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ABSTRACT 
 

The application of machine learning and probabilistic programming methods on stock 

return prediction has grown in tandem with the availability of high frequency stock data. With 

well recorded heteroskedasticity in historical stock returns, modeling attempts have evolved from 

making general assumptions about the underlying data generating distribution to predicting 

changes in the underlying distribution of returns. The increase in popularity of ‘tradable 

volatility’ through derivative contacts and VIX futures over the past three decades has motivated 

research efforts to model the variance of daily returns. Along this line of research, three schools 

of thought have emerged to model return volatility; Time Series Models, Stochastic Models, and 

Bayesian Models. Given that the preliminary assumptions underlying these models differ, the 

nature of their results and the varying metrics used to calculate their respective accuracy makes it 

difficult to directly compare them. Accordingly, the currently available pool of research has 

diverged along these three separate paths making it unclear the advantages of each. Notably, 

Bayesian models have largely been neglected in the current pool of research due to their 

computational intensity. In this paper I derive ten time series and Bayesian models then provide a 

comprehensive comparative study of the results on real stock data. I found that Bayesian models 

with intractable posterior distributions significantly outperform time series models at predicting 

directional change in future volatility, while the GARCH and FIGARCH time series models 

generate the most accurate point predictions for future volatility. I hope the results outlined in 

this paper better contextualize different volatility predictions and motivate the creation of more 

accurate tradeable volatility models.   
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1. Introduction 

1.1 Motivation 

With respect to daily US stock returns, consensus dictates that normalized returns and 

detrended returns follow a log-normal distribution [4]. Further analysis across both U.S. and 

international equity markets have found mixed evidence on the underlying distributions that most 

accurately characterize daily price action; however, the recurrent appearance of mean reversion 

and stationarity among other factors implies that the distribution of stock returns changes over 

time. This understanding has led to continued attempts at modeling short-term stock returns, 

specifically the variance/volatility of stock returns. From the perspective of fundamental 

analysis, noticeable changes in the ‘typical’ volatility of daily stock returns are attributed to 

different economic regimes. For example, periods of persistently high volatility are attributed to 

economic uncertainty which then can be rationalized by a variety of qualitative talking points 

including economic quadrant shifts, changes in federal reserve policy, global supply and demand 

shocks, etc. The main takeaway here is that there are observable periods of noticeably high 

volatility during times of economic uncertainty and low volatility during economic booms. This 

indicates an intuitive understanding that daily returns do not follow a static log-normal 

distribution as many models assume. A statistical interpretation of this phenomenon is that there 

is inertia/clustering in the volatility of stock returns [13]. In other words, there is a tendency for 

periods of high volatility to follow periods of high volatility. 
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1.2 Problem 

Given these observations, there is a clear motivation to model the volatility of stock 

returns as a function of time, however volatility in equity market is an ambiguous term. There are 

two ways to measure volatility; realized volatility and implied volatility. Realized volatility is the 

standard deviation of a stock’s price over the past X days. There are many variations of realized 

volatility calculations based on either closing price or intra-day prices, and the number of 

observations used to make the calculations. Implied volatility on the other hand is a parameter of 

the Black Scholes Model which is forward looking in the sense that it indicates the market’s 

expectation of future price volatility based on observed prices in the options market. From an 

econometrics perspective, implied volatility represents a risk neutral measure of the aggregate 

market risk premium [18] while realized volatility is deemed a risk adverse measure based on 

observed historical prices. This explains why implied volatility and realized volatility measures 

systematically differ. Since there is no clear indication which measure is more useful to predict, 

there is a divide in pool of literature where some papers predict future realized volatility while 

other predict implied volatility adding a layer of obscurity to model comparison. Although 

neither realized volatility nor implied volatility is a perfectly accurate measure for the ‘true’ 

volatility of stock returns, in practice both are useful. Most economists focus on predicting future 

realized volatility given that it can be directly observed from stock prices. There are natural 

critiques of the accuracy of implied volatility given that Black Scholes model assumes that the 

implied volatility function of an option should be flat and constant through time [7], which is 

observably untrue in markets. However, the general adoption of the VIX as a tradeable volatility 

benchmark and the increased availability of derivative contracts have made accurate predictions 

of implied volatility a profitable indicator none the less. For example, a market maker who has 
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perfectly hedged all exposure to the greeks will be able to profit from a correct prediction of 

future implied volatility movement [9]. Analytically there is an unclear correlation between 

realized volatility and implied volatility that changes overtime, but for the sake of this analysis 

both are used as independent target variables. Accordingly, this paper derives a variety of novel 

heteroskedastic Bayesian and time series models to predict both realized and implied volatility. 

The models are back tested on the current constituents of the S&P 500 and a cross sectional 

analysis of the results is done by sector volatility classification. This paper is structured as 

follows, section 2 is a literature review of volatility modeling, section 3 overviews the data sets 

and methodologies used along with some required preliminaries for each of the models. Section 

4 examines the results of the analysis and section 5 ends with a conclusion and a discussion of 

future works. 

2. Literature Review 

This section provides an overview of the current literature on volatility modeling. The 

subsections are broken down based on the three primary schools of thought as outlined in the 

survey paper Samsudin and Mohamad (2016) [37]. The original volatility models were based 

purely on observed trading ranges. Parkinson (1980) [35] derived the extreme value method for 

estimating the variance of stock returns based on the distribution of observed extreme values. 

