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Abstract

Traditionally, canonical computations do not include lapse and shift functions inside of the Pois-
son brackets, as they do not change the equations of motion at first order. When working with theories
that have higher order time derivatives, one needs to include the lapse and shift inside the Poisson
brackets as they do add additional terms to the equations of motion. However, there still exists an
ambiguity as to whether the lapse and shift should be inside or outside the brackets. We investigate if
the canonical methods can describe a geometric theory. We compute the phase space dependence of
the hypersurface deformation by computing the lapse and shift inside the Poisson brackets. We use
the geometric formulation to derive conditions placed on the canonical formulation. We find that the
canonical formulation, when it considers the phase space dependence of the lapse and shift and the
deformation of the normal vector, leads not only to the sought after full consistency with the gauge
functions inside the brackets, but also a method to obtain new modified gravity theories altogether.



ii

Table of Contents

Acknowledgements iii

1 Introduction 1

2 Canonical Formulation 2
2.1 Canonical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Geometric meaning of the hypersurface deformation algebra . . . . . . . . . . . . . 3

2.2.1 Transformation of the normal vector . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Transformation of the normal generator . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Transformation of phase space independent gauge functions . . . . . . . . . 4
2.2.4 Geometric meaning of a vanishing Jacobiator . . . . . . . . . . . . . . . . . 5

2.3 Phase space dependent generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Poisson brackets of phase dependent phase gauges . . . . . . . . . . . . . . 6
2.3.2 Transformation of phase dependant generators . . . . . . . . . . . . . . . . 6
2.3.3 New geometric condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Linear combination example: A new modified gravity theory . . . . . . . . . . . . . 8
2.4.1 Geometric condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Anomaly-free condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Covariance condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Gemetrodynamical Formulation 12
3.1 Geometric theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Deformation of the lapse and shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Deformation of the normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Deformation of the spatial basis vector . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Deformation of the normal flow, time flow, and the time evolution vector field . . . . 15
3.6 Deformation of the gauge functions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusion 18

Bibliography 19



iii

Acknowledgements

I would like to thank Dr. Martin Bojowald for being my thesis advisor and professor. Working
with and learning from you has opened my eyes to the fascinating field of gravitational physics. I
would also like to thank Dr. Rick Robinett for being a wonderful advisor and always providing
thoughtful advice. You made feel welcome when I transferred from the Mont Alto branch campus to
University Park. I would also like to thank Erick Duque whose support on this thesis was invaluable.
I can not thank you enough for working side by side with me on this thesis. I would also like to thank
Dr. Kim Herrmann for inspiring my love for physics and convincing me to apply to the Schreyer
Honors College. Finally, I would like to thank my family and friends, who saw me though this thesis.
I would not be where I am without you.



1

Chapter 1

Introduction

In traditional canonical theories one does not compute the lapse and shift functions inside of
Poisson brackets[1], because the first-order equations of motion do not change by phase space de-
pendence of the lapse and shift on-shell. Full consistency requires us to check whether this ap-
plies to higher order time derivatives given by consecutive brackets. While [1] defines the lapse
and shift outside the consecutive brackets, the Gowdy model uses second-order time derivatives to
find the equations of motion[2], so the phase space dependence must be accounted for, even on-
shell. When the phase space dependence is considered the equations of motion take a different form:
f̈ = {{f,H[N ]}, H[N ]} = {N, {f,H}H[N ]}+ ... = {N,H}{f,H}N + ..., where the ”...” are the
rest of the terms. The ones shown here do not appear if the lapse, N , is phase space independent and
these terms, in general, do not vanish on-shell when it is phase space dependent[2]. The authors of
[2] included the lapse and shift inside the bracket, but they did not elaborate on that at all, despite the
definition of the classic earlier work [1] of having the lapse and shift outside of the bracket. Thus the
matter is not yet settled, and, in general, not disscussed.

We wanted to investigate how phase space dependence affects the hypersurface deformation al-
gebra and find what conditions are needed to satisfy both the geometric and covariance conditions.
We have indeed found how the phase space dependence affects the algebra and certain transformation
properties of the gauge functions themselves, thus resolving the consistency issue described earlier.
This leads to the geometric conditions, and these in turn can be used to obtain a new constraint alge-
bra with a new structure function. Which implies a new spacetime metric, but this new metric is not
necessarily covariant.

The organization of this thesis is as follows. In chapter 2 we work to understand the geometric
meaning of the canonical hypersurface deformation algebra. We then consider phase space dependent
lapse and shifts and arrive at a geometric condition that must be met. An example of a covariant and
geometrically consistent lapse and shift, that differs from the classical one, is given. In chapter 3 we
derive from the geometric formulation the geometric conditions that the canonical formulation must
satisfy. Finally, in chapter 4 we discuss the implications of the new geometric condition.
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Chapter 2

Canonical Formulation

2.1 Canonical theory
We begin with a foliated globally hyperbolic topology M = Σ× R with a spacetime metric

ds2 = σN2dt2 + qab(dx
a +Nadt)(dxb +N bdt) , (2.1)

a time-evolution vector field
tµ = Nnµ +Nasµa , (2.2)

where nµ is a normalized vector normal to Σt and sµa are the three spatial basis vectors tangent to Σ.
We also have the a lapse, N , the normal projection of tµ on Σ, and a shift, Na, the projection of tµ

on Σ. The Hamiltonian is independent of time derivatives of the lapse and shift functions giving two
constraints, the Hamiltonian constraint and the diffeomorphism constraint. The total Hamiltonian is
given by the linear combination of the constraints and Lagrange multipliers: H[N ] + Ha[N

a] = 0,
where H is the Hamiltonian constraint and Ha is the diffeomorphism constraint. Using Poisson
brackets and the diffeomorphism constraint a closed constraint algebra emerges

{Ha[N ], Ha[M
a]} = Ha[LNaMa] , (2.3)

{Ha[N
a], H[N ]} = H[Na∂aN ] , (2.4)

{H[N ], H[M ]} = −Ha[q
ab(N∂bM −M∂b)] , (2.5)

where qab is a structure function. This algebra is only valid for phase space independent smearing
functions. The gauge transform of the phase space independent lapse and shift are

δϵN = ϵ̇0 + ϵa∂aN −Na∂aϵ
0 , (2.6)

