
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

SCHOOL OF ENGINEERING

Micromechanical Modeling of Electrically Conductive Polymer Composites for Fuel Cell

Bipolar Plates

MAX MYERS

SUMMER 2023

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Mechanical Engineering

with honors in Mechanical Engineering

Reviewed and approved* by the following:

Adam S. Hollinger

Associate Professor of Mechanical Engineering

Thesis Supervisor

Oladipo Onipede

Associate Professor of Mechanical Engineering

Honors Adviser

* Electronic approvals are on file.

i

ABSTRACT

Hydrogen fuel cells use a chemical reaction to produce energy, yielding only water and

heat as byproducts. One fuel cell yields a small amount of energy, but a stack of fuel cells can

power cars, trains, or any multitude of other devices. Bipolar plates are the parts of the fuel cell

that provide structure to the cell and stacks of fuel cells. They are commonly machined from steel

or graphite. These materials are rigid to support stacks of cells yet also conductive to route energy

for use in applications. Hydrogen fuel cells are underused in commercial settings in part due to the

high cost of these materials and machining practices used to manufacture them. Reducing the cost

of manufacturing would make hydrogen fuel cells more accessible. Previous research has shown

that an injection-moldable blend of nylon and nickel-coated carbon fibers meets Department of

Energy (DOE) standards for bipolar plate conductivity. However, the manufacturing process

largely shapes the material properties of any part. Refining the injection molding process could

increase the conductivity of future plates.

One factor that contributed to the conductivity of the plates is the average angle of the

carbon fibers throughout the plate. Analyzing the relationship between different fiber angles,

molding practices, and conductivity would allow for more conductive plates to be made. However,

the average angle is very difficult to obtain and verify experimentally. Thousands of fibers through

hundreds of images must be analyzed to determine the angle of the fibers, taking weeks of research

time. This research develops an image processing program to reduce the analysis time to mere

minutes with minimal penalty to accuracy. The program uses MATLAB Image Processing toolkit

to distinguish fibers from the surrounding polymer and image artifacts to create a measure of

average fiber angle accurate to previous research.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 : BACKGROUND AND RESEARCH OBJECTIVES 1

Introduction to Fuel Cells and Bipolar Plates .. 1
The Need for Mass-Manufacturing .. 3
Verifying and Predicting Experimental Results ... 4

Chapter 2 : EXPLORATION OF THE SOLUTION SPACE AND INTRODUCTION TO

IMAGE PROCESSING WITH MATLAB .. 10

Choosing the Right Tool for the Job .. 10
A Brief Note on Image Processing ... 10

MATLAB Image Processing Toolkit ... 11
Storing Image Data in MATLAB .. 12

Chapter 3 : IMAGE PROCESSING WORKFLOW .. 15

Program Workflow... 15

Chapter 4 : IMPORTANT TERMS, INITIAL CODE, AND IMAGE PROCESSING

CHALLENGES ... 17

Developing Image Processing Code .. 17
Key Image Processing Errors ... 26

Chapter 5 : ANALYZING MULTIPLE IMAGES AND CALIBRATING CODE 31

Analyzing the Entire Image Population ... 31
A Brief Discussion of Efficiency ... 32
Storing and Tracking Program Data .. 34

Chapter 6 : CORRECTING THE MEAN WITH DATA OMISSION TECHNIQUES 40

Continuation of Comparing Program Data to Manual Study Data 40
Omitting Data by Major Axis Length .. 45

Chapter 7 : MORE DATA OMISSION TECHNIQUES ... 56

Omitting Data by Minor Axis Length .. 56
Omitting Data by Major and Minor Axis Length .. 64

iii

Omitting Data by Solidity .. 68
Comparing to the Original Study ... 77

Chapter 8 : REVISIONS TO IMAGE PROCESSIN CODE AND FINAL RESULTS 79

Binary Imaging Technique: Constant Threshold, Adaptive Thresholding 79
Eroding Images .. 80
Shelling Images .. 81
Excluding Elements on the Edge of the Image .. 82
Revised Code ... 83