Garman and Klass (1980) [19] developed an estimator for historical volatility based on observed 

daily high, low, and closing prices synthesized by the Average True Range (ATR). Rogers and 

Satchell (1994) [36] developed a more accurate range estimator for daily volatility based on daily 

high, low, and closing prices by incorporating a historical look back period. Finally, Yang and 
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Zhang (2001) [43] modified the Garman and Klass estimator to be independent of the drift and 

expected return of an underlying asset further improving performance. In a comparative study of 

the above range estimators by Shu and Zhang (2006) [39] the researchers found that all 

estimators were effective at capturing past realized volatility if prices followed a geometric 

Brownian motion with small drift. Both Rogers and Satchell’s estimator as well as Yang and 

Zhang’s estimator were shown to be resistant to drift components, but only Yang and Zhang’s 

estimator was resistant to large initial jumps. These range estimators were the starting point for 

modern volatility modeling; however, their results were by and large snap shots of past price 

action. 

 2.1 Time Series Volatility Models 

The time series family of volatility models started with the introduction of the ARCH 

class of models by Engle (1982) [17] which improved variance predictions by allowing the 

conditional variance of returns to be a function of previous price action. Engle accomplished this 

by incorporating past squared error terms into future predictions. This model was further 

improved by Bollerslev (1986) [10] who developed the GARCH model which allowed past 

conditional variance terms alongside past squared error terms to influence predictions. Nelson 

(1991) [30] developed the EGARCH model, which extended the GARCH model by allowing 

there to be asymmetry in the impact of positive and negative shocks with the goal of 

incorporating the leverage effect into predictions. Bollerslev and Mikkelsen (1996) [11] 

furthered the development of this family of models by comparing the performance of the 

ARFIMA (Auto-regressive Fractionally Integrated Moving Average) model, the HYGARCH 
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(Hyperbolic GARCH) model, and their newly proposed FIGARCH (Fractionally Integrated 

GARCH) model to incorporate the long memory of stock returns, in other words the observed 

persistence in volatility tendencies. Outside of expanding the types of regressors in the ARCH 

family of models, more recent research has looked at changing the underlying assumptions of 

market structure. Ghysels, Santa-Clara, and Valkanov (2006) [20] looked to optimize time series 

volatility predictions by implementing a MIDAS (Mixed Data Sampling) framework. Curto 

(2009) [14] found that the performance of the standard GARCH model could be greatly 

improved by changing the distributional assumptions from normal/log-normal to the student’s t 

distribution or the stable Pareto distribution. Chistoffersne, Jacobs, and Minmouni (2010) [12] 

further altered the GARCH model by incorporating realized variance into the Square Root Model 

(SQR) through a non-affine expansion resulting in the Realized GARCH model. Ardia and 

Hoogerheide (2010) [5] improved the efficiency of implementing the GARCH models with an 

assumed Student’s t distribution by proposing the use of Bayesian Inference for parameter 

selection instead of Maximum Likelihood estimation. Ahoniemi (2008) [1] applied the GARCH, 

EGARCH, and ARIMA-GARCH family of models to tradeable volatility in the form of VIX 

futures where the latter were found to significantly improve directional prediction accuracy. 

Rosy, Dong Wan, and Man-Suk (2017) [32] combined many of these previous innovations and 

prosed a combined ARFIMA and GARCH with Student’s T innovations using Bayesian 

Inference for parameter selection through the use of JAGS. One of the most recent innovations is 

the space is the development of the HAR (Heterogenous Autoregressive) model by Gong and Lin 

(2019) [21], which uniquely takes into account realized volatility and uses ensemble empirical 

mode decomposition to decomposed realized volatility into pure volatility and the leverage 

effect. Continued research in the time series family of models looks at further altering the 
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distributional assumptions which in many cases is computationally expensive leading to further 

research in Bayesian methods for parameter approximation. In addition to its use for parameter 

selection in time series models, an entire family of volatility models is derived using Bayesian 

inference which is covered next. 

2.2 Bayesian Volatility Models 

Unlike the other estimators which solve for a point estimate of a parameter, Bayesian 

models generate a probability distribution of the target variable. For volatility modeling, 

Bayesian models are directly applicable because they can capture how the distribution of 

volatility changes over time. Anecdotally, during times of economic uncertainty where stock 

prices are extremely volatile the resulting distribution of a Bayesian model will ‘spread out’. In 

other words, Bayesian models assume that volatility itself has an underlying data generating 

distribution, allowing the predictions to reflect changes in both the scale and location parameters 

of volatility. Karolyi (1993) [27] was the first to use the Bayesian framework to price options 

contracts using the inverse gamma and normal conjugate pair. The resulting options prices from 

his implied volatility estimates were more accurate than both implied volatility pricing models 

and an ex-post estimator (realized volatility). Cunha and Rao (2014) [15] validated these results 

on a larger set of data where uninformed priors were still able to accurately converge to the 

observed realized volatility. Yang and Lee (2011) [44] further extended this method using a 

Bayesian Kernel to generate accurate credible intervals for implied volatilities. Oostdam (2021) 

[33] applied a Bayesian model to tradeable volatility by generating credible intervals for VIX 

future contracts, he found that the No-U-Turn sampler significantly improved the efficiency of 
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drawing from the posterior compared Metropolis Hastings and other Hamilton MC methods. 

Although the literature supports the usefulness of Bayesian inference to predict both implied and 

realized volatility, the computationally expensive nature of the calculations and the need for 

advanced Markov Chain Monte Carlo sampling methods made research more difficult. However, 

with increased computing power, these methods can more readily be employed. 

2.3 Stochastic Volatility Models 

The third family of volatility models are the Stochastic Volatility (SV) models. Recall 

from the overview of time series models that the theoretical starting point was allowing for 

heteroscedasticity in the ARCH models derivation. Stochastic volatility models are slightly 

different in that they specifically address time-varying volatility in financial data by modeling 

volatility as a stochastic process. It’s important to note that there is some overlap in the 

classification of stochastic volatility models and time series models. For some of the more 

sophisticated time series models, the function that define future variance predictions contains a 

random component. This paper only focuses on the comparison of time series and Bayesian 

models, however; for completeness an overview of stochastic volatility models is included. 

