov Chain Monte Carlo sampling methods made research more difficult. However,

with increased computing power, these methods can more readily be employed.

2.3 Stochastic Volatility Models

The third family of volatility models are the Stochastic Volatility (SV) models. Recall
from the overview of time series models that the theoretical starting point was allowing for
heteroscedasticity in the ARCH models derivation. Stochastic volatility models are slightly
different in that they specifically address time-varying volatility in financial data by modeling
volatility as a stochastic process. It’s important to note that there is some overlap in the
classification of stochastic volatility models and time series models. For some of the more
sophisticated time series models, the function that define future variance predictions contains a
random component. This paper only focuses on the comparison of time series and Bayesian
models, however; for completeness an overview of stochastic volatility models is included.
Taylor, S.J (1986) [40], independent of Engle (1982) [17], derived the ARCH model but
emphasized the stochastic properties of asset returns. Heston (1993) [23] introduced a new
options pricing model by assuming that the underlying data generating function of stock price
volatility is a stochastic process driven by a Weiner process. The Heston model incorporates the
constant elasticity assumption of variance by using a mean-reverting square root diffusion

process. Unlike the GARCH model, this created an options pricing framework with a closed



form solution. Bates (1996) [8] proposed the Stochastic Volatility Jump Diffusion Model which
incorporated both a stochastic volatility and jump diffusion process to better characterize asset
returns. Dupire (1994) [16] introduced the concept of local volatility to price options with a
volatility smile, his closed form solution allowed for accurate implied volatility predictions
without making assumptions about the underlying stochastic process. A drawback of the local
volatility approach set forth by Dupire is that when the price of the underlying asset falls
(rallies), the local volatility model predicts that the smile will shift to a higher (lower) price
which is the opposite of observed market behavior. To correct for this Hagan, Kuman,
Lesniewski, and Woodward (2002) [22] proposed the SABR model which allows an asset’s
forward values and its volatility to correlate. The model assumes that returns follow a geometric
Brownian motion with a stochastic volatility component following a log normal process. This
innovation resulted in an options pricing model that more accurately captures changes in the
volatility smile. Other modeling attempts include Ahoniemi (2007) [2] who analyzed the
accuracy of a mixture multiplicative error models to predict directional changes in the Nikkei
225’s implied volatilities compared to an ARIMA model. This work was extended in Ahoniemi
(2008) [3] where call and put implied volatility for the USD/EUR were jointly modeled in a
mixture multiplicative error model to accurately capture regime switching behavior. The success
of joint volatility modeling was further explored in Ahoniemi and Lanne (2009) [28] where a
bivariate mixture multiplicative error model was used improved call and put implied volatility
predictions from previous mixture models on the Nikkei 225. Papanicolaou and Sircar (2013)
[34] applied this sharp regime shift mixture effect to the Heston model using asymptotic and
Fourier methods resulting in a more accurate prediction for the VIX index. Recent research

surrounding stochastic volatility models has further extended and improved the efficiency of



these adaptations for the leverage effect. Hosszehni and Kastner (2019) [26] implemented
Bayesian Estimation for parameter selection of Stochastic Volatility models with leverage to
improve sampling efficiency making the implementation of these methods more practical.
Finally, Sepp and Rakhmonov (2022) [38] addressed the short comings of SV models on assets
with positive return-volatility correlation by adding a quadratic drift component, extending the

feasible scope of these models to assets such as inverse Bitcoin options.

2.4 State of the Art (Machine Learning Models)

Although there are continuing research efforts in all three branches of volatility
modeling, most recent publications have involved the application of machine learning algorithms
to model implied volatility surfaces using attributes for all three previously mentioned modeling
methodologies. For completeness I will now overview this newer class of models. Avellaneda,
Carelli, and Stella (2000) [6] implemented the Bayesian Framework through a Neural Network
to generate implied volatility surfaces which they found accurately captured the general effect of
option smiles. Tino, Nikolaev, and Yao (2005) [41] demonstrated that Sparse Bayesian Kernal
models could be used to predict directional changes in implied volatility surfaces leading to a
successful straddle trading strategy. Hosker, Djurdjevic, Nguyen, and Slater (2018) [25]
compared a variety of machine learning methods (Recurrent Neural Networks, PCA, etc.) and
ARIMA models in predicting the future price of VIX futures. The researchers found that the
Recurrent Neural Networks and Long Short-Term Memory ML models outperformed all other
ML and timeseries models. Medvedev (2022) [29] applied two novel neural network

architectures for multi-step timeseries forecasts to build implied volatility Surfaces, encoding the
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IV term structure as a discrete dimension. Nybo (2021) [31] conduction a cross sectional analysis

of volatility prediction between GARCH and Artificial Neural Networks by sector. He observed
that the ANN models outperformed on assets from sectors with historically low volatility
whereas the GARCH models performed much better on assets from sectors with medium/high
volatility. Vrontos, Galakis, and Vrontos (2021) [42] found that Machine Learning Methods
outperformed econometric models at predicting directional changes in implied volatility in
virtually all settings. Finally, Hirsa, Osterrieder, and Misheva (2021) [24] found that machine
learning could be used to accurately price VIX futures using only a subset of the options data

used by the CBOE to update contract value.

3. Data and Methodology

3.1 Data

There were two sources of data used in the following analysis. All 503 current
constituents of the S&P 500 were considered to be part of the analysis. The volatility data was
pulled from the US Equity Historical and Option Implied Volatilities dataset provided by
Quantcha. The dataset contains volatility data on over 8,000 U.S. equities publicly traded on the
NASDAQ, NYSE, NYSE ARCA, and NYSE American (formerly AMEX). The dataset included
historical realized volatilities generated by both the Close-to-Close and Parkinson models, and
at-the-money option-implied volatilities for calls/puts, means, and skew steepness indicators
from 10 to 180 days from expiration. All available volatility data was pulled for the current
S&P500 constituents from January, 1st, 2016 until January, 1st, 2023. Tickers with more the

5.00% of historical volatility metrics missing from the available range of dates unique to each
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ticker was dropped from the dataset, resulting in 487 remaining tickers. Historical price data was

pulled from the Yahoo Finance API and both datasets were stored in a locally hosted
PostgreSQL database, data aggregation and cleaning was done using python, and the back tests
were run using Jupyter Notebooks. The use of only current S&P500 constituents in the preceding
analysis allows for the influence of survivorship bias in the results. Accordingly, the modeling
results should only be interpreted under the context of volatility prediction and not as a proxy for

daily return prediction.

3.2 Preliminaries

Recall from the introduction that there are two primary proxies for volatility; realized
volatility and implied volatility. There are two main ways to calculate realized volatility; Close-

to-Close Volatility and Parkinson’s Volatility.

f1
CCHV = —Z X2
n

1 h;
i = | 2L
ParkinsonHV \/4N1n(2) E In (li)

Close-to-Close Volatility is a simple variance calculation applied to the closing price of a

stock over the past X days. Despite its simplicity, this metric closely resembles the variance used
in the standard VIX calculation and many corresponding derivative pricing strategies.
Parkinson’s Volatility is similar but takes a more sophisticated approach by considering the
range of intraday prices in addition to the closing price. Given that Close-to-Close HV is more

prominently used in volatility modeling research, 10 day rolling Close-to-Close realized
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volatility was the metric used for realized volatility in this analysis. Implied volatility on the

other hand is a parameter of the Black Scholes Model. This analysis used the mean of implied
volatilities for at-the-money (ATM) calls and puts with an average expiration of ten calendar
days from the measurement date. Now that the two-volatility metrics used in the preceding
analysis have been outlined, there are two general modeling approaches used in this analysis.
The first approach is to directly model the behavior of rolling historical volatility. Put simply,
these models look to directly predict the value of realized volatility and implied volatility given
the previous values of realized volatility. The second approach is to build a model which predicts
future daily returns based on historical normalized daily returns, and uses the residual variance of
the predictions as the estimate of volatility. For this kind of model, daily price action is used to
predict future daily price action and the variability in these predictions are used as our volatility
estimates. Both of these general approaches are implemented for the time series and Bayesian

models. The next section will outline the derivation of the various family specific models.