Chapter 9 : FINAL RESULTS ... 86

Overview .. 87
20 Weight Percent .. 89
30 Weight Percent .. 90
40 Weight Percent .. 94

Chapter 10 : FINAL CONCLUSIONS AND EXTENSIONS OF THE PROJECT 100

Appendix B: Additional Heat Maps .. 105

Appendix C: Code from Spring Semester ... 107

References .. 110

iv

LIST OF FIGURES

Figure 1: Hydrogen Fuel Cell Visualization [2] .. 2

Figure 2: Diagram of 4-Point Probe Test [8] ... 3

Figure 3: Theoretical Formula for Longitudinal Conductivity .. 4

Figure 4: Example SEM Cross-Sectional Image ... 5

Figure 5: Conic Sections [11] .. 6

Figure 6: Major and Minor Axes of an Ellipse [12]... 7

Figure 7: Code for Multispectral to Grayscale Adjusted Image .. 17

Figure 8: Hyperspectral Image, RGB Image, Grayscale Image (Left to Right) 18

Figure 9: Code for Wiener Adaptive Noise Filtering... 18

Figure 10: Contrast Adjusted Image, Wiener Filtered Image (Left to Right) 19

Figure 11: Code for Creating a Binary Image .. 19

Figure 12: Binary Image .. 20

Figure 13: Code for Opening, Closing Image .. 20

Figure 14: Example Disk Structuring Element for Morphological Operations [20] 20

Figure 15: Opened Image, Closed Image (Left to Right) .. 21

Figure 16: Code for Filling Holes in Fibers ... 21

Figure 17: Binary Image with Filled Holes ... 22

Figure 18: Code for Removing Large and Small Artifacts .. 22

Figure 19: Long, Streaky Fibers Sometimes Cannot be Measured or are Outliers 23

Figure 20: Final Binary Image to Be Analyzed in Post-Processing ... 23

Figure 21: Dictionary and Property Arrays .. 24

Figure 22: Plotting, Measuring Fiber Angle, Reporting Mean Fiber Angle 25

Figure 23: Final Image ... 26

Figure 24: Grayscale Image and Final Binary Image .. 26

v

Figure 25: Several Straight, Clustered Fibers are Interpreted as One, Eccentric Fiber 27

Figure 26: Clustered Fibers .. 28

Figure 27: Processing Clustered Images .. 29

Figure 28: Thresholding Error ... 29

Figure 29: Datastore Object for Multiple Images .. 31

Figure 30: Reading Each Image with the Datastore... 32

Figure 31: Cross-Section of Dog Bone Sample ... 34

Figure 32: Manual Study Data Selection ... 34

Figure 33: 20 Weight % NiCF, Average Fiber Angle, Manual Study 35

Figure 34: 20 Weight % NiCF, Average Fiber Angle, Program Results 35

Figure 35: 20 Weight %, Absolute Difference Between Manual Study and Program Results 36

Figure 36: 20 Weight %, Percent Difference Between Manual Study and Program Results .. 36

Figure 37: Angle Distribution from Sample Images of 20 wt% NiCF Cross Section 38

Figure 38: Mean Photo Angle Distribution from Population of Images of 20 wt% NiCF Cross