δϵN
a = ϵ̇a + ϵb∂bN

a −N b∂bϵ
a − σqab

(
ϵ0∂bN −N∂bϵ

0
)
, (2.7)

if the Jacobiator of the constraints vanishes. In section 2.3 we will show a more general derivation
that includes phase dependence. The constraint algebra in this deformation form ensures a general
covariance in General Relativity [1], but further conditions beyond the hypersurface deformation
algebra must be met for modified gravity theories. The on-shell gauge transformations of 3-metric
correspond to diffeomorphisms

{qab, H⃗ [⃗ϵ]}
∣∣

O.S. = Lϵ⃗qab , (2.8)
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{qab, H[ϵ0]}
∣∣
O.S. = Lϵ0nqab . (2.9)

The gauge transformation of the 3-metric, lapse, and shift give the diffeomorphism of the full metric

δϵgµν
∣∣
O.S. = Lξgµν , (2.10)

where Lξ is a Lie derivative along the 4-vector field ξ. The components of the vector field are in terms
of the gauge generators and the lapse and shift

ξµ = ϵ0nµ + ϵasµa = ξttµ + ξasµa , (2.11)

ξt =
ϵ0

N
, (2.12)

ξa = ϵa − ϵ0

N
Na . (2.13)

2.2 Geometric meaning of the hypersurface deformation algebra

2.2.1 Transformation of the normal vector

gµν = qabsµas
ν
a +

σ

N2
(tµ −Nasµa)

(
tν −N bsνb

)
. (2.14)

After a hypursurface deformation the normal vector and the 3-metric transform to nµ + δϵn
µ and

qab + δqab respectively. The normal vector remains normal if and only if δϵ(Nnµqµν) = 0 where
qµν = gabs

a
µs

b
ν . Using the full metric is more convenient as we can see how all components must

transform
δϵ(Nnµgµν)dx

ν = 2σNδϵNdt . (2.15)

The left-hand side (l.h.s) is expanded using the Leibnitz rule, a change of basis nµ = N−1(tµ−Nasµa),
and the component gtµ which gives

δϵn
µ = − 1

N
δϵNnµ − 1

N
δϵN

asµa . (2.16)

Using this and the normal condition, δϵ(nµqµν), shows that the gauge transformation of the 3-metric
can not be orthogonal to the normal vector

Nnνδϵqµν = qµbδϵN
b . (2.17)

Consider a spatial basis vector in the form

δϵs
µ
b := Abn

µ +Bsµb . (2.18)

Requiring that δϵ(gµνnµsνb ) = 0 along with (2.17) and (2.1) determines

Ab = gµbδϵn
µ + nµδϵgµb = 0 . (2.19)

Using δϵqab = δϵ(gµνs
µ
as

ν
b ) determines B = 0 which means that the spatial basis vector does not suffer

a deformation.
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2.2.2 Transformation of the normal generator
A normal generator deformed by passive deformation, then subjected to a deformation generated

by ϵµ1 , then another deformation generated by the lapse and shift becomes

H
[
N, N⃗

]
→ H

[
N − δϵ1N, N⃗ − δϵ1N⃗

]
= H [N − δϵ1N ]− H⃗

[
δϵ1N⃗

]
+ H⃗

[
N⃗
]

=: Hδϵ1 [N ] + H⃗
[
N⃗
]
, (2.20)

where Hδϵ1 is defined as the new normal generator that keeps the spatial generator undeformed

Hδϵ1 = H

(
1− δϵ1N

N

)
−Ha

δϵ1N
a

N
. (2.21)

2.2.3 Transformation of phase space independent gauge functions
We follow the usual derivation, up to the use of the deformed normal constraint, of phase space

independent gauge functions. The geometric meaning of the constraints can be understood using
deformation generators. We first consider an observable, A, a general deformation that can act on
gauge functions, δϵ1 , and a deformation that acts only on observables δ̄ϵ1 = {·, H[ϵ1]}. We need a
deformation that acts only on the observable since the gauge functions can be independent of the
phase space. If the observable A depends on a gauge function ϵ2, the full deformation is

δϵ1A = δ̄ϵ1A+

∫
δA

δϵ2
δϵ1ϵ2 . (2.22)

Consider an observable, O, and two deformations generators, ϵ1 and ϵ2. Acting on the observable
with the first generator, ϵ1, produces

O(1) ≡ O + δϵ1O = O + {O, H[ϵ1]} . (2.23)

Then, acting on O(1) with ϵ2 produces

O(1,2) ≡ O(1) + δ
δϵ1
ϵ2 O(1)

= O + {O, H[ϵ1]}+ {O, Hδϵ1 [ϵ2]}+ {{O, H[ϵ1]}, H[ϵ2]}

= O + {O, H[ϵ1]}+ {O, H[ϵ2]}+ {{O, H[ϵ1]}, H[ϵ2]} −

{
O, HT

[
ϵ02
δϵ1N

N
, ϵ02

δϵ1N⃗

N

]}
.

(2.24)

The order of deformations is reversed and the two are commuted which gives

O[1,2] ≡ O(1,2) −O(2,1)

= {{O, H[ϵ1]}, H[ϵ2]} − {{O, H[ϵ2]}, H[ϵ1]}

+

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]}
= {O, {H[ϵ1], H[ϵ2]}}+ {O, H[ϵ1], H[ϵ2]}

+

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]}
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= {O, H[∆12]}+ {O, H[ϵ1], H[ϵ2]}

+

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]}
, (2.25)

where we used the Jacobiator

{A,B,C} ≡ {{A,B}, C}+ {{B,C}, A}+ {{C,A}, B} , (2.26)

and where ∆12 is
∆0

12 = ϵb(1)∂bϵ
0
(2) − ϵb(2)∂bϵ

0
(1) , (2.27)

∆a
12 = ϵb(1)∂bϵ

a
(2) − ϵb(2)∂bϵ

a
(1) + σqab

(
ϵ0(1)∂bϵ

0
(2) − ϵ0(2)∂bϵ

0
(1)

)
. (2.28)

We repeat the process but deform the gauge functions instead of the constraints

O(1,2) ≡ O + δϵ1O + δ
δϵ1
ϵ2+δϵ1ϵ2

O . (2.29)

Reversing the order of the deformations and commuting the operation gives

O[1,2] ≡ {O, H[δϵ1ϵ2 − δϵ2ϵ1]}+

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]}
. (2.30)

By comparing these two procedures we find, provided the Jacobiator vanishes, that

δϵ1ϵ
µ
(2) − δϵ2ϵ

µ
(1) = ∆µ

12 (2.31)

By substituting ϵ1 → ϵ, ϵ2 → N and setting δN,N⃗ϵ
µ = ϵ̇µ we arrive back at (2.6) and (2.7).