Taylor, S.J (1986) [40], independent of Engle (1982) [17], derived the ARCH model but 

emphasized the stochastic properties of asset returns. Heston (1993) [23] introduced a new 

options pricing model by assuming that the underlying data generating function of stock price 

volatility is a stochastic process driven by a Weiner process. The Heston model incorporates the 

constant elasticity assumption of variance by using a mean-reverting square root diffusion 

process. Unlike the GARCH model, this created an options pricing framework with a closed 
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form solution. Bates (1996) [8] proposed the Stochastic Volatility Jump Diffusion Model which 

incorporated both a stochastic volatility and jump diffusion process to better characterize asset 

returns. Dupire (1994) [16] introduced the concept of local volatility to price options with a 

volatility smile, his closed form solution allowed for accurate implied volatility predictions 

without making assumptions about the underlying stochastic process. A drawback of the local 

volatility approach set forth by Dupire is that when the price of the underlying asset falls 

(rallies), the local volatility model predicts that the smile will shift to a higher (lower) price 

which is the opposite of observed market behavior. To correct for this Hagan, Kuman, 

Lesniewski, and Woodward (2002) [22] proposed the SABR model which allows an asset’s 

forward values and its volatility to correlate. The model assumes that returns follow a geometric 

Brownian motion with a stochastic volatility component following a log normal process. This 

innovation resulted in an options pricing model that more accurately captures changes in the 

volatility smile. Other modeling attempts include Ahoniemi (2007) [2] who analyzed the 

accuracy of a mixture multiplicative error models to predict directional changes in the Nikkei 

225’s implied volatilities compared to an ARIMA model. This work was extended in Ahoniemi 

(2008) [3] where call and put implied volatility for the USD/EUR were jointly modeled in a 

mixture multiplicative error model to accurately capture regime switching behavior. The success 

of joint volatility modeling was further explored in Ahoniemi and Lanne (2009) [28] where a 

bivariate mixture multiplicative error model was used improved call and put implied volatility 

predictions from previous mixture models on the Nikkei 225. Papanicolaou and Sircar (2013) 

[34] applied this sharp regime shift mixture effect to the Heston model using asymptotic and 

Fourier methods resulting in a more accurate prediction for the VIX index. Recent research 

surrounding stochastic volatility models has further extended and improved the efficiency of 



9 
these adaptations for the leverage effect. Hosszehni and Kastner (2019) [26] implemented 

Bayesian Estimation for parameter selection of Stochastic Volatility models with leverage to 

improve sampling efficiency making the implementation of these methods more practical. 

Finally, Sepp and Rakhmonov (2022) [38] addressed the short comings of SV models on assets 

with positive return-volatility correlation by adding a quadratic drift component, extending the 

feasible scope of these models to assets such as inverse Bitcoin options. 

2.4 State of the Art (Machine Learning Models) 

Although there are continuing research efforts in all three branches of volatility 

modeling, most recent publications have involved the application of machine learning algorithms 

to model implied volatility surfaces using attributes for all three previously mentioned modeling 

methodologies. For completeness I will now overview this newer class of models. Avellaneda, 

Carelli, and Stella (2000) [6] implemented the Bayesian Framework through a Neural Network 

to generate implied volatility surfaces which they found accurately captured the general effect of 

option smiles. Tino, Nikolaev, and Yao (2005) [41] demonstrated that Sparse Bayesian Kernal 

models could be used to predict directional changes in implied volatility surfaces leading to a 

successful straddle trading strategy. Hosker, Djurdjevic, Nguyen, and Slater (2018) [25] 

compared a variety of machine learning methods (Recurrent Neural Networks, PCA, etc.) and 

ARIMA models in predicting the future price of VIX futures. The researchers found that the 

Recurrent Neural Networks and Long Short-Term Memory ML models outperformed all other 

ML and timeseries models. Medvedev (2022) [29] applied two novel neural network 

architectures for multi-step timeseries forecasts to build implied volatility Surfaces, encoding the 
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IV term structure as a discrete dimension. Nybo (2021) [31] conduction a cross sectional analysis 

of volatility prediction between GARCH and Artificial Neural Networks by sector. He observed 

that the ANN models outperformed on assets from sectors with historically low volatility 

whereas the GARCH models performed much better on assets from sectors with medium/high 

volatility. Vrontos, Galakis, and Vrontos (2021) [42] found that Machine Learning Methods 

outperformed econometric models at predicting directional changes in implied volatility in 

virtually all settings. Finally, Hirsa, Osterrieder, and Misheva (2021) [24] found that machine 

learning could be used to accurately price VIX futures using only a subset of the options data 

used by the CBOE to update contract value. 

3. Data and Methodology 

3.1 Data 

There were two sources of data used in the following analysis. All 503 current 

constituents of the S&P 500 were considered to be part of the analysis. The volatility data was 

pulled from the US Equity Historical and Option Implied Volatilities dataset provided by 

Quantcha. The dataset contains volatility data on over 8,000 U.S. equities publicly traded on the 

NASDAQ, NYSE, NYSE ARCA, and NYSE American (formerly AMEX). The dataset included 

historical realized volatilities generated by both the Close-to-Close and Parkinson models, and 

at-the-money option-implied volatilities for calls/puts, means, and skew steepness indicators 

from 10 to 180 days from expiration. All available volatility data was pulled for the current 

S&P500 constituents from January, 1st, 2016 until January, 1st, 2023. Tickers with more the 

5.00% of historical volatility metrics missing from the available range of dates unique to each 



11 
ticker was dropped from the dataset, resulting in 487 remaining tickers. Historical price data was 

pulled from the Yahoo Finance API and both datasets were stored in a locally hosted 

PostgreSQL database, data aggregation and cleaning was done using python, and the back tests 

were run using Jupyter Notebooks. The use of only current S&P500 constituents in the preceding 

analysis allows for the influence of survivorship bias in the results. Accordingly, the modeling 

results should only be interpreted under the context of volatility prediction and not as a proxy for 

daily return prediction. 