Section .. 38

Figure 39: Angle Distribution from Sample Images of 20 wt% NiCF Cross Section 40

Figure 40: Population Angle Distribution from 20 wt% NiCF Cross Section 41

Figure 41: Angle Distribution from Sample Images of 30 wt% NiCF Cross Section 42

Figure 42: Population Angle Distribution from 30 wt% NiCF Cross Section 42

Figure 43: Angle Distribution from Sample Images of 40 wt% NiCF Cross Section 43

Figure 44: Population Angle Distribution from 40 wt% NiCF Cross Section 43

Figure 45: 20 wt% Distribution, 250 Pixel Max and 30 Pixel Min Suppression 47

Figure 46: 30 wt% Distribution, 250 Pixel Max and 30 Pixel Min Suppression 47

Figure 47: 40 wt% Distribution, 250 Pixel Suppression .. 48

Figure 48: 20 wt% Distribution, 150 Pixel Suppression ... 49

Figure 49: 30 wt% Distribution, 150 Pixel Suppression .. 49

vi

Figure 50: 40 wt% Distribution, 150 Pixel Suppression .. 50

Figure 51: 20 wt% Distribution, 75 Pixel Suppression .. 51

Figure 52: 30 wt% Distribution, 75 Pixel Suppression .. 51

Figure 53: 40 wt% Distribution, 75 Pixel Suppression .. 52

Figure 54: 20 wt%, 50 Pixel Suppression .. 53

Figure 55: 30 wt%, 50 Pixel Suppression .. 53

Figure 56: 40 wt%, 50 Pixel Suppression .. 54

Figure 57: Minor Axis Independence [33] ... 57

Figure 58: Measuring the Diameter in ImageJ ... 58

Figure 59: Scaling in ImageJ ... 59

Figure 60: Modified Summer Code for Comparison ... 61

Figure 61: 20 Weight %, 30 < A < 75, 30 < B < 70 .. 67

Figure 62: 30 Weight %, 30 < A < 75, 30 < B < 70 .. 67

Figure 63: 40 Weight %, 30 < A < 75, 30 < B < 70 .. 68

Figure 64: "Hollow" Component (Left) versus "Solid" Component (Right) 69

Figure 65: 20 wt%, 0.85 Solidity ... 70

Figure 66: 30 wt%, 0.85 Solidity ... 70

Figure 67: 40 wt%, 0.85 Solidity ... 71

Figure 68: Example Component Under 0.85 Solidity .. 71

Figure 69: 20 wt%, 0.9 Solidity ... 72

Figure 70: 30 wt%, 0.9 Solidity ... 73

Figure 71: 40 wt%, 0.9 Solidity ... 73

Figure 72: 20 wt%, 0.925 Solidity ... 75

Figure 73: 30 wt%, 0.925 Solidity ... 76

Figure 74: 40 wt%, 0.925 Solidity ... 76

vii

Figure 75: Setting Perimeter Pixels to Black [38] ... 81

Figure 76: Fibers on the Edge of the Image ... 82

Figure 77: Revised Image Processing .. 83

Figure 78: Images Corresponding to "Montage" Command .. 85

Figure 79: New Code Angle Distribution from Sample Images of 30 wt% Cross Section 92

Figure 80: New Code Angle Distribution from Population Images of 30 wt% Cross Section 93