2.2.4 Geometric meaning of a vanishing Jacobiator
We consider the same system as the one above. The commutation can be rewritten using the ADM

decomposition of the Lie derivatives

O[1,2] = {O, H[Lξ1ξ
0
(2)] +Ha[Lξ1ξ

a
(2)]}+ {O, H[ϵ1], H[ϵ2]} . (2.32)

What we see is that the canonical methods can reproduce the geometric theory if the Jacobiator is
vanishing and the deformation of the normal vector is taken into account, otherwise it does not pro-
duce the correct normal deformation. This has been overlooked in all previous canonical treatments
as far as we know. We can further examine the Jacobiator by using (2.4) and (2.5) to find a condition
that must be satisfied for the Jacobiator to be zero. We start by permuting {{H[ϵ01], H[ϵ02]} , H[ϵ03]}
which gives{{

H[ϵ01], H[ϵ02]
}
, H[ϵ03]

}
=
{
H⃗
[
σqab

(
ϵ01∂bϵ

0
2 − ϵ02∂bϵ

0
1

)]
, H[ϵ03]

}
= H

[
σqab

(
ϵ01∂bϵ

0
2 − ϵ02∂bϵ

0
1

)
∂aϵ

0
3

]
+

∫
d3x σHa(x)

(
ϵ01(x)∂bϵ

0
2(x)− ϵ02(x)∂bϵ

0
1(x)

) {
qab(x), H[ϵ03]

}
= H

[
σqab

(
ϵ01∂bϵ

0
2 − ϵ02∂bϵ

0
1

)
∂aϵ

0
3

]
+Ha

[
σ
(
ϵ01∂bϵ

0
2 − ϵ02∂bϵ

0
1

) (
Qabϵ03 +Qabc∂cϵ

0
3 +Qabcd∂c∂dϵ

0
3

)]
, (2.33)

{{
H[ϵ02], H[ϵ03]

}
, H[ϵ01]

}
= H

[
σqab

(
ϵ02∂bϵ

0
3 − ϵ03∂bϵ

0
2

)
∂aϵ

0
1

]
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+Ha

[
σ
(
ϵ02∂bϵ

0
3 − ϵ03∂bϵ

0
2

) (
Qabϵ01 +Qabc∂cϵ

0
1 +Qabcd∂c∂dϵ

0
1

)]
, (2.34)

{{
H[ϵ03], H[ϵ01]

}
, H[ϵ02]

}
= H

[
σqab

(
ϵ03∂bϵ

0
1 − ϵ01∂bϵ

0
3

)
∂aϵ

0
2

]
+Ha

[
σ
(
ϵ03∂bϵ

0
1 − ϵ01∂bϵ

0
3

) (
Qabϵ02 +Qabc∂cϵ

0
2 +Qabcd∂c∂dϵ

0
2

)]
, (2.35)

where the Q tensors are the generic form of the Poisson bracket of qab. Higher order Q terms have
been ignored but it is straightforward to consider them. Summing the permutations gives{{

H[ϵ01], H[ϵ02]
}
, H[ϵ03]

}
+
{{

H[ϵ02], H[ϵ03]
}
, H[ϵ01]

}
+
{{

H[ϵ03], H[ϵ01]
}
, H[ϵ02]

}
= σHa

[
Qabcd

((
ϵ01∂bϵ

0
2 − ϵ02∂bϵ

0
1

)
∂c∂dϵ

0
3 +

(
ϵ02∂bϵ

0
3 − ϵ03∂bϵ

0
2

)
∂c∂dϵ

0
1

+
(
ϵ03∂bϵ

0
1 − ϵ01∂bϵ

0
3

)
∂c∂dϵ

0
2

)]
. (2.36)

We see that if Qabcd = 0 the Jacobi identity is satisfied. If higher orders of Q appear, they could make
the Jacobiator non-vanishing

2.3 Phase space dependent generators

2.3.1 Poisson brackets of phase dependent phase gauges
If we have gauge functions that depend on the phase space then there will be changes to the

constraint algebra. We find these new constraints to be

{H⃗[N⃗ ], H⃗[M⃗ ]} = −H⃗[LM⃗N⃗ ] +Ha[{Na, H⃗[M⃗ ]} − {Ma, Hb[N
b]} −Hb[{N b,Ma}]] , (2.37)

{H[N ], H⃗[M⃗ ]} = −H[M b∂bN − {N, H⃗[M⃗ ]}]−Hb[{M b, H[N ]}+H[{N,M b}]] , (2.38)

{H[N ], H[M ]} = H⃗[qab(N∂bM −M∂bN)] +H [{N,H[M ]} − {M,H[N ]} −H[{N,M}]] ,
(2.39)

where we have suppressed certain integrals and here, the smearings are implied by the contracted
indices. Evaluating the Poisson brackets of the constraints reveals anomalous terms in the algebra.

2.3.2 Transformation of phase dependant generators
We follow the same derivation steps as in 2.2.3 along with the effects of the phase space de-

pendence of the gauge functions. We have an observable that is acted upon, consecutively, by two
deformations. The gauge transformation is defined as

δϵO ≡
∫

d3x (ϵ(x){O, H(x)}+H(x){O, ϵ(x)}) =: /δϵO +

∫
d3x H(x){O, ϵ(x)} . (2.40)

The deformation generated by ϵ1 on observable O is

O(1) ≡ O + δϵ1O = O + {O, H[ϵ1]} . (2.41)

After the second deformation the observable takes the form

O(1,2) ≡ O(1) + δ
δϵ1
ϵ2 O(1)

= O + {O, H[ϵ1]}+ {O, H[ϵ2]}+ {{O, H[ϵ1]}, H[ϵ2]} −

{
O, HT

[
ϵ02
δϵ1N

N
, ϵ02

δϵ1N⃗

N

]}
.

(2.42)
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The commutator of the two deformations is

O[1,2] ≡ O(1,2) −O(2,1)
∣∣

O.S.

= {{O, HT [ϵ1]}, HT [ϵ2]} − {{O, HT [ϵ2]}, HT [ϵ1]}

+

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]} ∣∣∣∣
O.S.

= {O, {HT [ϵ1], HT [ϵ2]}}+ {O, HT [ϵ1], HT [ϵ2]}

+

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]} ∣∣∣∣
O.S.