3.3 Bayesian Models

Bayesian models are an ideological extension of Bayes theorem. The core idea behind the
Bayesian framework is that prior beliefs are updated after observing data. Unlike a frequentist
approach, the Bayesian framework is fed prior assumptions about the target distribution (call
these the prior distributions) and then assigned a likelihood function to update these prior beliefs
based on the observed data. The result of this multiplication is a probability distribution
representing the likely values of the parameter of interest known as the posterior distribution. In

some cases, there is an analytical closed form solution when the prior distribution(s) and
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likelihood distribution are multiplied, but in many cases this result is intractable. Due to the

computational intensity required to sample from this intractable distribution, early practitioners
were largely unable to explore Bayesian methods. Recent developments in probabilistic
programming methods and more efficient sampling algorithms have made simulating intractable
posterior distributions possible. The use of Bayesian methods to directly predict daily stock
returns has largely failed because the approximations converge to their frequentist counterparts.
Alternatively, the Bayesian framework is more directly applicable to modeling the volatility of
equity returns since the underlying distribution is allowed to change given new data. Below |
derive five Bayesian Models and generate point predictions and credible intervals for the next
days’ realized volatility and implied volatility. For each model I calculate the directional
accuracy of the point prediction, the root mean squared error term of the point prediction, and the
percent of the time the credible interval capture the next days’ observed volatility. The models
are run on all 487 stocks in the sample space and the sector specific cross-sectional results are

compared.

3.3.1 Inverse Gamma, Normal Conjugate Pair

The first model looks to capture the posterior distribution of daily returns. The scale
parameter (standard deviation) of the resulting posterior distribution is then used to predict the
next day’s volatility. This model employs the assumption that the mean of historical daily returns
can be used as a reasonable estimate for the location parameter, meaning there is only need for
one prior distribution. To begin, the Inverse Gamma distribution is chosen as the prior

approximation for the scale parameter and the Gaussian distribution as the likelihood function.
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This results in a conjugate pair posterior with a closed form solution that is equivalent to an

Inverse Gamma distribution where the alpha and beta terms are calculated as follows, where X

represents daily return data.
(Xlo®)n(o?|a, f) = (0%[Xy...Xn) = 1G(a, )
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Note that the inverse gamma distribution has two parameters, alpha and beta, that need to
be defined for the prior distribution and clearly have an impact on the resulting posterior
distribution as evident in the formula above. In this model, the prior distribution represents the
prior assumption about the distribution of the variance of daily returns, since this distribution is
unknown four uninformed prior specifications were used for alpha and beta (1,1), (2,1), (3,.05),

(3,1). The resulting assumed prior assumptions are displayed below.

wn

-~

|
LR~ - A -
w T
Il oo

oI i
T
[

o D R

05 | -
0 ' '
0 05 1 15 2 25 3

Figure 1: Inverse Gamma Distribution
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Recall that the closed-form solution for the posterior represents the expected distribution

of the variance of stock returns, where the mean of the resulting distribution can be interpreted as
our point estimate for future volatility and the standard deviation of the distribution is a
reflection of our confidence in the point estimate. In other words, a wider posterior distribution
implies that the volatility of stock volatility is increasing. Accordingly, I used the expected value
of the posterior distribution calculated at the close of each trading day plus/minus the variance of

the posterior distribution to create the prediction interval for future stock volatility...

BIX] = (al';-l)
__ By
R CER )

(E[X]-Var[X],E[X] + Var[X])

Note that unlike the normal distribution which has a fixed ratio between the area under its
cumulative density function and the number of standard deviations an observation is from the
mean, the variance of the Inverse Gamma distribution derived above is contingent on the values
of alpha and beta, which in turn are contingent on the training sample size and sample values.
This gives our interval the unique characteristic that its length dynamically updates as the intra-
week variance rises, without the need for arbitrary weightings on more recent data points. Unlike
the other four models below, there is a closed form solution for this model making the results
computationally more efficient than the other Bayesian models. For each of the four prior
specifications, models were trained on the previous 5,7,10,15, and 30 days to predict the next

days realized and implied volatility. The results are analyzed in section four.
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3.3.2 Bayesian Models Intractable Posterior

A second application of the Bayesian Framework is to directly model the distribution of
volatility by feeding in historical realized volatility as the observed data. For this modeling
schema we need to figure out a likelihood function and prior distributions that sensibly represent
volatility based on our previously understanding of (or lack thereof) the characteristics of
volatility. First, volatility (implied and realized volatility) cannot be negative thus the likelihood
distribution should not have any probable mass over regions less than zero. Second, generally
speaking, periods of extremely high volatility occur less frequently than periods of moderate/low
volatility. So, the likelihood function should be concave. From these assumptions, the gamma
distribution appears to be a reasonable candidate for the likelihood function.

05

‘1 k=10,86=20
) k=20.86=20
04 k=3.0.8=20
k=50.8=10
03 — k=9.0.86=05
- k=75,06=10
k=05.8=1.0
02
o b Z/ i
0 2 4 6 8 10 12 14 16 18 20

Figure 2 Gamma Distribution

The Gamma distribution has two parameters, a location and scale parameter which both
need to be assigned a prior distribution. These hyper parameters have less impact on the model
than the likelihood distribution thus uninformed prior assignments are totally acceptable.
However, the parameters must be positive and the range of the location parameter is most likely

somewhere between zero and one. An implied volatility larger than one implies that the market
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expects more than a 100% move in the underlying asset, although this is possible, it is reasonable

to assume that this is a tail occurrence and the center of the posterior distribution should be less
than this. Given these two specifications, the obvious choices for the prior distributions are the
Uniform and Exponential distributions. Note a key different between the two is that the
Exponential prior attributes a small but decreasing amount of probability mass to all values up to
infinity whereas the Uniform prior constrains this range of values. Both of these are reasonable
assumptions to make for the location and scale parameters of volatility. Accordingly, I created
four models with the following specifications; Gamma likelihood function with a Uniform prior
for alpha and an Exponential prior for beta, Gamma likelihood function with a Uniform prior for
alpha and a Uniform prior for beta, Gamma likelihood function with an Exponential prior for
alpha and an Exponential prior for beta. Finally, a naive model was included with a Log-normal
likelihood function with a Uniform prior for alpha and an Exponential prior for beta to be used as
a benchmark. Unlike the models in the previous section the resulting posteriors are intractable
matrix multiplications only a mathematician could love. Sampling from these distributions is too
computationally expensive for most Markov Chain Monte Carlo methods. Accordingly, the
NUTS (No-U-Turn) sampler was used. The algorithm uses Hamiltonian dynamics to explore the
target distribution by tuning the step size of the MCMC proposal distribution. The python
package PyMc3, build on top of optimizing compiler Theano, was used to design the models and
sample from the intractable posteriors. A more detailed description of the tuning parameters for

the sampling algorithm and an analysis of the results will be discussed in section five.
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3.4 Time Series Models

As outlined in the literature review section, time series models are particularly useful in
capturing the volatility of financial assets by making the assumption that the conditional variance
of a time series changes over time. A defining feature shared by all GARCH type models is that
they allow for the conditional variances of predictions and observations to correlate. In this
analysis, five time series models were compared; GARCH, FIGARCH, APARCH, HARCH, and
EGARCH. Each model is implemented in two ways. The first approach models the series of
daily returns given the last 100 days of data to predict the next day’s daily return. The variance
estimation of the prediction is annualized and then used as the prediction for the next day’s
volatility. The second approach is to directly predict the next day’s volatility by training the
model on the historical volatility from the past 100 days. Both of these implantations were used
on all five of the models outlined below. All of the models are implemented using Python’s
ARCH package. The results of the models are discussed in the following results section. The
GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model makes the
assumption that the conditional variance of a time series of is a function of its past values and

variances with two parts; a moving average and autoregressive component.