3.2 Preliminaries 

Recall from the introduction that there are two primary proxies for volatility; realized 

volatility and implied volatility. There are two main ways to calculate realized volatility; Close-

to-Close Volatility and Parkinson’s Volatility. 

𝐶𝐶𝐻𝑉 =  ඨ
1

n
෍ X୧

ଶ 

ParkinsonHV =  ඨ
1

4Nln(2)
෍ lnଶ(

h୧

l୧
) 

Close-to-Close Volatility is a simple variance calculation applied to the closing price of a 

stock over the past X days. Despite its simplicity, this metric closely resembles the variance used 

in the standard VIX calculation and many corresponding derivative pricing strategies. 

Parkinson’s Volatility is similar but takes a more sophisticated approach by considering the 

range of intraday prices in addition to the closing price. Given that Close-to-Close HV is more 

prominently used in volatility modeling research, 10 day rolling Close-to-Close realized 
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volatility was the metric used for realized volatility in this analysis. Implied volatility on the 

other hand is a parameter of the Black Scholes Model. This analysis used the mean of implied 

volatilities for at-the-money (ATM) calls and puts with an average expiration of ten calendar 

days from the measurement date. Now that the two-volatility metrics used in the preceding 

analysis have been outlined, there are two general modeling approaches used in this analysis. 

The first approach is to directly model the behavior of rolling historical volatility. Put simply, 

these models look to directly predict the value of realized volatility and implied volatility given 

the previous values of realized volatility. The second approach is to build a model which predicts 

future daily returns based on historical normalized daily returns, and uses the residual variance of 

the predictions as the estimate of volatility. For this kind of model, daily price action is used to 

predict future daily price action and the variability in these predictions are used as our volatility 

estimates. Both of these general approaches are implemented for the time series and Bayesian 

models. The next section will outline the derivation of the various family specific models. 

3.3 Bayesian Models 

Bayesian models are an ideological extension of Bayes theorem. The core idea behind the 

Bayesian framework is that prior beliefs are updated after observing data. Unlike a frequentist 

approach, the Bayesian framework is fed prior assumptions about the target distribution (call 

these the prior distributions) and then assigned a likelihood function to update these prior beliefs 

based on the observed data. The result of this multiplication is a probability distribution 

representing the likely values of the parameter of interest known as the posterior distribution. In 

some cases, there is an analytical closed form solution when the prior distribution(s) and 
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likelihood distribution are multiplied, but in many cases this result is intractable. Due to the 

computational intensity required to sample from this intractable distribution, early practitioners 

were largely unable to explore Bayesian methods. Recent developments in probabilistic 

programming methods and more efficient sampling algorithms have made simulating intractable 

posterior distributions possible. The use of Bayesian methods to directly predict daily stock 

returns has largely failed because the approximations converge to their frequentist counterparts. 

Alternatively, the Bayesian framework is more directly applicable to modeling the volatility of 

equity returns since the underlying distribution is allowed to change given new data. Below I 

derive five Bayesian Models and generate point predictions and credible intervals for the next 

days’ realized volatility and implied volatility. For each model I calculate the directional 

accuracy of the point prediction, the root mean squared error term of the point prediction, and the 

percent of the time the credible interval capture the next days’ observed volatility. The models 

are run on all 487 stocks in the sample space and the sector specific cross-sectional results are 

compared. 

3.3.1 Inverse Gamma, Normal Conjugate Pair 

The first model looks to capture the posterior distribution of daily returns. The scale 

parameter (standard deviation) of the resulting posterior distribution is then used to predict the 

next day’s volatility. This model employs the assumption that the mean of historical daily returns 

can be used as a reasonable estimate for the location parameter, meaning there is only need for 

one prior distribution. To begin, the Inverse Gamma distribution is chosen as the prior 

approximation for the scale parameter and the Gaussian distribution as the likelihood function. 
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This results in a conjugate pair posterior with a closed form solution that is equivalent to an 

Inverse Gamma distribution where the alpha and beta terms are calculated as follows, where X 

represents daily return data. 

(X|𝜎ଶ)𝜋(𝜎ଶ|𝛼, 𝛽)  =  (𝜎ଶ|Xଵ. . . X୬)  =  IG(𝛼 ', 𝛽') 

𝜋(𝜎ଶ|𝛼, 𝛽)  =  
𝛽-

r(𝛼)
(𝜎ଶ)-(ఈାଵ)e

-ఉ
ఙమ  

X|𝜎ଶ~N(𝜇, 𝜎ଶ) →
1

√2𝜋𝜎ଶ
exp(-

(x-𝜇)ଶ

2𝜎ଶ
) 

𝛼 ' = 𝛼 +  
n

2
 

𝛽' = 𝛽 +  
1

2
෍(X୧-𝜇ଶ) 

Note that the inverse gamma distribution has two parameters, alpha and beta, that need to 

be defined for the prior distribution and clearly have an impact on the resulting posterior 

distribution as evident in the formula above. In this model, the prior distribution represents the 

prior assumption about the distribution of the variance of daily returns, since this distribution is 

unknown four uninformed prior specifications were used for alpha and beta (1,1), (2,1), (3,.05), 

(3,1). The resulting assumed prior assumptions are displayed below. 