Figure 81: Image 232, 40 wt% ... 95

Figure 82: Image 232, 40 wt%, Summer Code .. 95

Figure 83: Image 232, 40 wt%, New Code .. 96

Figure 84: Image 544, 40 wt% ... 96

Figure 85: Image 544, 40 wt%, Summer Code .. 97

Figure 86: Image 544, 40 wt%, New Code .. 97

Figure 87: Image 484, 40 wt % .. 98

Figure 88: Image 484, 40 wt %, Counted Fibers ... 98

Figure 89: Image 484, 40 wt %, New Code ... 99

Figure 90: Changes to Image From Each Line of Pre-Processing ... 104

Figure 91: 30 wt% Angle Heat Map .. 105

Figure 92: 30 wt% Error Heat Map ... 105

Figure 93: 40 wt% Angle Heat Map .. 106

Figure 94: 40 wt% Error Heat Map ... 106

viii

LIST OF TABLES

Table 1: Description of Various Image Types [16] ... 12

Table 2: Memory Requirements for Photos ... 32

Table 3: Mean Angle Across Carbon Fiber Dog Bones .. 46

Table 4: Mean Angle, 250 Pixel Suppression .. 48

Table 5: Mean Angle, 150 Pixel Suppression .. 50

Table 6: Mean Angle, 75 Pixel Suppression .. 52

Table 7: Mean Angle, 50 Pixel Suppression .. 54

Table 8: Summary of Results from Study by Hollinger et al ... 60

Table 9: 100 Pixel Length Maximum .. 60

Table 10: 75 Pixel Length Maximum .. 63

Table 11: Minor Axis Between 30 and 70 Pixels .. 63

Table 12: Minor Axis Between 50 and 100 Pixels .. 64

Table 13: 30 < A < 100, 30 < B < 70 ... 64

Table 14: 30 < A < 75, 30 < B < 70 ... 66

Table 15: Suppressing Components Less Than 0.85 Solidity .. 69

Table 16: Suppressing Objects Less Than 0.9 Solidity.. 72

Table 17: Suppressing Objects Less Than 0.925 Solidity.. 75

Table 18: Statistics for New Image Processing Technique .. 86

Table 19: Statistics for Sample Image Sets .. 87

Table 20: Elements and Mean Angle Found for 20 wt% Sample Images 89

Table 21: Elements and Mean Angle Found for 30 Weight % Sample Images 90

Table 22: Elements and Mean Angle Found for 40 wt% Sample Images 94

ix

ACKNOWLEDGEMENTS

 Thank you to my thesis supervisor, Dr. Hollinger. During our meetings and discussions, I

always felt like an equal. I don’t know if I would have continued to finish a thesis had you not

been my advisor. I had become disinterested in research from past experiences, but our work

together reminded me that failures are opportunities to learn and grow, not pointless setbacks.

Thank you so much for working with me through each setback that we faced throughout the

semester. I wish you and your family the best of health throughout the coming years.

 Thank you to Dr. Beevers, who encouraged me throughout the process as well. Your

feedback and general knowledge of software and programming techniques was very helpful

throughout my time spent researching here.

 Thank you to Dr. Brown, Mrs. Gummerson, and Dr. Carney. Your willingness to

accommodate me and my schedule has been invaluable throughout my time at Behrend. Thank

you for encouraging me to stick with the program and for accommodating my strange summer

graduation into the legislature of the Schreyer Honors College. Your continual support of the

Honors Program at Behrend is invaluable and undoubtedly formative to me during my time here.

 Thank you to my senior design team, Deven Phillips, Morgan Tarbrake, and Zackary

Vandervort. I had so much to get done this year, and I was inevitably going to fall behind and miss

some deadlines at some point. Thank you for keeping me motivated, for being understanding of

my situation, and for working with my schedule this year. I don’t think I would have graduated if

not for your help. Particularly large thanks to Zack who worked as a partner in past research

projects.

x

 Thank you to my parents and my siblings. Your support and your nagging have kept me

going and working throughout the semester. I would not have made it so far in my academic

career without your love and support.

1

Chapter 1 : BACKGROUND AND RESEARCH OBJECTIVES

Introduction to Fuel Cells and Bipolar Plates

Hydrogen fuel cells are an underused and underdeveloped source of potential energy. A

hydrogen fuel cell makes use of the combustion reaction between hydrogen and oxygen to produce

electricity [1]. This reaction produces heat and water as a result, as shown below.

2𝐻2 + 𝑂2
𝑦𝑖𝑒𝑙𝑑𝑠
→ 2𝐻2𝑂 + electricity + heat

A fuel cell functions similarly to a battery. On one side, the anode, molecular hydrogen is

introduced. This hydrogen contacts a catalyst — often made of platinum — and splits into two

protons and two electrons [1]. The other side of the fuel cell is known as the cathode. The cathode

breaks molecular oxygen into two oxygen ions. The protons, produced at the anode, diffuse

through a polymer membrane to the cathode. The electrons are routed through a wire, and the

electric potential can be used to power any matter of electrical device [1]. The electrons migrate

to the cathode as the protons simultaneously move to the cathode as well. The electrons, protons,

and oxygen ions combine to form water and release heat as a biproduct. Note that the protons

diffuse across a selectively permeable membrane, so that oxygen cannot diffuse into the anode and

disrupt the gradient [1].