=
{
O, HI

[
∆I

12 − {ϵI2, HJ [ϵ
J
1 ]}+ {ϵI1, HJ [ϵ

J
2 ]} −HJ [{ϵI1, ϵJ2}]

]}
+ {O, HT [ϵ1], HT [ϵ2]}+

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]}
, (2.43)

where we use the anomalous constraints instead of the anomaly-free one. The process is repeated for
the deformation of the gauge functions instead of the constraints which gives

O(1,2) ≡ O + δϵ1O + δ
δϵ1
ϵ2+/δϵ1ϵ2

O , (2.44)

where /δϵ1δ2 means that the transformation only considers the phase independent part of ϵ2. Commut-
ing the observable gives

O[1,2] ≡

{
O, HT

[
ϵ01
δϵ2N

N
− ϵ02

δϵ1N

N
, ϵ01

δϵ2N⃗

N
− ϵ02

δϵ1N⃗

N

]}
+ {O, H[/δϵ1ϵ2 − /δϵ2ϵ1]} . (2.45)

Comparing the two procedures gives

{O, HI [/δϵ1ϵ
I
2 − /δϵ2ϵ

I
1]} =

{
O, HI

[
∆I

12 + {ϵI1, HJ [ϵ
J
2 ]} − {ϵI2, HJ [ϵ

J
1 ]} −HJ [{ϵI1, ϵJ2}]

]}
+ {O, HI [ϵ

I
1], HI [ϵ

I
2]} , (2.46)

or
{O, HI [δϵ1ϵ

I
2 − δϵ2ϵ

I
1]} = {O, HI [∆

I
12 −HJ [{ϵI1, ϵJ2}]]}+ {O, HI [ϵ

I
1], HI [ϵ

I
2]} , (2.47)

where the full gauge transformations is defined as

δϵ1ϵ
I
2 ≡ /δϵ1ϵ

I
2 + {ϵI2, HJ [ϵ

J
1 ]} . (2.48)

The final transformation, provided the Jacobiator vanishes, is

δϵ1ϵ
I
2 − δϵ2ϵ

I
1 = ∆I

12 −HJ [{ϵI1, ϵJ2}] . (2.49)

On-shell, this is the exact transformation we expect arrive at with the geometric approach. This means
that even phase space dependent gauge functions transform consistently.

2.3.3 New geometric condition
Replacing the generic gauge function in (2.47) with the lapse and shift implies a new geometric

condition

/δϵN(x) + {N(x), HT [ϵ]} =
∂ϵ0(x)

∂t
+ {ϵ0(x), HT [N ]}+ ϵa∂aN −Na∂aϵ

0 , (2.50)
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/δϵN
a(x)+{Na(x), HT [ϵ]} =

∂ϵa(x)

∂t
+{ϵa(x), HT [N ]}+ϵb∂bN

a−N b∂bϵ
a−σqab

(
ϵ0∂bN −N∂bϵ

0
)
.

(2.51)
If we take the phase dependant lapse and shift and consider when /δϵN = /δϵN

a = 0, then an arbitrary
phase independent gauge ϵ can not produce the right-hand-side of the equations. This shows that we
must, in general, retain a phase independent portion of the lapse and shift to complete the geometric
condition.

2.4 Linear combination example: A new modified gravity theory

2.4.1 Geometric condition

Consider a lapse N = BN̄ , and shift Na = AaN̄ + N̄a and ϵ0 = Bϵ̄0, ϵa = Aaϵ̄0+ ϵ̄a. The spatial
scalar, B and spatial vector, Aa are phase dependent and the barred functions are phase independent.
The on-shell deformations are

/δϵN̄
∣∣

O.S. =
∂ϵ̄0

∂t
+
(
Aaϵ̄0 + ϵ̄a

)
∂aN̄ −

(
AaN̄ + N̄a

)
∂aϵ̄

0

+B−1
(
ϵ̄0{B,H[BN̄ ]} − N̄{B,H[Bϵ̄0]}

) ∣∣
O.S. , (2.52)

/δϵN̄
a
∣∣

O.S. =
∂ϵ̄a

∂t
+ ϵ̄b∂bN̄

a − N̄ b∂bϵ̄
a − σB2qab

(
ϵ̄0∂bN̄ − N̄∂bϵ̄

0
)

+ ϵ̄0{Aa, H[BN̄ ]} − N̄{Aa, H[Bϵ̄0]}
− Aa

(
Abϵ̄0∂bN̄ − AbN̄∂bϵ̄

0 + ϵ̄0{B,H[BN̄ ]} − N̄{B,H[Bϵ̄0]}
) ∣∣

O.S. . (2.53)

The barred lapse can transform like the original lapse only if

0 = Abϵ̄0∂bN̄ − AbN̄∂bϵ̄
0 + ϵ̄0{B,H[BN̄ ]} − N̄{B,H[Bϵ̄0]}

∣∣
O.S. , (2.54)

which is only true if
{B,H[ϵ̄0]}

∣∣
O.S. = Bϵ̄0 + Ba∂aϵ̄

0
∣∣
O.S. , (2.55)

with the higher order terms vanishing and where

Aa
∣∣
O.S. = −Ba

∣∣
O.S. . (2.56)

The shift can transform by following a similar method

{Aa, H[ϵ̄0]} = Aaϵ̄0 +Aab∂bϵ̄
0 , (2.57)

with higher order terms vanishing and the structure function replaced by

q̄ab = B2qab − σBAab , (2.58)

this imposes that Aab must be symmetric so the structure function can remain symmetric. The barred
objects give a consistent spacetime metric

ds̄2 = σN̄2dt2 + q̄ab(dx
a + N̄adt)(dxb + N̄ bdt) , (2.59)

and the constraint generators are smeared with the barred gauge functions

H̄ = BH + AaHa , (2.60)
H̄a = Ha . (2.61)
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2.4.2 Anomaly-free condition
Using the new constraint generators we can find the new constraint algebra

{H̄[N̄ ], ⃗̄H[ ⃗̄M ]} = {H[BN̄ ] +Hb[A
bN̄ ], H̄a[M̄

a]}
= −H

[
BM̄a∂aN̄

]
−Ha

[
AaM̄ b∂bN̄

]
= −H̄

[
M̄ b∂bN̄

]
, (2.62)

{H̄[N̄ ], H̄[M̄ ]} = {H[BN̄ ] +Ha[A
aN̄ ], H[BM̄ ] +Ha[A

aM̄ ]}
= H̄a

[
σB2qab

(
M̄∂bN̄ − N̄∂bM̄

)]
+H

[
BAb

(
N̄∂bM̄ − M̄∂bN̄

)]
+

∫
d3xd3y H(x)

(
{B(x), H(y)}

(
N̄(x)B(y)M̄(y)− M̄(x)B(y)N̄(y)