The GARCH model assumes that the conditional variance is stationarity, leading many

to characterize it as a ‘short memory’ model. The FIGARCH (Fractionally Integrated GARCH)
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model is an extension of the GARCH model where the integration order of the conditional

variance can be any real number between 0 and 1.

Xt = &/ Ot
__7 aB) o dyo2
Ot _B(l)w+{1 B(B) (1-B)%}yt

A value of 0 would imply that past variances have no effect on future volatility prediction
whereas a value of 1 implied that the process has a unit root and is nonstationary. This feature
gives the model ‘Long Memory’ because the impact of volatility spikes slowly decays over time.
Theoretically, this should better capture the volatility clustering effects observed in historical
stock data. The APARCH (Asymmetric Power ARCH) model is another extension of the
GARCH model, however unlike the GARCH model the impacts of positive and negative shocks

do not have symmetric impacts on volatility.
& = Ot
o =w+ z e’ le, 20 + ai'|et_i|51et_i<0
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The model accomplishes this by incorporating different exponents for positive and
negative shocks in the volatility equation. Theoretically, this should capture the disproportionate
effect on stock volatility during negative shocks. The HARCH (Hyperbolic ARCH) model is
another extension of the GARCH model that attempts to address the long memory of stock
returns similar to the FIGARCH model. It accomplishes this by allowing the conditional variance

to be affected by the past squared error terms over multiple lags.
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The contribution of each lagged period decreases by a hyperbolic weighting function.
This is another approach which theoretically should capture volatility clustering however the
increased sophistication to the residual effect of past volatility spikes could allow for increased
responsiveness. The fifth and final model used in this analysis is the EGARCH (Exponential
GARCH), another extension of the GARCH model. The EGARCH model uses an exponential
function of past error terms and the absolute value of past error terms to predict the conditional

variance of future returns, this ensures that the conditional variance is always positive.

q p
log(a?) = @ + ) Aig(Zuid + ) ailogady
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Unlike other GARCH type models, the EGARCH model can also include other variables
in the conditional variance equation, such as lagged returns or other economic indicators. Similar
to the APACH model, the goal of the EGARCH model is to capture the asymmetric effect of

volatility spikes.

4. Results

4.1 Bayesian Conjugate Pair Results

Recall from the preliminaries section that the first Bayesian model generated predictions using
the Inverse Gamma and Normal conjugate pair. The models were run on all of the tickers in the dataset to

serve as a bench mark for the other Bayesian models specified below. There were two variables altered in



this modeling schema. The first was the number of days feed in as observations and the second was the
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alpha and beta values assigned to the gamma prior distribution. Each table in the following three images

represents a different alpha and beta pairing, and each column represents the number of observations feed

into the iteration of the model predicting implied volatility. Starting with the 95% credible intervals

generated by the models, The prior assignments of (1,1) for alpha and beta with a five-day training period

was the only model that accurately captured the next days implied volatility more than 95% of the time.

This is likely due to the length of the credible interval which explains why the confidence interval

accuracy decreases as a function of the number of training days.

Alpha=1 Bela=1 Alpha=2 Beta=1
5 Day_Cl 7_Day_Cl 10_Day Cl 15_Day Cl 30_Day_Cl 5_Day_Cl 7_Day_Cl 10_Day Cl 15_Day Cl 30_Day_Cl
count 487.000000 487.000000 487.000000 487.000000 437.000000 count 487.000000 487.000000 487.000000 487.000000 437.000000
[UEELE 0.981812 WCrre N 0.171137  0.000063 (LN 0.900373  0.733971 B 0.077723  0.000030
std 0236264  0.171695 EEORIIYA) B 0431988 0214393 0.237067 0.000392
min EEESXZERY 0000000  0.000000  0.000000  0.000000 min  0.000000  0.000000  0.000000  0.000000  0.000000
i3 0982964  0.886396 | UEREEeEE  0.018171  0.000000 25% ORI NPARR R CY  0.237081 0.000568  0.000000
LI 0991482 0953436  0.680295 0.119672  0.000000 50% QEEVESCRNERUE IS 0423623  0.022714 0.000000
) 0994389  0.973886  0.806644 N [--r REEEIILITY ) 0973878 0.896934 0.123225  0.000000
max 1.000000 1.000000 0964225  0.714367 0.011357 max 1.000000 0.976136 0.006814

Alpha=3 Beta=05 Alpha=3 Beta=1
5 Day CI 7_Day_CI 10_Day _ClI 15_Day_ClI 30_Day_CI 5 Day Cl 7_Day Cl 10_Day_Cl 15_Day _CI 30_Day_CI
count 487.000000 487.000000 487.000000 487.000000 487.000000 count 487.000000 487.000000 437.000000 487.000000 437.000000
mean EEORIIGSN 0018281  0.000710  0.000011 0.000011 mean EEONECCIERNEIERIIE 0239269  0.029985  0.000022
std IEORESTIVE 0043525 0005182  0.000186  0.000233 BN 0214545 0242367 0200116 [E-ZE SR TICIK)
min  0.000000  0.000000  0.000000  0.000000  0.000000 min  0.000000  0.000000  0.000000  0.000000  0.000000
25% QEUXLEEERY  0.000000  0.000000  0.000000  0.000000 25% QST EERE I KCTECEE  0.057638  0.000000  0.000000
50% QEUXZEZEY  0.000000  0.000000  0.000000  0.000000 50% EEERCOPICERRUETYCILY  0.196479  0.001136  0.000000
75% QEORVEICTE  0.011925  0.000000  0.000000  0.000000 75% QKU N LV7g 0383873  0.030664  0.000000
max EEUGCIEEZE RGPS 0.080636  0.003975  0.005150 LN 0976136 0.955139  0.784781 BREEErigs v 0.005150

Figure 3 Conjugate Pair Credible Interval Results for Implied Volatility
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Moving on to the directional predictions of implied volatility, there is no model specification that
consistently outperforms the others. The highest directional accuracy achieved is 53.08% which is
outperformed by the models outlined in the literature review but sets a good benchmark for the Intractable

Bayesian directional prediction results outlined in the next section.

Alpha=1 Beta=1 Alpha=2, Beta=1

5_Day EV 7_Day_EV 10_Day EV 15_Day EV 30_Day_EV 5 Day EV 7 Day EV 10 Day EV 15 Day EV 30 Day EV

count 487.000000 487.000000 487.000000 487.000000 487.000000 count 487.000000 487.000000 487.000000 487.000000 487.000000

mean  0.506615 EEEZILUREEECIIKLY 0516474  0.512830 [UEELE 0524458  0.530822 | 0.524655 EEVEYF17 B VY VZ:7io
CIGE  0.020397 F0.018229 = 0.01S162 SN XL v/ [ RSV L2 std BGERVGR  0.017434 EEVAGEIEEY 0016570  0.015833

min  0.461670 EEUEYSKX< BRI EY(IE78 0465645  0.465645 min WRYPEY(l 0465645  0.465645  0.465645

ISCEEIVEEE  0.511641 0.519023 B 0.502555 pLYM 0511641  0.519591 EREZE  0.503123  0.502555
50%  0.505963 EEUEYALTUNSEEYAIIEE 0516752  0.513345 50% IRE7ESNVERIS U2y (178 0.514480  0.513345
IGNCICITEN 0536852  0.541761 052952 0.524039 Y 0536627 0542306  0.538898 [EEMVEYAIK EEVEYZIKY]

max EEOVEZYEIEY 0574074

0561045 0561045 max RVETPET((RVETE VT CE S 0.561045  0.561045

Alpha =3, Beta=0.5 Alpha = 3, Beta =1

5 Day EV 7 _Day EV 10_Day EV 15 Day EV 30_Day EV 5_Day EV 7_Day_EV 10_Day_EV 15_Day_EV 30_Day EV

count 487.000000 487.000000 487.000000 487.000000 487.000000 count 487.000000 487.000000 487.000000 487.000000 487.000000

mean EENMVEYERVGE 0512900 0512842 0512832  0.512823 mean [VERIGKOIMEZEO0 0518962  0.513211 0.512825

std QPR 0015878  0.015823  0.015820  0.015833 std 0174 (OEIPERREEIKE  0.016102  0.015833

min 0465645 0465645  0.465645 0465645  0.465645 min EEEYFEY( 0465645 0465645 0465645  0.465645