2

Figure 1: Hydrogen Fuel Cell Visualization [2]

Figure 1 visualizes the previously described process. The voltage produced by one fuel

cell, while ultimately depending on the size of the cell, is often small, roughly 1 volt [3]. Similar

to batteries, fuel cells can be combined in series to produce electric potentials necessary to power

much larger devices. One the ends of each fuel cell are bipolar plates. These plates allow for fuel

cells to be stacked in series or parallel. The plates must withstand the force of compression between

cells and be tolerant to the biproduct heat from the combustion reaction. The plates must also be

resistant to water created by the reaction, as well as low gas permeability to ensure diffusion of

gases between fuel cells does not occur. As a result, bipolar plates are commonly machined from

steel and graphite. Channels or grooves are machined into each plate to improve the diffusion of

hydrogen and oxygen gases to their respective electrodes. Machining is laborious and significantly

adds to the cost of an already expensive fuel cell.

3

The Need for Mass-Manufacturing

Reducing the cost of bipolar plates could allow for fuel cells to be more efficiently

manufactured and more reliably used as an alternative energy source. The ability to mass-

manufacture bipolar plates from cheaper material has been explored greatly in previous research.

The existence of this work owes itself to previous studies exploring manufacturability, namely

those carried out by the thesis advisor, Dr. Hollinger. Hollinger had developed injection-moldable

bipolar plates that met a United States Department of Energy (DOE) conductivity goal of 100
S

cm2

for bipolar plates in fuel cells [4, 5, 6]. These plates were fabricated from nylon, due to its relative

ease of use with injection-molding techniques [7]. Throughout research, the use of various

conductivity increasing additives was explored. Dog bone samples were produced with each new

composition. The conductivity of samples at each composition was verified with a 4-point probe

test, as described in Figure 2 below.

Figure 2: Diagram of 4-Point Probe Test [8]

4

 A current source was connected to the ends of the dog bone sample, and a voltmeter was

used to measure the potential from points 2 to 3. The recorded voltage and given current were used

to determine the conductivity of the sample.

Verifying and Predicting Experimental Results

 Experimentally identifying the conductivity was effective for the purposes of determining

which additives should be used in the nylon to maximize conductivity. However, to properly verify

found experimental results or predict the conductivity for a given composition, a mathematical

description of the physical relationship would need to be used. Hollinger et al used the relationship

shown below in Figure 3 to verify any results [9].

Figure 3: Theoretical Formula for Longitudinal Conductivity

5

Most of the physical constants used to solve for the conductivity of the composite 𝜎𝑙𝑜𝑛𝑔

can be given by the supplier. Specifically, the resistivity 𝜌𝑓, contact diameter 𝑑𝑐, length ℓ, and

diameter 𝑑 can all be found from supplier data [10]. The function of percolation threshold 𝜙𝑝,

function of the number of contacts 𝑋, and the mean angle of the carbon fiber 𝜃 must be

experimentally derived.

The mean fiber angle 𝜃 is particularly difficult to experimentally obtain and verify. To find

the mean angle of each carbon fiber, a good first step is to neatly slice a dog bone sample in half

and obtain a cross-sectional image of the composite. The carbon fibers have an average diameter

on the scale of micrometers, so a scanning electron microscope (SEM) must be used to obtain

detailed images of each cross section. One example of such an image is shown below in Figure 4:

Figure 4: Example SEM Cross-Sectional Image

6

 Each light gray oval in the image represents a carbon fiber. The darker gray area

surrounding the ovals is nylon, and black areas indicate voids or air pockets. Metrics from each

oval can be taken to find the orientation of the carbon fiber in the nylon. Circles and ellipses are

conic sections. A perfectly circular fiber indicates that the fiber is normal to the cross-sectional

area. An elliptical fiber indicates that the fiber is angled relative to the cross-section. Visualizing

the circle and ellipse by their definitions as conic sections can be helpful and is shown in Figure

5.