)
+ {B(x), B(y)}N̄(x)H(y)M̄(y)

− {Aa(y), H(x)}B(x)
(
N̄(x)Ha(y)M̄(y)− M̄(x)Ha(y)N̄(y)

)
+ {B(x), Aa(y)}H(x)

(
N̄(x)Ha(y)M̄(y)− M̄(x)Ha(y)N̄(y)

)
+ {Aa(x), Ab(y)}Ha(x)N̄(x)Hb(y)M̄(y)

)
. (2.63)

We used the following expression in determining the constraint algebra

{H[BN̄ ], H̄a[M̄
a]} =

∫
d3xd3y

(
{H(x), Ha(y)}B(x)N̄(x)M̄a(y)

+ {B(x), H̄a(y)}H(x)N̄(x)M̄a(y)
)

= −H
[
M̄a∂a

(
BN̄

)]
+H[M̄a∂aBN̄ ]

= −H
[
BM̄a∂aN̄

]
, (2.64)

{Hb[A
bN̄ ], H̄a[M̄

a]} =

∫
d3xd3y

(
{Hb(x), H̄a(y)}Ab(x)N̄(x)M̄a(y)

+ {Ab(x), H̄a(y)}Hb(x)N̄(x)M̄a(y)
)

= −Ha

[
L ⃗̄M

(
AaN̄

)]
+Hb[L ⃗̄M

AbN̄ ]

= −Ha

[
AaM̄ b∂bN̄

]
, (2.65)

{H[BN̄ ], H[BM̄ ]} =

∫
d3xd3y

(
{H(x), H(y)}B(x)N̄(x)B(y)M̄(y)

+ {H(x), B(y)}B(x)N̄(x)H(y)M̄(y) +H(x){B(x), H(y)}N̄(x)B(y)M̄(y)

+H(x){B(x), B(y)}N̄(x)H(y)M̄(y)

)
= Ha

[
σqab

(
(BM̄)∂b(BN̄)− (BN̄)∂b(BM̄)

)]
+

∫
d3xd3y H(x)

(
{B(x), H(y)}

(
N̄(x)B(y)M̄(y)− M̄(x)B(y)N̄(y)

)
+ {B(x), B(y)}N̄(x)H(y)M̄(y)

)
, (2.66)

{H[BN̄ ], Ha[A
aM̄ ]} =

∫
d3xd3y

(
{H(x), Ha(y)}B(x)N̄(x)Aa(y)M̄(y)
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+ {H(x), Aa(y)}B(x)N̄(x)Ha(y)M̄(y)

+ {B(x), Ha(y)}H(x)N̄(x)Aa(y)M̄(y)

+ {B(x), Aa(y)}H(x)N̄(x)Ha(y)M̄(y)

)
= −H

[
(AaM̄)∂b(BN̄)

]
+H

[
(AaM̄)∂aBN̄

]
+

∫
d3xd3y

(
− {Aa(y), H(x)}B(x)N̄(x)Ha(y)M̄(y)

+ {B(x), Aa(y)}H(x)N̄(x)Ha(y)M̄(y)

)
= −H

[
BAaM̄∂bN̄

]
+

∫
d3xd3y

(
− {Aa(y), H(x)}B(x)N̄(x)Ha(y)M̄(y)

+ {B(x), Aa(y)}H(x)N̄(x)Ha(y)M̄(y)

)
, (2.67)

{Ha[A
aN̄ ], Hb[A

bM̄ ]} =

∫
d3xd3y

(
{Ha(x), Hb(y)}Aa(x)N̄(x)Ab(y)M̄(y)

+ {Ha(x), A
b(y)}Aa(x)N̄(x)Hb(y)M̄(y)

+ {Aa(x), Hb(y)}Ha(x)N̄(x)Ab(y)M̄(y)

+ {Aa(x), Ab(y)}Ha(x)N̄(x)Hb(y)M̄(y)

)
= Hb

[
LA⃗N̄(A

bM̄)
]
−Hb[M̄LA⃗N̄A

b] +Hb[N̄LA⃗M̄Ab]

+

∫
d3xd3y {Aa(x), Ab(y)}Ha(x)N̄(x)Hb(y)M̄(y)

=

∫
d3xd3y {Aa(x), Ab(y)}Ha(x)N̄(x)Hb(y)M̄(y) . (2.68)

For the algebra to be anaomaly-free, the H term in the second line needs to be canceled by other
terms. The off-shell extensions of (2.55), (2.56), and (2.57) cancel this extra term

{H̄[N̄ ], H̄[M̄ ]} = H̄a

[
σ
(
B2qab − σBAab

) (
M̄∂bN̄ − N̄∂bM̄

)]
−H

[
B
(
Ab + Bb

) (
M̄∂bN̄ − N̄∂bM̄

)]
+

∫
d3xd3y

(
H(x){B(x), B(y)}N̄(x)H(y)M̄(y)

+ {B(x), Aa(y)}H(x)
(
N̄(x)Ha(y)M̄(y)− M̄(x)Ha(y)N̄(y)

)
+ {Aa(x), Ab(y)}Ha(x)N̄(x)Hb(y)M̄(y)

)
= H̄a

[
σq̄ab

(
M̄∂bN̄ − N̄∂bM̄

)]
+

∫
d3xd3y

(
H(x){B(x), B(y)}N̄(x)H(y)M̄(y)

+ {B(x), Aa(y)}H(x)
(
N̄(x)Ha(y)M̄(y)− M̄(x)Ha(y)N̄(y)

)
+ {Aa(x), Ab(y)}Ha(x)N̄(x)Hb(y)M̄(y)

)
, (2.69)

producing an anomaly-free hypersurface deformation algebra, provided the last three lines vanish off-
shell. In spherically symmetric models the functions are such that the last three lines do vanish[3].
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2.4.3 Covariance condition
We need to check if the new algebra satisfies the covariance condition

1

ϵ̄0
{q̄ab, H̄[ϵ̄0]}

∣∣
O.S. =

1

N̄
{q̄ab, H̄[N̄ ]}

∣∣
O.S. . (2.70)

This condition comes from δϵq̄
ab = Lξ q̄

ab and using Poisson brackets to replace the δϵ on the l.h.s.
and the time derivative on the right-hand side (r.h.s.)[3]. We use the classical result

{qab, H[ϵ̄0]} =: Qabϵ̄0 , (2.71)

and expand the l.h.s

{q̄ab, H̄[ϵ̄0]}
∣∣

O.S. = {q̄ab, H[Bϵ̄0] +Hc[A
cϵ̄0]}

∣∣
O.S.