 

Figure 1: Inverse Gamma Distribution 
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Recall that the closed-form solution for the posterior represents the expected distribution 

of the variance of stock returns, where the mean of the resulting distribution can be interpreted as 

our point estimate for future volatility and the standard deviation of the distribution is a 

reflection of our confidence in the point estimate. In other words, a wider posterior distribution 

implies that the volatility of stock volatility is increasing. Accordingly, I used the expected value 

of the posterior distribution calculated at the close of each trading day plus/minus the variance of 

the posterior distribution to create the prediction interval for future stock volatility… 

E[X]  =  
𝛽'

(𝛼 '-1)
 

Var[X] =
(𝛽')ଶ

(𝛼 '-1)ଶ(𝛼 '-2)
 

(E[X]-Var[X], E[X]  +  Var[X]) 

Note that unlike the normal distribution which has a fixed ratio between the area under its 

cumulative density function and the number of standard deviations an observation is from the 

mean, the variance of the Inverse Gamma distribution derived above is contingent on the values 

of alpha and beta, which in turn are contingent on the training sample size and sample values. 

This gives our interval the unique characteristic that its length dynamically updates as the intra-

week variance rises, without the need for arbitrary weightings on more recent data points. Unlike 

the other four models below, there is a closed form solution for this model making the results 

computationally more efficient than the other Bayesian models. For each of the four prior 

specifications, models were trained on the previous 5,7,10,15, and 30 days to predict the next 

days realized and implied volatility. The results are analyzed in section four. 
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3.3.2 Bayesian Models Intractable Posterior 

A second application of the Bayesian Framework is to directly model the distribution of 

volatility by feeding in historical realized volatility as the observed data. For this modeling 

schema we need to figure out a likelihood function and prior distributions that sensibly represent 

volatility based on our previously understanding of (or lack thereof) the characteristics of 

volatility. First, volatility (implied and realized volatility) cannot be negative thus the likelihood 

distribution should not have any probable mass over regions less than zero. Second, generally 

speaking, periods of extremely high volatility occur less frequently than periods of moderate/low 

volatility. So, the likelihood function should be concave. From these assumptions, the gamma 

distribution appears to be a reasonable candidate for the likelihood function. 

 

Figure 2 Gamma Distribution 

The Gamma distribution has two parameters, a location and scale parameter which both 

need to be assigned a prior distribution. These hyper parameters have less impact on the model 

than the likelihood distribution thus uninformed prior assignments are totally acceptable. 

However, the parameters must be positive and the range of the location parameter is most likely 

somewhere between zero and one. An implied volatility larger than one implies that the market 
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expects more than a 100% move in the underlying asset, although this is possible, it is reasonable 

to assume that this is a tail occurrence and the center of the posterior distribution should be less 

than this. Given these two specifications, the obvious choices for the prior distributions are the 

Uniform and Exponential distributions. Note a key different between the two is that the 

Exponential prior attributes a small but decreasing amount of probability mass to all values up to 

infinity whereas the Uniform prior constrains this range of values. Both of these are reasonable 

assumptions to make for the location and scale parameters of volatility. Accordingly, I created 

four models with the following specifications; Gamma likelihood function with a Uniform prior 

for alpha and an Exponential prior for beta, Gamma likelihood function with a Uniform prior for 

alpha and a Uniform prior for beta, Gamma likelihood function with an Exponential prior for 

alpha and an Exponential prior for beta. Finally, a naive model was included with a Log-normal 

likelihood function with a Uniform prior for alpha and an Exponential prior for beta to be used as 

a benchmark. Unlike the models in the previous section the resulting posteriors are intractable 

matrix multiplications only a mathematician could love. Sampling from these distributions is too 

computationally expensive for most Markov Chain Monte Carlo methods. Accordingly, the 

NUTS (No-U-Turn) sampler was used. The algorithm uses Hamiltonian dynamics to explore the 

target distribution by tuning the step size of the MCMC proposal distribution. The python 

package PyMc3, build on top of optimizing compiler Theano, was used to design the models and 

sample from the intractable posteriors. A more detailed description of the tuning parameters for 

the sampling algorithm and an analysis of the results will be discussed in section five. 
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3.4 Time Series Models 

As outlined in the literature review section, time series models are particularly useful in 

capturing the volatility of financial assets by making the assumption that the conditional variance 

of a time series changes over time. A defining feature shared by all GARCH type models is that 

they allow for the conditional variances of predictions and observations to correlate. In this 

analysis, five time series models were compared; GARCH, FIGARCH, APARCH, HARCH, and 

EGARCH. Each model is implemented in two ways. The first approach models the series of 

daily returns given the last 100 days of data to predict the next day’s daily return. The variance 

estimation of the prediction is annualized and then used as the prediction for the next day’s 

volatility. The second approach is to directly predict the next day’s volatility by training the 

model on the historical volatility from the past 100 days. Both of these implantations were used 

on all five of the models outlined below. All of the models are implemented using Python’s 

ARCH package. The results of the models are discussed in the following results section. The 

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model makes the 

assumption that the conditional variance of a time series of is a function of its past values and 

variances with two parts; a moving average and autoregressive component.  

X୲ = 𝜇 +  𝛾𝜎୲  + 𝛼୲ 

𝜎୲
ଶ = 𝜔 + ෍ 𝛼୧𝜀୲-୧

ଶ

୮

୧ୀଵ

+ ෍ 𝛽୨𝜎୨-୧
ଶ

୯

୨ୀଵ

 

 

 The GARCH model assumes that the conditional variance is stationarity, leading many 

to characterize it as a ‘short memory’ model. The FIGARCH (Fractionally Integrated GARCH) 



19 
model is an extension of the GARCH model where the integration order of the conditional 

variance can be any real number between 0 and 1.  

X୲ = 𝜀୲ඥ𝜎୲ 

𝜎୲ =
𝛾

𝛽(1)𝜔
+ {1-

𝛼(B)

𝛽(B)
(1-B)ୢ}y୲

ଶ 

 

A value of 0 would imply that past variances have no effect on future volatility prediction 

whereas a value of 1 implied that the process has a unit root and is nonstationary. This feature 

gives the model ‘Long Memory’ because the impact of volatility spikes slowly decays over time. 