Figure 5: Conic Sections [11]

 A circle is created by bisecting the cone with a reference plane that is parallel to the base

of the cone. An ellipse is created by bisecting the cone with an angled reference plane. In the

case of the SEM image shown above, the reference plane is always perfectly flat. In this case, the

angle of the cone, or the angle of the fiber, is what changes. Whichever is chosen as a reference

plane or as the cone does not matter; the angle will be the same. Hollinger et al chose the flat

cross-section as the reference plane, and then used the formula shown below in Equation 1 to

find the angle of the carbon fiber throughout the nylon.

Equation 1: Angle of Fiber Throughout Composite

𝜃𝑓 = arccos (
𝑏

𝑎
)

7

 In this formula, 𝜃𝑓 is the angle of the fiber with respect to the reference plane. 𝑏 is the

length of the minor axis, and 𝑎 is the length of the major axis. This formula is a version of the

plane angle formula taught in multivariable calculus courses at Penn State.

Figure 6: Major and Minor Axes of an Ellipse [12]

 In previous work, Hollinger et al had captured hundreds of scanning electron microscopy

(SEM) images of dog bone cross-sections. Approximately 500 images were captured from dog

bone samples from three different versions of the nylon composite. The composites were

distinguished by the weight percentage of nickel-coated carbon fibers that were mixed into the

nylon. There were 20%, 30%, and 40% weight carbon fiber nylon samples. From each set of

roughly 500 images, approximately 30 images that best reflected the distribution of fibers

throughout the composite were chosen. Each of these 30 images were reviewed twice. First, each

fiber on the image was reviewed for validity as a fiber. Some light grey spots in the image shown

above may look like fibers at first, but under closer inspection, may just be image artifacts,

fragments of nickel, or fibers that are too deformed to be properly measured. After identifying

each fiber, the major and minor axes of each fiber were measured with MATLAB software. These

values were then used to compute the angle of the fiber. After all the images were analyzed, the

mean angle for each image and the population mean angle were calculated. Even by only reviewing

8

5% of the total data, thousands of fibers would need to be measured and reviewed. This process is

time-consuming; 3 student researchers needed two 40-hour work weeks to complete the study.

In the past decade, image processing software tools have become far more robust. Image

processing and identification are used to identify cancerous growths, prevent unsavory individuals

from unlocking an iPhone, and analyze the fertility conditions of tracts of land gathered from

satellite images. Many of these processes are entirely automated and taken for granted. This thesis

explores the image processing tools available to mechanical engineers and lays the foundation for

developing a fast, precise tool for automatically determining the population mean angle for all

images within a weight percent data set.

Specifically, this thesis details the process of building an image processing program that

was:

1. Capable of accurately analyzing the mean population angle of a data set.

a. Instead of analyzing only thirty images, the program was to be able to

analyze all 500 images and match the mean angle determined by the manual

study.

2. Faster than the current manual method.

a. Technically, anything that analyzed the images in less than two weeks

would be an improvement. A goal of one hour of total processing time was

set.

Additional goals were set, given that the primary goals were met.

1. A relationship between carbon fiber weight, mold shape, and injection-molding

technique could be derived from the data and used to optimize conductivity and

9

cost efficiency. This was a very steep and flexible goal, given that the relationship

between these variables could be several different theses on their own.

10

Chapter 2 :
EXPLORATION OF THE SOLUTION SPACE AND INTRODUCTION TO

IMAGE PROCESSING WITH MATLAB

Choosing the Right Tool for the Job

There exists a plethora of software tools that can be employed for image processing.