= {q̄ab, H[Bϵ̄0]}+ LA⃗ϵ̄0 q̄
ab
∣∣
O.S.

= {B2qab − σBAab, H[Bϵ̄0]}+ LA⃗ϵ̄0 q̄
ab
∣∣
O.S.

= B2{qab, H[Bϵ̄0]}+ qab{B2, H[Bϵ̄0]} − σB{Aab, H[Bϵ̄0]}
− σAab{B,H[Bϵ̄0]}+ LA⃗ϵ̄0 q̄

ab
∣∣
O.S.

= LA⃗ϵ̄0 q̄
ab +

∫
d3y

(
B2
(
B(y)ϵ̄0(y){qab, H(y)}

)
+
(
2Bqab − σAab

) (
B(y)ϵ̄0(y){B,H(y)}

)
− σB

(
B(y)ϵ̄0(y){Aab, H(y)}

))∣∣∣∣
O.S.

= LA⃗ϵ̄0 q̄
ab +B3Qabϵ̄0 +

(
2Bqab − σAab

) (
BBϵ̄0 + Bc∂c

(
Bϵ̄0

))
− σB

∫
d3y B(y)ϵ̄0(y){Aab, H(y)}

∣∣
O.S. , (2.72)

where we define
{Aab, H[ϵ̄0]} = Λabϵ̄0 + Λabc∂cϵ̄

0 . (2.73)

Finally, the covariance condition requires

Λabc
∣∣

O.S. = σB−2
(
Ab
(
B2qac − σBAac

)
+ Aa

(
B2qbc − σBAbc

)
+
(
2Bqab − σAab

)
BBc

) ∣∣
O.S.

= B−1
(
Ba
(
Abc − σBqbc

)
+ Bb (Aca − σBqca)− Bc

(
Aab − 2σBqab

)) ∣∣
O.S. . (2.74)

This condition also forces the Jacobiator to vanish since only higher order derivative terms can give a
non-vanishing Jacobiator and 2.70 and 2.71 ensure that no derivatives of ϵ0 appear.
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Chapter 3

Gemetrodynamical Formulation

3.1 Geometric theory
The following derivations in this chapter are to provide the geometric conditions that we imposed

on the canonical theory. We begin with the same building blocks, a foliated globally hyperbolic
topology, M = Σ× R, a spacetime metric

ds2 = σN2dt2 + qab(dx
a +Nadt)(dxb +N bdt) , (3.1)

and a time-evolution vector field
tµ = Nnµ +Nasµa . (3.2)

We also have an inverse metric

gµν = qabsµas
ν
a +

σ

N2
(tµ −Nasµa)

(
tν −N bsνb

)
, (3.3)

and an ADM decomposition of Lξgµν = ξα∂αgµν + gµα∂νξ
α + gνα∂µξ

α

Lξgab =
ϵ0

N
q̇ab + ϵc∂cqab + qca∂bϵ

c + qcb∂aϵ
c − ϵ0

N
(N c∂cqab + qca∂bN

c + qcb∂aN
c) , (3.4)

Lξgta = N bLξgba + qab
(
ϵ̇b + ϵc∂cN

b −N c∂cϵ
b − σqbc

(
ϵ0∂cN −N∂cϵ

0
))

=: N bLξgba + qabδϵN
b , (3.5)

Lξgtt = σ2N
(
ϵ̇0 + ϵa∂aN −Na∂aϵ

0
)
+NaN bLξgab

+ 2qabN
a
(
ϵ̇b + ϵc∂cN

b −N c∂cϵ
b − σqbc

(
ϵ0∂cN −N∂cϵ

0
))

=: σ2NδϵN +NaN bLξgab + 2qabN
aδϵN

b , (3.6)

Lξg
tµ = ξα∂αg

tµ − gαµ∂αξ
t − gtα∂αξ

µ

= ξt∂tg
tµ − gtµ∂tξ

t − gtt∂tξ
µ + ξc∂cg

tµ − gcµ∂cξ
t − gtc∂cξ

µ
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=
ϵ0

N
∂tg

tµ − gtµ∂t

(
ϵ0

N

)
− gcµ∂c

(
ϵ0

N

)
− σ

N2
∂tξ

µ +

(
ϵc − ϵ0

N
N c

)
∂cg

tµ +
σ

N2
N c∂cξ

µ , (3.7)

Lξg
tt = −σ

2

N3

(
ϵ̇0 + ϵc∂cN −N c∂cϵ

0
)
= −σ

2

N3
δϵN , (3.8)

Lξg
ta = −σ

1

N2

(
δϵN

a − 2

N
NaδϵN

)
. (3.9)

We want to check if the geometrodynamical formulation matches the canonocal formulation, and if
they do not match, what conditions are needed so that they do.

3.2 Deformation of the lapse and shift
We find the expressions for the deformation of the lapse and shift by setting δϵgµν = Lξgµν and

using the spacetime metric and the ADM decomposition of the Lie derivatie of the metric

δϵN = ϵ̇0 + ϵa∂aN −Na∂aϵ
0 , (3.10)

δϵN
a = ϵ̇a + ϵc∂cN

a −N b∂bϵ
a − σqab

(
ϵ0∂bN −N∂bϵ

0
)
, (3.11)

δϵqab =
ϵ0

N
q̇ab + ϵc∂cqab + qca∂bϵ

c + qcb∂aϵ
c − ϵ0

N
(N c∂cqab + qca∂bN

c + qcb∂aN
c) , (3.12)

Here, the δ is an abstract transformation due to hypersurface deformations. We use the same δ as
the canonical gauge because we will require that the canonical gauge transformation, (2.6) and (2.7),
match the hypersurface deformations.