Theoretically, this should better capture the volatility clustering effects observed in historical 

stock data. The APARCH (Asymmetric Power ARCH) model is another extension of the 

GARCH model, however unlike the GARCH model the impacts of positive and negative shocks 

do not have symmetric impacts on volatility.  

𝜀୲ = 𝜎୲𝜂୲ 

𝜎୲
ఋ = 𝜔 + ෍ 𝛼୧

ା|e୲-୧|
ఋ

ஶ

୧ୀଵ

1ୣ౪-౟ஹ଴ + 𝛼୧
-|e୲-୧|

ఋ1ୣ౪-౟ழ଴ 

The model accomplishes this by incorporating different exponents for positive and 

negative shocks in the volatility equation. Theoretically, this should capture the disproportionate 

effect on stock volatility during negative shocks. The HARCH (Hyperbolic ARCH) model is 

another extension of the GARCH model that attempts to address the long memory of stock 

returns similar to the FIGARCH model. It accomplishes this by allowing the conditional variance 

to be affected by the past squared error terms over multiple lags.  
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X୲ = 𝜀୲ඥ𝜎୲ 

𝜎୲ =
𝛾

𝛽(1)
+ {1-

𝛿୦(B)

𝛽(B)
[1-𝜙 + 𝜙(1-B)ୢ]}y୲
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The contribution of each lagged period decreases by a hyperbolic weighting function. 

This is another approach which theoretically should capture volatility clustering however the 

increased sophistication to the residual effect of past volatility spikes could allow for increased 

responsiveness. The fifth and final model used in this analysis is the EGARCH (Exponential 

GARCH), another extension of the GARCH model. The EGARCH model uses an exponential 

function of past error terms and the absolute value of past error terms to predict the conditional 

variance of future returns, this ensures that the conditional variance is always positive.  

log(𝜎୲
ଶ) = 𝜔 + ෍ 𝛽୩g(Z୲-୩) + ෍ 𝛼୩log𝜎୲-୩

ଶ

୮

୩ୀଵ

୯

୩ୀଵ

 

Unlike other GARCH type models, the EGARCH model can also include other variables 

in the conditional variance equation, such as lagged returns or other economic indicators. Similar 

to the APACH model, the goal of the EGARCH model is to capture the asymmetric effect of 

volatility spikes. 

4. Results 

4.1 Bayesian Conjugate Pair Results 

Recall from the preliminaries section that the first Bayesian model generated predictions using 

the Inverse Gamma and Normal conjugate pair. The models were run on all of the tickers in the dataset to 

serve as a bench mark for the other Bayesian models specified below. There were two variables altered in 



21 
this modeling schema. The first was the number of days feed in as observations and the second was the 

alpha and beta values assigned to the gamma prior distribution.  Each table in the following three images 

represents a different alpha and beta pairing, and each column represents the number of observations feed 

into the iteration of the model predicting implied volatility. Starting with the 95% credible intervals 

generated by the models, The prior assignments of (1,1) for alpha and beta with a five-day training period 

was the only model that accurately captured the next days implied volatility more than 95% of the time. 

This is likely due to the length of the credible interval which explains why the confidence interval 

accuracy decreases as a function of the number of training days.   

 

 

 

 

Figure 3  Conjugate Pair Credible Interval Results for Implied Volatility 
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Moving on to the directional predictions of implied volatility, there is no model specification that 

consistently outperforms the others. The highest directional accuracy achieved is 53.08% which is 

outperformed by the models outlined in the literature review but sets a good benchmark for the Intractable 

Bayesian directional prediction results outlined in the next section. 

 

Lastly, the Root Mean Squared Errors (RSME) of the point predictions are calculate for 

implied volatility. The seven-day models with the prior specification (1,1) and (2,1) and the five-

day model with prior specification (1,2) are the most accurate, and also have notably lower 

standard deviations than the predictions from the other models. 

 

Figure 4 Conjugate Pair Directional Predictor Results for Implied Volatility 
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Next, these same model specifications were used to predict point estimates and credible intervals 

for realized volatility. The performance of the credible intervals for all model specifications were notably 

worse when attempting to capture realized volatility, however, the prior specification (1,1) trained on the 

previous five days of data was still the best performing interval. 

 

 

 

 

Figure 5 Conjugate Pair RMSE for Implied Volatility 
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The directional predictions of realized volatility were slightly better with five of the models 

achieving 54% accuracy including two from the prior specification (3,1), a substantial improvement from 

the implied volatility predictions. Finally, the RMSE values were worse for all models when used to 

predict realized volatility compared to implied volatility. 

 

 

 

 

 

Figure 6 Conjugate Pair Credible Interval Results for Realized Volatility 
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For the first set of Bayesian Models there are three main takeaways, the conjugate pair generally 

made more accurate predictions for implied volatility than realized volatility. The conjugate pair made 

better credible intervals for realized volatility than it did for implied volatility. Lastly, the shorter training 

sets overall lead to much more accurate predictions with 30-day training windows having the worst 

results. This first class of Bayesian models will be referenced as a bench mark for the remaining models. 