25% 0502555 0502655  0.502555  0.502555  0.502555 25% QEEUGIESCINIRIZER  0.505922  0.502555  0.502555

50% 0513345 0513345 0513345  0.513345 [/  0.530380  0.528977 [MUGHESEN 0.513913  0.513345
75%

max 0561045 0561045 0561045  0.561045  0.561045 [UEYE 0578648  0.592277 EEMVELEH

0524039 0524039  0.524039  0.524039 £ 0542306  0.541170 S8 0.524702  0.524039

0.561045  0.561045

Figure 4 Conjugate Pair Directional Predictor Results for Implied Volatility

Lastly, the Root Mean Squared Errors (RSME) of the point predictions are calculate for
implied volatility. The seven-day models with the prior specification (1,1) and (2,1) and the five-
day model with prior specification (1,2) are the most accurate, and also have notably lower

standard deviations than the predictions from the other models.
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Alpha=1 Bela=1 Alpha = 1, Beta =2
5_Day_RMSE 7_Day_RMSE 10_Day RMSE 15_Day RMSE 30_Day_RMSE 5_Day_RMSE 7_Day RMSE 10_Day RMSE 15_Day RMSE 30_Day RMSE
count  487.000000  487.000000 487.000000 437.000000 437.000000 count  487.000000  487.000000 487.000000 487.000000 487.000000

0.154112 0.184645 0.221330 0.268094

0.076223 0.083955 0.086604 0.087400

mean 0.179845 0.141836 0.164318 0.208344 0.264400 mean 0.141995

std 0.039360 ) 0.066002 0.087363 std 0.060944

min 0.068896 0.050044 0.065394 0.124223 min 0.050011 0.066493 0.065606 fi 0.127765
25% 0.107820 0111044 I 0.204577 25% 0.107873 0.102218 0.128257 0.162005 0.208285
50% 0.173826 0.120794 0.139820 0.244465 50% 0.120934 0.128496 0.162739 0.201076 0.248385

75% 0.199454 0.151925 0.198795 0.304333 75% 0.152076 0.184404 0.2234 0.261731 0.308027

max 0.419364 0520106 0.725771 max 0.520928 0.578864 i 0.677007 0.729825
Alpha =3, Beta=05 Alpha =3, Beta=1

5_Day_RMSE 7_Day RMSE 10_Day RMSE 15 Day RMSE 30_Day RMSE 5_Day_RMSE 7_Day RMSE 10_Day RMSE 15_Day RMSE 30_Day RMSE

count  487.000000  487.000000  487.000000  487.000000  487.000000 count  487.000000  487.000000  487.000000  487.000000  487.000000

0.174978

0.201756 0.231516 0.271366
0.085642 0.086945 0.087429

mean 0226862 0243650 ik I Mt mean  0.154265

std 0.086908 0.087244 0.087397 0.087440 0.087407 std 0.076325 0.082519

min 0.090081 0.104662 i 0.136282 0.156923 min 0.066529 0.064550 0.072724 H 0.094045 0.130922

25% 0.167324 0.183972 200498 0.217160 0.238361 25% 0.102324 0.120213 0.171923 0.211571

50% 0.206586 0.223542 401 0.256988 0.277702 50% 0.128577 0.151646 0.211330 0.251549
5% 0.267481 0.284481 0.30037: 0.317116 0.337944 75% 0.184534 0211582 0.241969 0.272368 0.311354
max 0.683634 0.702508 72082 0.738704 0.760953 max 0.579502 0.616796 04 ] 0.688910 0.733404

Figure 5 Conjugate Pair RMSE for Implied Volatility

Next, these same model specifications were used to predict point estimates and credible intervals
for realized volatility. The performance of the credible intervals for all model specifications were notably
worse when attempting to capture realized volatility, however, the prior specification (1,1) trained on the

previous five days of data was still the best performing interval.
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5_Day Cl 7_Day_Cl 10_Day Cl 15 Day CI 30_Day Cl
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Alpha =2, Beta=1

5 Day_CI 7_Day Cl 10_Day_Cl 15_Day _Cl 30_Day CI

count 487.000000 487.000000 487.000000 487.000000 487.000000

mean TR ALKV CREE RGPS 0.335605  0.038944
std  0.033019 | 0.078350 EEEVAKICEZEENMIRFEIVZELE 0.032881
min EEGIVZETE 0221893  0.038462  0.000000  0.000000
25% [EVERyZYCRRRN OS2 0.235662  0.014764
50% [EVECEYEYIRENRIRYCYRRUGEETCVS  0.342987  0.030664
75% [EVESRIIL YRRV R L VI GELYR N 0441794 0.055082
lUEYe  1.000000  0.920308 | 0.782946 0.188529

Alpha = 3, Beta = 0.5

5_Day_CI

7_Day_CI 10_Day_CI

15_Day_Cl 30_Day_CI

count 487.000000 487.000000 487.000000 487.000000 487.000000

mean [ENRIPYGIEESOREREVGE  0.078037  0.020667  0.000998
std IEREYETCRRRNIREOZEEE  0.058908  0.019851  0.002392
min  0.000000  0.000000  0.000000  0.000000  0.000000
25% IEVRETGHE) 0.033759  0.006246  0.000000
50% [EEOKIgEIE (5 GENERE  0.064736 0.015900  0.000000
75% QEEOVERYVESSOPELIEOE  0.111584  0.029529  0.001136
max [EMVGERYKREERNEIEYAZE  0.304940  0.123225  0.041454

count 487.000000 487.000000 487.000000 487.000000 487.000000

[UCELN 0793583  0.668922 | 0.487934 EEN(WESILY] 0.029513
CCERNNCR N 0.116233 0.145586  0.125971 0.026035
min EEVPZAEERE  0.054945  0.014793  0.000000  0.000000
25% [EONGIRYINVGEAPER - (Irg0E  0.157297  0.009654
50% EEOEIRIVECER V(O VAR VA GRS 0.254401 0.022147
75% [EVERiP ROV EE (AR EOGR 0.353208  0.040886
BV 0.920308  0.844961 0.724588 0.147076

Alpha = 3, Beta=1

5 Day CI 7_Day_Cl 10_Day _Cl 15_Day Cl 30_Day_Cl

count 487.000000 487.000000 487.000000 487.000000 487.000000

mean [EVGIEGEVEINEZGIRRESRERVPRR  0.193131  0.022597
BON  0.116349  0.140255  0.144528 |  0.107883 VNVAVeKE]
min [EUGZEZEE  0.019724 0.004931  0.000000  0.000000
25% QGO TCIRTE  0.281454  0.110417  0.007098
50% QEEEON(ZYARBINVETIELEE S Ciirln  0.185122  0.017036
75% EONEEE NIV YRR ERGRE  0.271754 0.032084
JUEY  0.844961  0.760931  0.651334 ‘ 0.491766 EEMUNRIZEN]