An arbitrary deformation generator must also transform similarly

δϵ1ϵ
µ
(2) − δϵ2ϵ

µ
(1) = ∆µ , (3.13)

∆0 = ϵb(1)∂bϵ
0
(2) − ϵb(2)∂bϵ

0
(1) , (3.14)

∆a = ϵb(1)∂bϵ
a
(2) − ϵb(2)∂bϵ

a
(1) + σqab

(
ϵ(1)∂bϵ

0
(2) − ϵ(2)∂bϵ

0
(1)

)
. (3.15)

The deformation of the generators will be expanded upon in section 3.6

3.3 Deformation of the normal vector
The the normal vector to the foliated hypersurface is given by

nµ =
σ

∥·∥
gµαϵαβγδ

∂xβ

∂ya
∂xγ

∂yb
∂xδ

∂yc
ϵabc

3!
. (3.16)

The following embedding can be used to evaluate infinitesimal deformations to the hypersurface

xµ = xµ + ϵ0nµ + ϵbsµb . (3.17)

Substituting (3.17) into the derivatives of (3.16) gives a new normal vector up to first order in the
generators

nµ
(t1) =

σ

∥·∥(t1)

(
gtµ(x(t1))− qµb

∂ϵ0

∂yb
+Xµϵ0 + Y µb

a

∂ϵα

∂yb

)
+O

(
(ϵ0)2, (ϵα)2, ϵ0ϵa

)
, (3.18)
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where

X t = − σ

N3
∂aN

a , (3.19)

Xa =
σ

N3
Na∂bN

b , (3.20)

Y µb
a = gtµδab =

σ

N2
(tµ −N csµc )δ

b
a , (3.21)

Y tb
a =

σ

N2
δba , (3.22)

Y cb
a = − σ

N2
N cδba . (3.23)

By performing the embedding we must also take into account a coordinate transformation in the
metric components

δϵn̄
µ
(t) = Lξg

tµ − qµb
∂ϵ0

∂yb
+Xµϵ0 + Y µb

a

∂ϵa

∂yb
, (3.24)

δϵn̄
t
(t) = σ

[
−2δϵN

N3
+

1

N3

(
N∂aϵ

a − ϵ0∂aN
a
)
+

1

N2
Na∂aϵ

0

]
, (3.25)

δϵn̄
a
(t) = σ

[
−Na

(
−2δϵN

N3
+

1

N3

(
N∂bϵ

b − ϵ0∂bN
b
)
+

1

N2
N b∂bϵ

0

)
− 1

N2
δϵN

a

]
= −Naδϵn̄

t − σ

N2
δϵN

a . (3.26)

The embedding also causes the normalization to be deformed, ∥·∥(t1) = ∥·∥(t) + δϵ ∥·∥(t). The new
normalization can be found using

σ = g(t1)µν nµ
(t1)n

ν
(t1)

=
1

∥·∥2(t1)

(
g(t) + Lξg

(t)
µν

) (
n̄µ
(t) + δϵn̄

µ
(t)

) (
n̄ν
(t) + δϵn̄

ν
(t)

)
+O

(
(ϵ0)2)

)
=

1

∥·∥2(t1)

(
g(t)µ νn̄ν

(t)n̄
ν
(t) + 2g(t)µν n̄

µ
(t)δϵn̄

ν
(t) + n̄µ

(t)n̄
ν
(t)Lξg

(t)
µν

)
+O(ϵ2)

=
1

∥·∥2(t1)

(
σ ∥·∥2(t) + 2g(t)µν n̄

µ
(t)δϵn̄

ν
(t) + n̄µ

(t)n̄
ν
(t)Lξg

(t)
µν

)
+O(ϵ2). (3.27)

Using the deformed normalization and the above equation we find

δϵ ∥·∥(t) =
σ

∥·∥(t)

(
n̄µ
(t)g

(t)
µνδϵn̄

ν
(t) +

1

2
n̄µ
(t)n̄

ν
(t)Lξg

(t)
µν

)
+O(ϵ2)

= nµ
(t)g

(t)
µνδϵn̄

ν
(t) +

σ

2N
nµ
(t)n

ν
(t)Lξg

(t)
µν +O(ϵ2)

= nµ
(t)g

(t)
µνδϵn̄

ν
(t) +

σ

2n3

(
Lξg

(t)
tt − 2nbLξg

(t)
bt +N bN cLξg

(t)
bc

)
+O(ϵ2)

= σNδϵn̄
t +

1

N2
δϵN +O(ϵ2) . (3.28)

With all the above pieces the normal vector can be reassembled

nµ
(t1) =

σ

∥·∥(t)

(
1−

δϵ ∥·∥(t)
∥·∥(t)

)(
n̄ν
(t) + δϵn̄

µ
(t)

)
+O((ϵ0)2)
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=
σ

∥·∥(t)

(
n̄µ
(t) −

δϵ ∥·∥(t)
∥·∥(t)

n̄µ
(t) + δϵn̄

µ
(t)

)
+O((ϵ0)2)

= nµ
(t) +

(
−nµ

(t)Nδϵ ∥·∥(t) + σNδϵn̄
µ
(t)

)
+O((ϵ0)2)

=: nµ
(t) + δϵn

µ
(t) +O(e2). (3.29)

We see that

δϵn
t = − 1

N2
δϵN , (3.30)

δϵn
a =

Na

N2
δϵN − 1

N
δϵN

a , (3.31)

δϵn
µ = δϵn

ttµ + δϵn
asµa

= Nδϵn
tnµ +

(
Naδϵn

t + δϵn
a
)
sµa

= −δϵN

N
nµ − δϵN

a

N
sµa . (3.32)

This agrees with the canonical prediction (2.16).

3.4 Deformation of the spatial basis vector
It is important to check how the basis vectors change under the deformation. The condition the

spatial basis vector must satisfy is

0 = g(t1)µν Nµ
(t1)s

ν
a(t1)

=
(
g(t1)µν + Lξg

(t1)
µν

) (
nµ
(t) + δϵn

µ
(t)

) (
sνa(t) + δϵs

ν
a(t1)

)
+O((ϵ0)2)

= g(t)µνn
µ
(t)δϵs

ν
a(t) + g(t)µνs

ν
a(t)δϵn

µ
(t) + nµ

(t)s
ν
a(t)L − ξg(t)µν +O(ϵ2) . (3.33)

Which gives(
g
(t)
tν −N bg

(t)
bν

)
δϵs

ν
a(t) = −Ng(t)µaδϵn

µ
(t) −Nnµ

(t)Lξg
(t)
µa

=

(
1

N
g
(t)
ta − N b

N
g
(t)
ba

)
δϵN + g

(t)
ba δϵN

b − Lξg
(t)
ta +N bLξg

(t)
ba

= q
(t)
ba δϵN

b − Lξg
(t)
ta +N bLξg

(t)
ba

= 0 . (3.34)

The time component in the parenthesis on the l.h.s is non-zero, thus δϵsta(t) = 0, but it is zero for the

spatial components. The spatial basis remains spatial, δϵsca(t) = 0, by requiring q
(t1)
ab = g

(t1)
µν sµa(t1)s

ν
b(t1).

Confirming that the basis vectors remain unchanged is needed to ensure any physical conclusion
drawn from this geometrodynamical method are valid.