 

 

 

 

 

Figure 7 Conjugate Pair Directional Predictor Results for Realized 
Volatility 
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4.2 Bayesian Intractable Posterior Results 

For the Bayesian models with intractable posterior distributions, the process of generating 

results was notably different from the conjugate pair models. Unlike the other models, generating 

enough samples to accurately depict the posterior distribution was too computationally expensive 

to be done for each day in the back test. Additionally, since 100 previous datapoints were used as 

the observations for each prediction, changing only a fraction of the observations and then 

sampling from the posterior would not have significantly changed the resulting posterior 

samples. Accordingly, every ticker was labeled with a list of dates approximately 100 trading 

days apart. Two of the dates were chosen at random for each of the tickers and the models were  

Figure 8 Conjugate Pair RMSE for Realized Volatility 
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built on the previous 100 days. During the modeling phase, 500 iterators of prior parameter 

tuning with a NUTS sampler was used to create a trace vector. The trace vector was then used to 

generate 100,000 samples from the posterior distribution for each prediction. A 10,000-sample 

burn-in period was implemented and the resulting 90,000 samples were used to represent the 

intractable posterior distribution. From these remaining samples two intervals and two point 

estimators were created. An 85% credible interval was used by looking at the ordered percentiles 

of the samples and a novel ‘skew interval’ was created by taking three times the distance 

between the mean and the median then centering it over the posterior distribution. Secondly, both 

the mean and the median were used as point estimates and the directional accuracy and RMSE 

was calculated for each. The analysis was run on all of the tickers in the data set then replicated 

on three cross sectional slices of the data based on historical sector volatility. Information 

Technology, Consumer Discretionary, Health Care, Energy, and Communication Services were 

classified as ‘High Volatility Sectors’, Materials, Industrials, and Financials as ‘Medium 

Volatility Sectors’, and Utilities, Real Estate, and Consumer Staples as ‘Low Volatility Sectors’. 

Finally, the models were used to predict both realized and implied volatility. The results are 

displayed below. 
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Starting with the results for realized volatility, the Gamma distribution with Uniform priors 

generated the best credible intervals of all the Bayesian models capturing the next day’s realized volatility 

over 98.00% of the time. This result hold across all cross-sectional volatility breakdowns as well, notably 

outperforming all conjugate pair models. All three models which use the gamma distribution as the 

likelihood function have at least one point estimate that correctly predicts the directional change of 

realized volatility over 80.00% of the time. This is arguably the most significant result from the analysis. 

The mean and median estimators of the model with a Gamma likelihood function and exponential priors, 

are the most accurate at predicting directional changes in realized volatility for all cross-sectional 

breakdowns. The mean and median estimators for this model capture directional changes for all stocks 

Figure 9 Intractable Bayesian Results for Realized Volatility 
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86% and 83% of the time respectively, 83% and 81% of the time for high volatility sectors, 91% and 86% 

of the time for medium volatility sectors, and 87% and 84% of the time for low volatility sectors. As 

outlined in the literature review section, some of the best preforming published directional indicators were 

only able to capture the correct change in volatility ~75% of the time. Accordingly, expanding on the use 

of these posterior estimators as directional indicators will be a topic of future work. Finally, the RMSE of 

the estimators are calculated for each model. Note that models with the Log Normal likelihood functions 

are intentionally inaccurate (it allows volatility predictions to be negative) to contextualize what bad 

results look like. Accordingly, the root mean squared error values for the models with a Gamma 

likelihood function are relatively accurate as point estimators compared to the intentionally uninformed 

models varying by as little as 15 basis points on average. In summation, the use of intractable Bayesian 

models appears to be exceptionally good at modeling realized volatility. Another notable feature of the 

results is the success of the Mean Median interval for the model with a Gamma likelihood function and 

Uniform priors. Given that this range is based only on the distance between the mean and the median, this 

interval dynamically adapts to changes in the skew of the volatility distribution. Additionally, it will 

almost always be shorter than the 85% credible interval. Despite its shorter length, the interval captures 

realized volatility 96.3% of the time when run all tickers, 97.4% for high volatility stocks, 94.8% for 

medium volatility stocks, and 96.5% for low volatility. Given that this is significantly higher than the 

models which use an exponential prior, using this interval as a trading range for volatility will also be a 

topic of future research. 
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Looking at the results of the models for predicting implied volatility, there is similar success in 

creating credible interval across all sector volatility profiles. However, the accuracy of the directional 

predictions for implied volatility are significantly worse than the results from the realized volatility 

analysis. This is most likely attributed to fact that the modes are trained on rolling realized volatility, 

which occasionally diverges from implied volatility. Given that the observed values greatly influence the 

shape and skew of the posterior distribution this likely is the cause for the poor results. Given the success 

of the intractable models when predicting realized volatility, a topic of future work will be to re-run the 

back test by training the model on implied volatility. A notable setback of these models is how 

computationally expensive they are to generate and how much memory is required to store all the samples 

Figure 10 Intractable Bayesian Results for Implied Volatility 
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for each iteration of the back test. For this reason, future work to expand these models onto implied 

volatility data will require computational assistance.  

4.3 Time Series Results 

Recall that there are two general schemas for the five timeseries models. The first set of 

models were trained on daily returns and the variance of the prediction was used as the point 

estimate for future realized, these results are contained in the next three tables. The second set of 

models were trained on the past 100 days of realized volatility, and the value of the next day’s 

prediction was used as the point estimate. These results are contained in the last three tables. As 

evident from the results of the Bayesian models, there is a notable deprecation in the accuracy of 

the models trained on realized volatility when predicting implied volatility. Due to this 

observation and the computational intensity of training the models every day in the back test 

period for each ticker, the results below only indicate the performance of predicting realized 

volatility. Due to the computational limitations of the resources available for this analysis, 

recreating the back test for implied volatility is reserved for future work. Staring with the model 

trained on daily returns, the FIGARCH model marginally outperforms the other models at 

creating confidence intervals for realized volatility with ~98% accuracy across all cross sections. 

Additionally, all of the models generated more accurate credible intervals on low volatility 

sectors.  
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Looking at the directional accuracy of the model predictions, the GARCH model was 

marginally better than all other models capturing the change in direction ~55% of the time. The 

GARCH model also had the lowest standard deviations in prediction results across all cross 

sections. Although these directional predictions are in line with the Bayesian benchmark models, 

the results are significantly worse than the previously outlined intractable Bayesian predictors. 

This further emphasis the utility of the Bayesian framework and the motivation for future 

research. 