Figure 6 Conjugate Pair Credible Interval Results for Realized Volatility

The directional predictions of realized volatility were slightly better with five of the models

achieving 54% accuracy including two from the prior specification (3,1), a substantial improvement from

the implied volatility predictions. Finally, the RMSE values were worse for all models when used to

predict realized volatility compared to implied volatility.
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Alpha=1,Beta=1 Alpha =2, Beta =1
5_Day EV 7_Day EV 10_Day EV 15_Day EV 30_Day_EV 5_Day EV 7_Day EV 10_Day EV 15_Day_EV 30_Day EV
count 487.000000 487.000000 487.000000 487.000000 487.000000 count 487.000000 487.000000 487.000000 487.000000 487.000000

mean | 0.518370 ENUEKKKYIREVEA 14 0.503463 [UCELN  0.533350  0.540268 0539268 = 0.526883 EEVKIVAVY]
BCR 0018401  0.016548 ‘ ) 0.010622 OGN 0016547 = 0.014456  0.014987  0.016795 EVAUIUIoTg
0.478123 VLTIV | (RN 0474162 0.469555 LWLl 0.486087 0495741 0475866  0.470187
25%  0.505395 EEVEYFLLH 0.532652 0.496309 Pyl 0522661 0531516 0.530664 S0:514617 EEEVELLIVK]
50%  0.516184 EENVEKKYZIVREVETAVEE] 0.503123 W78 0.533220  0.540034  0.540034 = 0.527541 0.502555
6 0529813 0.543441 0.549688 0.509938 IEY/ 0543312 0548552  0.549532  0.539194 EEVEYAT)

0.540034 uEYe 0.623457  0.651163 0.576945  0.537037

min

UEMe 0.609865  0.623457  0.651163 JEVETLILH

Alpha = 3, Beta = 0.5 Alpha = 3, Beta =1
5_Day EV 7_Day EV 10_Day _EV 15_Day EV 30_Day_EV 5_Day EV 7_Day EV 10_Day EV 15_Day EV 30_Day_EV
count 487.000000 487.000000 487.000000 487.000000 487.000000 count 487.000000 487.000000 487.000000 487.000000 487.000000

mean EEUEYZIVERREGPAIGE  0.505387 0499414  0.496835 WCELN  0.540304  0.540793  0.535069 FSN0:521403 EEIRZ)

std EEVIGGRECERIIOEEVER  0.011339  0.009484  0.009217 OGN 0014455 0014418  0.016416  0.016008 (ULt

Ul 0.475298 = 0471891 | 0.470187 JEORIIV% Y MR GViVAY min QEVEERYEEREUREIREES 0477002 0475298 0.469555
25% EERIZARESEZYEER 0497601 0492902 0490062 25% EVECIEICRIVECH RNy 2Zy (178 0.508802  0.494605
50% EEEYZERZERNEIEVEON 0504827 0499148  0.496877 FbZ 0540602  0.542306  0.535491 0.500852
75% EEVERGEYORSSEYZEGER  0.512493  0.505395  0.502555 JEY  0.548552  0.549688  0.547416 0.506599
UEYe 0.566156 ‘ DEEEER 0544009 0.537037  0.537037 max EEMVGERAGRR  (G0Rel - 0.682624  0.560477  0.537037

Figure 7 Conjugate Pair Directional Predictor Results for Realized
Volatility

For the first set of Bayesian Models there are three main takeaways, the conjugate pair generally
made more accurate predictions for implied volatility than realized volatility. The conjugate pair made
better credible intervals for realized volatility than it did for implied volatility. Lastly, the shorter training
sets overall lead to much more accurate predictions with 30-day training windows having the worst

results. This first class of Bayesian models will be referenced as a bench mark for the remaining models.
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Alpha=1,Beta=1 Alpha =2, Beta =1
5_Day RMSE 7_Day RMSE 10_Day RMSE 15_Day RMSE 30_Day RMSE 5_Day RMSE 7_Day RMSE 10_Day RMSE 15_Day RMSE 30_Day RMSE

count  487.000000  487.000000  487.000000  487.000000  487.000000 count  487.000000  487.000000  487.000000  487.000000  487.000000
453 0.228421 0.254661 0.202178

mean 0.245389 0.207364 0.215732 0.245324 0.289094 mean 0.207523 0.210272
std 0.047340 0.069205 0.086021 0.093329 0.095898 std 0.069336 0.090450 0.094303 0.095974

0100192 0.137312 min 0.115236

min 0.115256 0.109667 0.094399 0.140376
25%
50%
5% 0.254717 0.223825 0.248366 0.286027 0.333662 5% 0.223940 0.238386 0.265720 0.295972 0.336941

max 0.648451 0.638826 0.644949 0.724537 max 0.638892 0.642320 0.650414 0.728321

0.165345 0.155742 0.223529 25% 0.165410 0.154005 0.165546 [ 0.226624
0.183268 0.189639 0.262191 50% 0.183399 0.183887 0.201193 0.265379

Alpha =3, Beta=0.5 Alpha =3, Beta =1
5_Day RMSE 7_Day RMSE 10_Day RMSE 15_Day RMSE 30_Day RMSE 5_Day RMSE 7_Day RMSE 10_Day RMSE 15_Day RMSE 30_Day RMSE
count  487.000000  487.000000  487.000000  487.000000  487.000000 count  487.000000  487.000000  487.000000  487.000000  487.000000

0.240232 0.262523 0.294925

mean 0.258886 0272085 0.28569 0.299509 mean 0210422 0.222229
std 0.094706 H ) 3 0.095853 0.096078 std 0.082489 B8 0.092715 0.094904 0.096034
min 0.109429 0.120893 0.147833 min 0.109671 0.095664 0.097305 0.143126

25% 0.192750 0.206279 220108 0.233998 25% 0.154082 0.160576 0.176144 0.196374 0.229366

50% 0.231969 0.245071 0.272954 50% 0.184036 0195518 0.213260 0235582 0.268281

75% 0.300786 0315420 0.33009 0.344718 75% 0.238623 0.257569 0.280829 0.304848 0.339851
max 0.685215 0.702696 0.736495 max 0.642380 0.647790 0.657293 0.690241 0.731664

Figure 8 Conjugate Pair RMSE for Realized Volatility

4.2 Bayesian Intractable Posterior Results

For the Bayesian models with intractable posterior distributions, the process of generating
results was notably different from the conjugate pair models. Unlike the other models, generating
enough samples to accurately depict the posterior distribution was too computationally expensive
to be done for each day in the back test. Additionally, since 100 previous datapoints were used as
the observations for each prediction, changing only a fraction of the observations and then
sampling from the posterior would not have significantly changed the resulting posterior
samples. Accordingly, every ticker was labeled with a list of dates approximately 100 trading

days apart. Two of the dates were chosen at random for each of the tickers and the models were
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built on the previous 100 days. During the modeling phase, 500 iterators of prior parameter

tuning with a NUTS sampler was used to create a trace vector. The trace vector was then used to
generate 100,000 samples from the posterior distribution for each prediction. A 10,000-sample
burn-in period was implemented and the resulting 90,000 samples were used to represent the
intractable posterior distribution. From these remaining samples two intervals and two point
estimators were created. An 85% credible interval was used by looking at the ordered percentiles
of the samples and a novel ‘skew interval’ was created by taking three times the distance
between the mean and the median then centering it over the posterior distribution. Secondly, both
the mean and the median were used as point estimates and the directional accuracy and RMSE
was calculated for each. The analysis was run on all of the tickers in the data set then replicated
on three cross sectional slices of the data based on historical sector volatility. Information
Technology, Consumer Discretionary, Health Care, Energy, and Communication Services were
classified as ‘High Volatility Sectors’, Materials, Industrials, and Financials as ‘Medium
Volatility Sectors’, and Utilities, Real Estate, and Consumer Staples as ‘Low Volatility Sectors’.
Finally, the models were used to predict both realized and implied volatility. The results are

displayed below.
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All Tickers
Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE
0 Gamma(Uniform_Exponential) 0.938080 0.841073 0.862745 0.668731 0.293413 0.321763
1 Gamma(Uniform_Uniform) 0.983488 0.963880 0.758514 0.829721 0.471844 0.315584
2 Gamma(Exponential_Exponential) 0.912281 0.514964 0.863777 0.834881 0.293336 0.309542
3 LogNormal(Uniform_Exponential) 0.865841 0.934985 0.725490 0.756450 0.800073