3.5 Deformation of the normal flow, time flow, and the time evo-
lution vector field

Other vector fields will be affected by the deformation. The normal flow transforms like

nµ → nµ + δϵn
µ =

(
1− δϵN

N

)
nµ − δϵN

a

N
sµa , (3.35)
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as a consequence of the normal vector changing. However, the time evolution vector field, tµ =
Nnµ +Nasµa , does not change

tµ → tµ + δϵt
µ = tµ + δ (Nnµ +Nasµa)

= tµ +N

(
δϵn

µ +
δϵN

N
nµ +

δϵN
a

N
sµa

)
= tµ . (3.36)

If H[ϵ0] and Ha[ϵ
a] are abstract generators for normal and spatial deformations respectively, then

the time evolution abstract generator, H[N ] + Ha[N
a], remains unchanged. The normal abstract

generator, H , does deform, as a consequence of the deformation of the normal vector, to

H → H −H
δϵN

N
−Ha

δϵN
a

N
=: Hδϵ , (3.37)

which matches with the canonical prediction 2.21.

3.6 Deformation of the gauge functions

We have two different vector fields ξµ(1) = ξt(1)t
µ + ξa(1)s

µ
a = ϵ0(1)n

µ + ϵa(1)s
µ
a and ξµ(2) = ξt(2)t

µ +

ξa(2)s
µ
a = ϵ0(2)n

µ + ϵa(2)s
µ
a . After a deformation generated by ξµ(1), the components of ξµ(2) will be

deformed, Lξ1ξ
µ
(2) = ξν(1)∂νξ

µ
(2) − ξν(2)∂νξ

µ
(1). The ADM decomposition of the components are

Lξ1ξ
t
(2) = ξν(1)∂νξ

µ
(2) − ξν(2)∂νξ

µ
(1)

= ξt(1)∂tξ
t
(2) − ξt(2)∂tξ

t
(1) + ξa(1)∂aξ

t
(2) − ξa(2)∂aξ

t
(1)

=
ϵ0(1)
N

∂t

(
ϵ0(2)
N

)
−

ϵ0(2)
N

∂t

(
ϵ0(1)
N

)
+

(
ϵa(1) −

ϵ0(1)
N

Na

)
∂a

(
ϵ0(2)
N

)

−

(
ϵa(2) −

ϵ0(2)
N

Na

)
∂a

(
ϵ0(1)
N

)
=

1

N2

(
ϵ0(1)ϵ̇

0
(2) − ϵ0(2)ϵ̇

0
(1) −Na

(
ϵ0(1)∂aϵ

0
(2) − ϵ0(2)∂aϵ

0
(1)

)
+ ϵ0(1)ϵ

a
(2)∂aN − ϵ0(2)ϵ

a
(1)∂aN

)
+

1

N

(
ϵa(1)∂aϵ

0
(2) − ϵa(2)∂aϵ

0
(1)

)
=

1

N2

(
ϵ0(1)δϵ2N − ϵ0(2)δϵ1N

)
+

1

N

(
ϵa(1)∂aϵ

0
(2) − ϵa(2)∂aϵ

0
(1)

)
, (3.38)

Lξ1ξ
a
(2) =

1

N

(
ϵ0(1)
(
ϵ̇a(2) + ϵb(2)∂bN

a −N b∂bϵ
a
(2)

)
− ϵ0(2)

(
ϵ̇a(1) + ϵb(1)∂bN

a −N b∂bϵ
a
(1)

))
+ ϵb(1)∂bϵ

a
(2) − ϵb(2)∂bϵ

a
(1) −NaLξ1ξ

t
(2)

=
1

N

(
ϵ0(1)
(
δϵ2N

a + σqab
(
ϵ0(2)∂bN −N∂bϵ

0
(2)

))
− ϵ0(2)

(
δϵ1N

a + σqab
(
ϵ0(1)∂bN −N∂bϵ

0
(1)

)))
+ ϵb(1)∂bϵ

a
(2) − ϵb(2)∂bϵ

a
(1) −NaLξ1ξ

t
(2) , (3.39)

Lξ1ξ
µ
(2) =

(
Lξ1ξ

t
(2)

)
tµ +

(
Lξ1ξ

a
(2)

)
sµa

=
(
ϵa(1)∂aϵ

0
(2) − ϵa(2)∂aϵ

0
(1)

)
nµ +

(
ϵb(1)∂bϵ

a
(2) − ϵb(2)∂bϵ

a
(1) − σqab

(
ϵ0(1)∂bϵ

0
(2) − ϵ0(2)∂bϵ

0
(1)

))
sµa
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+ ϵ0(2)δϵ1n
µ − ϵ0(1)δϵ2n

µ

=: ∆0nµ +∆asµa + ϵ0(2)δϵ1n
µ − ϵ0(1)δϵ2n

µ . (3.40)

Commuting δϵ1ξ
µ
(2) − δϵ2ξ

µ
(1) gives

δϵ1ξ
µ
(2) − δϵ2ξ

µ
(1) =

(
δϵ1ϵ

0
(2) − δϵ2ϵ

0
(1)

)
nµ +

(
δϵ1ϵ

a
(2) − δϵ2ϵ

a
(1)

)
sµa + ϵ0(2)δϵ1n

µ − ϵ0(1)δϵ2n
µ

= Lξ1ξ
µ
(2) . (3.41)

The r.h.s of the equation shows that there are extra terms compared to the canonical transformation of
the gauge functions. These extra terms can be accounted for in the canonical formulation by including
the deformation of the normal constraint, which would represent the deformation of the normal vector
in (3.41).
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Chapter 4

Conclusion

We have shown that the canonical formulation for the hypersurface deformation algebra is not
complete without considering phase space dependence of the lapse and shift and the transformation
of the normal vector. We have indeed achieved our goal of taking the phase space dependence of
the gauge generators into account , and have showed that the theory is consistent with having them
inside the brackets. We have also studied the geometric formulation, from which we derived the
conditions that canonical theories must satisfy for them to describe a geometric and covariant theory
of spacetime. If the canonical theory does not comply with the these geometric conditions, then it
is only a gauge theory, not a spacetime theory. We also provided an example of a new modified
gravity theory that is covariant. While it is too difficult to apply to the full 4D theory, it represents the
generalization of a procedure previously applied to spherical symmetry, containing a singularity-free
black hole solution[3][4], and it can be similarly applied to other symmetry reduced models. We
plan to apply these conditions to the polarized Gowdy model, where work in progress shows that one
obtains a new modified gravity theory.
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