 

Figure 11 Time Series Confidence Intervals Generated from Daily Returns 
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Figure 12 Time Series Directional Predictor Generated from Daily Returns 
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Finally, the RMSE scores were calculated for each of the models, the results for the 

EGARCH and APARCH models were nonsensical and indicated that there was a convergence 

problem in the results. Although the directional accuracies and credible intervals for these two 

models appears in line with the other models, the RMSE scores indicate that the EGARCH and 

APARCH models not able to accurately capture the dynamics of the problem so they have been 

dropped from the results. Looking at the remaining three models, the RMSE scores indicate that the 

point estimates were notably closer to observed realized volatility than the intractable Bayesian 

models, with the GARCH and the FIGARCH models having the closest estimates. Based on all 

three results the GARCH and FIGARCH modes appear to create more precise point estimates than 

the Bayesian models, but they are less sensitive to changes in the skew of the distribution resulting in 

notably lower directional predictions for realized volatility. 

 

Figure 13 Time Series RMSE Generated from Daily Returns 
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The five time series models were run again but alternatively trained on the realized 

volatility from the past 100 days. Surprisingly, the resulting confidence intervals were 

significantly less accurate than the confidence intervals from the previous modeling schema. 

Notably, when trained on past realized volatility the APARCH model generated the most 

accurate interval estimator. The EGARCH model performed even worse than in the previous 

results and was dropped from the results for conciseness. 

 

 

 

Figure 14 Time Series Confidence Intervals Generated from Historical 
Volatility 
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The directional predictions from all five models were similar to the previous results with 

the GARCH and FIGARCH models notably outperforming the APARH and HARCH models. 

However, the directional results were still significantly worse than the Bayesian predictions. 

 

Figure 15 Time Series Directional Predictor Generated from Historical 
Volatility 
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Once again, the EGARCH and APARCH models had nonsensical RMSE terms and were 

removed from analysis. The remaining three models all have higher RMSE than the previous set 

of models, implying that the timeseries models trained on daily returns were more accurate than 

those trained on past realized volatility.  In the next section these finding are condensed and 

future works are discussed.  

 

 

 

 

 

 

Figure 16 Time Series RMSE Generated from Historical Volatility 
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5. Conclusions 

The goal of this analysis was to compare a variety of volatility models in the three most 

applicable settings to for asset managers and market makers. Each model was used to creating 

confidence interval for future movement, predict daily directional changes in volatility, and 

generate point estimates of future volatility for both realized and implied volatility. Unique to 

this analysis, probabilistic programming methods were used to developed Bayesian models with 

intractable posterior distributions, and in many of the evaluation criteria these had the best 

performing predictions. There are a few key takeaways. First, intractable Bayesian models 

assigned a Gamma likelihood function are able to predict directional changes of realized 

volatility between 80% and 90% of the time. This is significantly better than all other models in 

this analysis and all published directional predictors included in the literature review. 

Additionally, the use of the mean and median from the posterior distribution samples with a 

Gamma Likelihood function and Uniform prior assumptions were able to accurately capture the 

changing skew of the distribution of realized volatility. Secondly, timeseries models trained on 

daily returns data generate significantly better volatility predictions than those trained on past 

measures of realized volatility. Furthermore, the FIGARCH and the GARCH models make the 

most accurate point predictions of all the models analyzed.  Finally, both Bayesian and 

timeseries models trained on historical realized volatility were much worse at predicting future 

implied volatility than predicting future realized volatility, indicating that realized volatility is 

not a strong predictor for implied volatility. A major limitation of this analysis was the 

computation and memory requirements for building and storing the modeling results. In future 

work this analysis will be extended to train all of the models on implied volatility. Specifically, 

intractable Bayesian model will be trained on implied volatility to see if the directional 
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predictions are just as accurate as the realized volatility directional predictions. The magnitude of 

the directional estimator will also be incorporated to optimize the performance of the indicator. 

The results above demonstrate the ability of the Bayesian framework to outperform some of the 

most popular timeseries modes, and I hope this paper motivates further applications of these 

models in practice. 
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 Collaborated with teammates to develop a web application that can monitor and predict urban activity volumes 
using Distributed Acoustic Sensing (DAS) data produced by the Penn State Fiber Optic Array (FORESEE) 

 Created a Django web application to store and display FORESEE’s recorded vibrations in real time 
 Assisted in creating visualization methods to highlight urban activity volume concerns to third party candidates  

Hintz Capital Management                                                                                                 Morristown, NJ
Summer Intern                                                                                                                           May 2019 – Aug 2019
Summer Analyst               May 2021 – Aug 2021

 Drafted research reports relevant to proposed investment positions spanning equities, commodities, and options 
trading; streamlining the firm’s research process by providing analysts with condensed and relevant research 

 Created pitch decks and valuations (DCF and CCA) for prospective holdings and presented to portfolio managers 
leading to the initiation of new positions and revisions in the firm’s targeted subsector allocations  

 Calculated and monitored net and gross exposure across multiple accounts, tracking which margins were furthest 
from the firm’s compliance target and accordingly advised analysts through which accounts to make trades  

ASA DataFest 2022                                                                                                                                University Park, PA 
Winner – Most Insightful Analysis                                                                                                                             Mar 2022 

 Cleaned and analyzed data from Yale Medical School’s Play2Prevent adolescent drug resistance program using R 
 Awarded Most Insightful project from a panel of judges for being the only team to demonstrate and visualize a 

statistically significant correlation between gameplay data and Drug Use Resistance Survey Results 
LEADERSHIP    
Eagle Scout                                                                                                                                                      Mar 11th, 2017 

 Eagle project involved the renovation of a local church’s landscaping and construction of a retainment wall  
 Received a bronze, gold, and silver palm in addition to holding positions as SPL and ASPL 

INTERESTS  
 Phillies Baseball, 76ers basketball, skiing, golf, camping/hiking National Parks, espresso drinks 

ACADEMIC VITA 
Robert J. Krimetz 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