High Volatility Sectors

Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE

0 Gamma(Uniform_Exponential) 0.948718 0.839744 0.833333 0.675214 0.257950 0.281823
1 Gamma(Uniform_Uniform) 0989316 0.974359 0.745726 0.807692 0.467212 0.281718
2 Gamma(Exponential_Exponential) 0.910256 0.487179 0.833333 0.818376 0.258006 0.268151

0.901709

0.735043 0.745726 6.687688 0.780439

3 LogNormal(Uniform_Exponential) 0.835470
Medium Volatility Sectors

Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE

0 Gamma(Uniform_Exponential) 0.929878 0.838415 0.902439 0.661585 0.334487 0.368636
1 Gamma(Uniform_Uniform) 0.978659 0.948171 0.783537 0.871951 0.484183 0.354126

2 Gamma(Exponential_Exponential) 0.914634 0.545732 0.905488 0.856707 0.334384 0.354913

0.777439 6.676078 0.804130

0.722561

0.957317

3 LogNormal(Uniform_Exponential) 0.884146
Low Volatility Sectors

Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE

0 Gamma(Uniform_Exponential) 0.924855 0.849711 0.867052 0.664740 0.300148 0.327710
1 Gamma(Uniform_Uniform) 0976879 0.965318 0.745665 0.809249 0.460475 0.324614

2 Gamma(Exponential_Exponential) 0913295 0.531792 0.867052 0.838150 0.299816 0.321470

0.745665 11.520943 0.843639

Figure 9 Intractable Bayesian Results for Realized Volatility

0.913295 0.982659 0.705202

3 LogNormal(Uniform_Exponential)

Starting with the results for realized volatility, the Gamma distribution with Uniform priors
generated the best credible intervals of all the Bayesian models capturing the next day’s realized volatility
over 98.00% of the time. This result hold across all cross-sectional volatility breakdowns as well, notably
outperforming all conjugate pair models. All three models which use the gamma distribution as the
likelihood function have at least one point estimate that correctly predicts the directional change of
realized volatility over 80.00% of the time. This is arguably the most significant result from the analysis.
The mean and median estimators of the model with a Gamma likelihood function and exponential priors,
are the most accurate at predicting directional changes in realized volatility for all cross-sectional

breakdowns. The mean and median estimators for this model capture directional changes for all stocks
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86% and 83% of the time respectively, 83% and 81% of the time for high volatility sectors, 91% and 86%

of the time for medium volatility sectors, and 87% and 84% of the time for low volatility sectors. As
outlined in the literature review section, some of the best preforming published directional indicators were
only able to capture the correct change in volatility ~75% of the time. Accordingly, expanding on the use
of these posterior estimators as directional indicators will be a topic of future work. Finally, the RMSE of
the estimators are calculated for each model. Note that models with the Log Normal likelihood functions
are intentionally inaccurate (it allows volatility predictions to be negative) to contextualize what bad
results look like. Accordingly, the root mean squared error values for the models with a Gamma
likelihood function are relatively accurate as point estimators compared to the intentionally uninformed
models varying by as little as 15 basis points on average. In summation, the use of intractable Bayesian
models appears to be exceptionally good at modeling realized volatility. Another notable feature of the
results is the success of the Mean Median interval for the model with a Gamma likelihood function and
Uniform priors. Given that this range is based only on the distance between the mean and the median, this
interval dynamically adapts to changes in the skew of the volatility distribution. Additionally, it will
almost always be shorter than the 85% credible interval. Despite its shorter length, the interval captures
realized volatility 96.3% of the time when run all tickers, 97.4% for high volatility stocks, 94.8% for
medium volatility stocks, and 96.5% for low volatility. Given that this is significantly higher than the
models which use an exponential prior, using this interval as a trading range for volatility will also be a

topic of future research.
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All Tickers
Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE
0 Gamma(Uniform_Exponential) 0.913313 0.808050 0.466460 0.286908 0.326675
1 Gamma(Uniform_Uniform) 0.970072 0.921569 0.299278 0.351909 0.434633 0.300130
2 Gamma(Exponential_Exponential) 0.787410 0.269350 0.464396 0.286869 0.306638
3 LogNormal(Uniform_Exponential) 0.538700 0.926729 0.318885 0.308566 0.757874
High Volatility Sectors
Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE
0 Gamma(Uniform_Exponential) 0.923077 0.809829 0.487179 0.294327 0.332763
1 Gamma(Uniform_Uniform) 0.985043 0.931624 0.324786 0.399573 0.448290 0.307149
2 Gamma(Exponential_Exponential) 0.779915 0.269231 0.489316 0.294447 0.310374
3 LogNormal(Uniform_Exponential) 0.534188 0.888889 0.337607 0.329060 0.744328
Medium Volatility Sectors
Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE
0 Gamma(Uniform_Exponential) 0.896341 0.798780 0.454268 0.307367 0.350636
1 Gamma(Uniform_Uniform) 0.960366 0.902439 0.289634 0.320122 0.437918 0.319673
2 Gamma(Exponential_Exponential) 0.789634 0.265244 0442073 0.307214 0.330043
3 LogNormal(Uniform_Exponential) 0.548780 0.948171 0.307927 0.298780 0.758297
Low Volatility Sectors
Model Credible_Interval Mean_Median_Interval Mean_Direction_Acc Median_Direction_Acc Mean_RMSE Median_RMSE
0 Gamma(Uniform_Exponential) 0.919075 0.820809 0.433526 0.218175 0.255122
1 Gamma(Uniform_Uniform) 0.947977 0.930636 0.248555 0.283237 0.388397 0.235759
2 Gamma(Exponential_Exponential) 0.803468 0.277457 0.439306 0.217859 0.241681
3 LogNormal(Uniform_Exponential) 0.531792 0.988439 0.289017 0.271676 0.792597

Figure 10 Intractable Bayesian Results for Implied Volatility

Looking at the results of the models for predicting implied volatility, there is similar success in

creating credible interval across all sector volatility profiles. However, the accuracy of the directional

predictions for implied volatility are significantly worse than the results from the realized volatility

analysis. This is most likely attributed to fact that the modes are trained on rolling realized volatility,

which occasionally diverges from implied volatility. Given that the observed values greatly influence the

shape and skew of the posterior distribution this likely is the cause for the poor results. Given the success

of the intractable models when predicting realized volatility, a topic of future work will be to re-run the

back test by training the model on implied volatility. A notable setback of these models is how

computationally expensive they are to generate and how much memory is required to store all the samples
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for each iteration of the back test. For this reason, future work to expand these models onto implied

volatility data will require computational assistance.

4.3 Time Series Results

Recall that there are two general schemas for the five timeseries models. The first set of
models were trained on daily returns and the variance of the prediction was used as the point
estimate for future realized, these results are contained in the next three tables. The second set of
models were trained on the past 100 days of realized volatility, and the value of the next day’s
prediction was used as the point estimate. These results are contained in the last three tables. As
evident from the results of the Bayesian models, there is a notable deprecation in the accuracy of
the models trained on realized volatility when predicting implied volatility. Due to this
observation and the computational intensity of training the models every day in the back test
period for each ticker, the results below only indicate the performance of predicting realized
volatility. Due to the computational limitations of the resources available for this analysis,
recreating the back test for implied volatility is reserved for future work. Staring with the model
trained on daily returns, the FIGARCH model marginally outperforms the other models at
creating confidence intervals for realized volatility with ~98% accuracy across all cross sections.
Additionally, all of the models generated more accurate credible intervals on low volatility

sectors.