Among these, Python’s OpenCV and machine learning libraries are standard [13]. Python is a

robust language that is, compared to other languages, easy to learn and use. I had learned Python

in high school and used it throughout my numerical analysis courses at Penn State. Despite my

understanding of Python, I chose to disregard Python when searching for image processing tools.

Beyond the goal of producing a successful program, I wanted whatever code I wrote to be

understandable and easily modified by students who would continue my research. Python is not

taught to mechanical engineers at Penn State Behrend, so using Python in my program would pose

a significant challenge to future mechanical engineers. MATLAB, however, is taught to

mechanical engineers at Behrend. Additionally, MATLAB has image processing and machine

learning toolkits with similar capabilities to Python [14]. These toolkits have in-depth coursework

and documentation for engineers learning how to use the tools.

A Brief Note on Image Processing

Image processing is a wide and experimental field. For any given image, there are

numerous programming strategies that could be employed to achieve the same desired effect.

Some strategies may be more efficient or accurate than others, but finding the optimal strategies

or combination of strategies is very difficult. There are general rules of thumb that can be used to

11

determine when one strategy may work better than another, but the exact effectiveness of the

method is difficult to quantify. Often, the best way to see if an image processing strategy is

effective is to directly compare modified images to the original images. Throughout research,

considerable time was spent comparing one image to the next to verify that use of each image

processing strategy and to ensure that the program was correctly interpreting data. A summary of

the available image processing techniques and those that were eventually selected for use in the

program are outlined throughout.

MATLAB Image Processing Toolkit

 Image processing techniques can be divided into two main groups: pre-processing and

post-processing [14]. Pre-processing techniques are primarily used to improve the accuracy and

efficiency of post-processing techniques. Pre-processing techniques remove image noise, enhance

contrast, or otherwise improve the quality of the image [14]. Many post-processing techniques

assume a certain level of quality that can sometimes only be achieved by first using pre-processing

techniques. Without pre-processing techniques, post-processing techniques can fall victim to the

“garbage in, garbage out” phenomenon often discussed in computer science. If the image data is

initially flawed from a lack of or improper use of pre-processing techniques, the results can be

totally erroneous. The efficacy of pre-processing techniques can vary from image to image; one

set of criteria may work excellently for one image and poorly for another. With 500 images in a

data set, some data is inevitably ignored to produce valid results.

 Post-processing techniques are very diverse. Post-processing techniques are often used to

segment images or break them down into like components that can be measured. Post-processing

techniques segment primarily by color, texture, and shape. However, post-processing techniques

12

can also rotate images, apply machine learning models to image data, or analyze a variety of other

image trends [14].

 Throughout the research period, a wide variety of different pre-processing and post-

processing techniques were explored. Some techniques were used only once before their

shortcomings were made obvious. Other techniques were used intermittently throughout

development. Several pre-processing and post-processing techniques were eventually used

together at the end of development in April. Each of the various techniques used throughout the

various iterations of the software are described in the following chapter with a full breakdown of

the current image processing workflow.

Storing Image Data in MATLAB

MATLAB recognizes all variables as matrices [15]. For any image data that is loaded into

MATLAB, a matrix is created where every pixel is represented by an entry in the matrix. For

example, an HD image is a 720x1280 array of pixels and is stored as a 720 row by 1280 column

matrix. This is only partially true, however, as one matrix is not always enough to store all the data

in one image. Images can be categorized by the number of matrices needed to represent them and

by the color space of the image. Table 1below provides a brief introduction to image types. Note

that this table is not comprehensive.

Table 1: Description of Various Image Types [16]

Image Type Description

Truecolor (RGB) Image data is stored as an 𝑚 × 𝑛 × 3 matrix,

where 𝑚 is the number of rows, and 𝑛 is the

13

number of columns. 3 is the number of color

channels in the image; there is one matrix for

red data, one for green data, and one for blue

data. Each entry in the matrix commonly

scales between 0 and 255, where 0 is the

absence of color and 255 is full intensity.