All Tickers

GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI EGARCH_CI

High Volatility

GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI EGARCH_CI

486.000000 486.000000 486.000000

count 486.000000 486.000000

mean EEETELER 0.980746 0.979664  0.969126 0.830524

std  0.023839 0.023163 0.023167  0.022526 0.039364

min  0.489209 0.506680 0.500000 ~ 0.521069 0.581622

0.975904 0.975215  0.963236 0.806994

25% [VKTEY(]

50% [EEVEELRYEYR) 0.982530 0.981280  0.970155 0.832570
[EY  0.987296 0.987952 0.986126  0.976506 0.856808
[uche  1.000000 1.000000 1.000000  1.000000 0.987654

Medium Volatility Sectors

GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI EGARCH_CI

233.000000  233.000000 233.000000

count 233.000000 233.000000

0.967327 0.822766

0.009102 0.036858

0.940171 0.696581

mean VETERRN 0.979476 0.978800

std  0.008544 0.008603 0.007923

ULl 0.945783 0.946956 0.941390

25% EVETENLY 0.973494 0.974034  0.960843 0.801383
50% [VECTLEN 0.980120 0.978865  0.966847 0.822309
(6l 0.984337 0.985542 0.984190  0.973494 0.847436
max V] 1.000000 QRO 0.991489 0.987654

Low Volatility Sectors

GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI EGARCH_CI

count 165.000000  165.000000 165.000000 165.000000  165.000000

0.970319 0.837695

mean [EVETERZE] 0.980937 0.979186

0.038103 0.043671

0.037793 0.036243

std

0.039059

min  0.489209 0.506680 0.500000 ~ 0.521069 0.581622

0.978208  0.967431 0.817358

PRy 0.978313 0.978326

50% [VELRTES] 0.984337 0.982498  0.972892 0.843852
IEYl  0.987952 0.988554 0.986683  0.977724 0.864597
max [ 1.000000 1.000000  1.000000 0.924841

88.000000 88.000000  88.000000

88.000000

count  88.000000

[UCELN  0.983355 0.983752 0.982847  0.971655 0.837622

0.033325

0.008982 0.008667  0.010663

0.009363

-

d

S

min EVERYEX] 0.962048 0.963120  0.950602 0.740168
25% VETERI:] 0.976506 0.975845  0.963705 0.822586
50% [EVELREYE] 0.985542 0.984616  0.973201 0.835229
6 0.990512 0.990361 0.989377  0.978916 0.857622
luchd  0.998557 0.999398 0.998555  0.990361 0.917868

Figure 11 Time Series Confidence Intervals Generated from Daily Returns

Looking at the directional accuracy of the model predictions, the GARCH model was
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marginally better than all other models capturing the change in direction ~55% of the time. The

GARCH model also had the lowest standard deviations in prediction results across all cross

sections. Although these directional predictions are in line with the Bayesian benchmark models,

the results are significantly worse than the previously outlined intractable Bayesian predictors.

This further emphasis the utility of the Bayesian framework and the motivation for future

research.
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All Tickers

GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction EGARCH_Direction

count 486.000000 486.000000 486.000000 486.000000 486.000000

mean 0.549369 0.548939 0.546381 0.546286 0.531236

0.012882 0.013401 0.012976

std

0.012570

min 0.515060 0.506329 0.509639 0.495726 0.482639
25% 0.542169 0.540964 0.537940 0.538554 0.522892
50% 0.548795 0.548825 0.545783 0.546386 0.531508
75% 0.556627 0.556024 0.553614 0.554217 0.539157
max | ' 0.639344 0.641975 0.606557 0.606557

High Volatility

GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction EGARCH_Direction

count 233.000000 233.000000 233.000000 233.000000 233.000000

mean 0.549245 0.548669 0.546063 0.545615 0.529886
0.012779 0.013883 0.013616 0.013637

0.012363

min 0.515060 0.506329 0.515371 0.495726 0.482639

25% 0.540964 0.540361 0.537349 0.536747 0.521687
50% 0.548795 0.548193 0.545181 0.546386 0.530120
75% 0.556627 0.556627 0.554217 0.553614 0.537349
0.604938

0.592593 0.592593 0.641975 0.604938

Medium Volatility Sectors

max

GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction EGARCH_Direction

count 165.000000 165.000000 165.000000 165.000000 165.000000
mean 0.551048 0.550561 0.547921 0.548806 0.534324

0.014037

std 302 0.013464 0.012890 0.012055

min 0.516867 1 0.513855 0.509639 0.511149 0.494578
25% 0.543976 0.543373 0.540299 0.542169 0.526189
50% 0.550000 0.550000 0.546988 0.548193 0.534805
75% 0.559036 0.556669 0.555422 0.556024 0.542020
0.606557

max | 0.622951 ‘ 0.639344 0.622951 0.606557
Low Volatility Sectors

GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction EGARCH_Direction
count 88.000000 88.000000 88.000000 88.000000 88.000000

mean 0.546551 0.546614 0.544335 0.543335 0.529020
std 0.011840 0.011714 0.012843 0.012178 0.012096
min 0.516867 0.518072 0.513855 0.514311 0.493068
25% 0.539608 0.537801 0.537199 0.535542 0.521687
50% 0.547475 0.547289 0.544880 0.542470 0.529518
75% 0.553163 0.553163 0.552560 0.552410 0.537107

max 0.578644 [ 0.572289 0.587302 0.569880 0.556999

Figure 12 Time Series Directional Predictor Generated from Daily Returns



Finally, the RMSE scores were calculated for each of the models, the results for the

EGARCH and APARCH models were nonsensical and indicated that there was a convergence

problem in the results. Although the directional accuracies and credible intervals for these two

models appears in line with the other models, the RMSE scores indicate that the EGARCH and

APARCH models not able to accurately capture the dynamics of the problem so they have been
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dropped from the results. Looking at the remaining three models, the RMSE scores indicate that the

point estimates were notably closer to observed realized volatility than the intractable Bayesian

models, with the GARCH and the FIGARCH models having the closest estimates. Based on all

three results the GARCH and FIGARCH modes appear to create more precise point estimates than

the Bayesian models, but they are less sensitive to changes in the skew of the distribution resulting in

notably lower directional predictions for realized volatility.

All Tickers

GARCH_RMSE FIGARCH_RMSE HARCH_RMSE

High Volatility

GARCH_RMSE FIGARCH_RMSE HARCH_RMSE

count 486.000000
mean 0.127327
std 0.055799
min 0.056059
25% 0.093238
50% 0.114415
75% 0.144073
max 0.638602

Medium Volatility Sectors

486.000000
0.125714
0.055301
0.056119
0.091531
0.113809
0.143979
0.638358

486.000000
0.163786

0.058951

0.082503
0.126805
0.148763
0.186336
0.648526

count
mean
std
min
25%
50%
75%

max

233.000000
0.144294
0.055010
0.067771
0.106431
0.130766
0.165771
0.394875

Low Volatility Sectors

233.000000
0.141998
0.054321
0.068888
0.103580
0.128424
0.164611
0.396042

233.000000
0.179288
0.058214
0.085415

0.138276

0.165936
0.202361
0.431125

GARCH_RMSE FIGARCH_RMSE HARCH_RMSE

count 165.000000 165.000000 165.000000
mean 0.118176 0.117214 0.155512
std 0.056601 0.056579 0.056985
min 0.060010 0.060547 0.082503
25% 0.091069 0.091197 0.128128
50% 0.109144 0.108391 0.144740
75% 0.123906 0.124727 0.169312
max 0.638602 0.638358 0.648526

GARCH_RMSE FIGARCH_RMSE HARCH_RMSE

count 88.000000 88.000000 88.000000
mean 0.099561 0.098536 0.138254
std 0.039227 0.039387 0.052744
min 0.056059 0.056119 0.086575
25% 0.075589 0.074611 0.109186
50% 0.091349 0.089203 0.122418
75% 0.113172 0.112505 0.151724
max 0.346087 0.347084 0.514268

Figure 13 Time Series RMSE Generated from Daily Returns
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The five time series models were run again but alternatively trained on the realized
volatility from the past 100 days. Surprisingly, the resulting confidence intervals were
significantly less accurate than the confidence intervals from the previous modeling schema.
Notably, when trained on past realized volatility the APARCH model generated the most
accurate interval estimator. The EGARCH model performed even worse than in the previous

results and was dropped from the results for conciseness.

All Tickers High Volatility Sectors
GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI
count 486.000000 486.000000 486.000000 486.000000 count 233.000000 233.000000 233.000000 233.000000

mean 0.889414 0.892147 0.893038 0.889291 mean 0.883451 0.886900 0.887838 0.883717
std 0.025873 0.024842 0.024649 0.025948 std 0.026546 0.025265 0.024832 0.026456

min 0.806024 0.812048 0.816867 0.812048 min 0.806024 0.812048 0.816867 0.812048

25% 0.873645 0.877711 0.877108 0.872289 25% 0.865663 0.871084 0.872289 0.866265

50% 0.890328 0.892771 0.894214 0.889759 50% 0.881254 0.884268 0.885542 0.881928

75% 0.905422 0.906362 0.907831 0.906024 75%

0.900000 0.901205 0.903012 0.900000

max 1.000000 1.000000 1.000000 1.000000 max 0.962963 0.962963 0.950617 0.962963

Medium Volatility Sectors Low Volatility Sectors
GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI GARCH_CI FIGARCH_CI APARCH_CI HARCH_CI
count 165.000000 165.000000 165.000000 165.000000 count  88.000000 88.000000 88.000000 88.000000

0.896301 0.898278 0.899030 0.895725 mean 0.892290 0.894542 0.895570 0.891985

0.024533 0.025784 std 0.021442

min 0.836747 0.838554 0.837952 0.839759

mean

std 0.025224 0.024811 0.020662 0.021476 0.021560

NN 0.842169 0.840964 EEEVN  0.822182
25%  0.881928 0.884337 (EEZEEEN  0.882530 25%  0.878765 0.882530 (CLZULEY  0.879367
50%  0.894578 0.896988 WEELLYEN  0.894578 50%  0.894880 0.897590 0.898223 EERVEERIEK)

0.908936 0.911596 0.908133

75%  0.906627 0.907831 0.909910 75% 0909173

max  1.000000 1.000000 1.000000  1.000000 max  0.939157 0.938554 0.940325 | 0.939759

Figure 14 Time Series Confidence Intervals Generated from Historical
Volatility
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The directional predictions from all five models were similar to the previous results with
the GARCH and FIGARCH models notably outperforming the APARH and HARCH models.

However, the directional results were still significantly worse than the Bayesian predictions.

All Tickers

GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction

count 486.000000 486.000000 486.000000 486.000000
mean 0.547093 547387 0.546672 0.546896

std 0.014938 015482 0.014330 0.014038
min 0.513855 516265 0.510417
25% 0.538554 538554 0.537952 0.537952
50% 0.546386 .546386 546084 0.545800
75% 0.554819 555422 0.554217 0.554217
max 0.737705 . 737705 0.721311 0.688525

High Volatility Sectors

GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction

count 233.000000 233.000000 233.000000 233.000000

546544 0.545647 0.546554

012316 013322 0.012225 0.012680

mean o

o

o

0.537952 .537349 0.537349 537952
o

o

o

std
min

25%

50% .545181 545783 0.545181 0.545783
75% 554819 .554819 0.553614 0.553614
max .592593 629630 0.592593 0.592593

Medium Volatility Sectors

GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction

count 165.000000 165.000000 165.000000 165.000000

mean 0.548579 0.548985 0.548293 0.547943
std 0.018826 0.018954 0.016279
min 0.523494 0.519880 0.518675
25% 0.539759 0.539157 0.538554
50% 0.548193 0.547261 0.546988
75% 0.555422 0.556627 0.556024 0.555422
max 0.737705 0.737705 0.721311 0.688525
Low Volatility Sectors
GARCH_Direction FIGARCH_Direction APARCH_Direction HARCH_Direction
count 88.000000 88.000000 88.000000 88.000000
mean 0.546158 0.546624 0.545837
std 0.013355 0.012253
min 0.513855 0.516265 0.523494 0.514458

25% 0.537052 0.537349 0.537349

75% 0.554015 0.555422 0.553614 0.554289

max 0.590164 0.598361 0.598361 0.590164

Figure 15 Time Series Directional Predictor Generated from Historical
Volatility
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Once again, the EGARCH and APARCH models had nonsensical RMSE terms and were

removed from analysis. The remaining three models all have higher RMSE than the previous set
of models, implying that the timeseries models trained on daily returns were more accurate than
those trained on past realized volatility. In the next section these finding are condensed and

future works are discussed.

All Tickers High Volatility Sectors
GARCH_RMSE FIGARCH_RMSE HARCH_RMSE GARCH_RMSE FIGARCH_RMSE HARCH_RMSE
count 486.000000 486.000000 486.000000 count 233.000000 233.000000 233.000000

0.218251

mean 0.199517 0.202369 0.199930 mean 0.211949 0.212189

std 0.061676 0.092929 0.062132 std 0.063378 0.118063 0.063779
min 0.093401 0.092204 0.093401 min 0.104494 0.104363 0.104602
25% 0.160396 0.159838 0.160613 25% 0.165573 0.165385 ‘
50% 0.184755 0.184637 0.185305 50% 0.198416 0.198321 0.198975 |
75% 0.223148 0.223164 0.223440 75% m 0.234600 0.235440
max 0.667321 0.674106 max 0.441308 0.441668

Medium Volatility Sectors Low Volatility Sectors
GARCH_RMSE FIGARCH_RMSE HARCH_RMSE GARCH_RMSE FIGARCH_RMSE HARCH_RMSE
count 165.000000 165.000000 165.000000 count 88.000000 88.000000 88.000000
mean 0.194518 0.194157 0.195105 mean 0.175971 0.175715 0.176521

std 0.058699 0.058693 0.059388 std 0.054565 0.054372 0.054989
min 0.092204 0.093401 min 0.118580 0.118220 0.118842
25% 0.160542 0.160331 0.162164 25% 0.144648 0.145149 0.144412
50% 0.184326 0.184490 50% 0.164699 0.164657 0.164513

0.183843 0.185555

0.182849
0.528036 0.531368

75% 0.218270 0.218083 0.218497 75%
max 0.667321 0.667723 0.674106 max

Figure 16 Time Series RMSE Generated from Historical Volatility
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5. Conclusions

The goal of this analysis was to compare a variety of volatility models in the three most
applicable settings to for asset managers and market makers. Each model was used to creating
confidence interval for future movement, predict daily directional changes in volatility, and
generate point estimates of future volatility for both realized and implied volatility. Unique to
this analysis, probabilistic programming methods were used to developed Bayesian models with
intractable posterior distributions, and in many of the evaluation criteria these had the best
performing predictions. There are a few key takeaways. First, intractable Bayesian models
assigned a Gamma likelihood function are able to predict directional changes of realized
volatility between 80% and 90% of the time. This is significantly better than all other models in
this analysis and all published directional predictors included in the literature review.
Additionally, the use of the mean and median from the posterior distribution samples with a
Gamma Likelihood function and Uniform prior assumptions were able to accurately capture the
changing skew of the distribution of realized volatility. Secondly, timeseries models trained on
daily returns data generate significantly better volatility predictions than those trained on past
measures of realized volatility. Furthermore, the FIGARCH and the GARCH models make the
most accurate point predictions of all the models analyzed. Finally, both Bayesian and
timeseries models trained on historical realized volatility were much worse at predicting future
implied volatility than predicting future realized volatility, indicating that realized volatility is
not a strong predictor for implied volatility. A major limitation of this analysis was the
computation and memory requirements for building and storing the modeling results. In future
work this analysis will be extended to train all of the models on implied volatility. Specifically,

intractable Bayesian model will be trained on implied volatility to see if the directional
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predictions are just as accurate as the realized volatility directional predictions. The magnitude of

the directional estimator will also be incorporated to optimize the performance of the indicator.
The results above demonstrate the ability of the Bayesian framework to outperform some of the
most popular timeseries modes, and I hope this paper motivates further applications of these

models in practice.
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