Multispectral and Hyperspectral Image data is stored as an 𝑚 × 𝑛 × 𝑐 matrix,

where 𝑚 is the number of rows, 𝑛 is the

number of columns, and 𝑐 is the number of

color channels in the image. 𝑐 is often greater

than 3.

Grayscale (Intensity) Images Image data is stored in an 𝑚 × 𝑛 matrix,

where each entry is between 0 and 255. 0

represents black, while 255 represents white.

All numbers in-between are shades of gray.

Binary Images Image data is stored in an 𝑚 × 𝑛 matrix. Each

entry is 0 or 1. 0 represents black, and 1

represents white. There are no shades of gray.

White objects represent objects in the

foreground, whereas black pixels make up the

background. White foreground objects are

known as “connected components.”

14

 These image types will be referred to throughout the following chapters, particularly binary

and grayscale images. The scale of each image is also assumed to operate on a uint8 basis, rather

than a single, double, or uint16 basis.

15

Chapter 3 : IMAGE PROCESSING WORKFLOW

Program Workflow

The program, at any stage in development, can be divided into four distinct parts as

described below:

1. Importing Data

a. The program begins by creating a datastore object in MATLAB. MATLAB

recognizes a user-specified folder that contains image data. MATLAB

imports one image from this folder and initializes it into working memory.

2. Pre-Processing

a. The program applies several different pre-processing techniques to the

image. The pre-processing techniques eliminate excess noise and artifacts

from the image. The pre-processing also converts the SEM image from a

hyperspectral image to an RGB image, the RGB image to a grayscale image,

and the grayscale image to a binary image.

3. Post-Processing

a. The program applies several different post-processing techniques to the

binary image. The program analyzes each grouping of white pixels as a

connected component. Connected components are filtered by size, shape,

and other metrics to ensure the program does not mistake any artifacts that

surpassed pre-processing as fibers during post-processing. The remaining

connected components are understood to be carbon fibers. The program

16

plots the binary image as a MATLAB figure, labeling each fiber with its

major axis, minor axis, and angle. The total number of fibers is recorded,

and the angle of each fiber is added to a running total.

4. Saving Data

a. The MATLAB figure is saved as a .JPEG file. Saved JPEGS can be

compared to the initial grayscale image to verify that the program is

properly interpreting image data. The angle of each fiber is saved to a .csv

file. The .csv file can be imported into tools like Microsoft Excel for

continued analysis.

17

Chapter 4 : IMPORTANT TERMS, INITIAL CODE, AND IMAGE PROCESSING

CHALLENGES

Developing Image Processing Code

Research began in the summer of 2022. Research started with an initial understanding of

the fuel cells and prior research in the field of composite bipolar plates, as outlined in Chapter 1.

A significant portion of the research period was spent becoming familiar with image processing

and the various image processing capabilities of the MATLAB toolkit. By the end of the research

period, one .PNG image could be interpreted by the program for one run of the program. The

program could pre-process the PNG, post-process the PNG, display a MATLAB plot with various

fiber metrics, and determine the mean angle of the fibers within the PNG. Unfortunately, the

program could not yet save MATLAB plots or process more than one image. Despite these

shortcomings, the first program was largely considered to be a success. Certain elements of the

pre-processing and the post-processing from the first program continued to be effective in future

iterations of the program.

Figure 7: Code for Multispectral to Grayscale Adjusted Image

The first line of code in Figure 7 is responsible for transforming the image saved in the

local directory into a matrix. The SEM images are hyperspectral images and have five channels.

The second line of code removes channels four and five, keeping only channels 1, 2, and 3. The

image is effectively converted from a hyperspectral image to an RGB image, as these channels

represent color data for red, green, and blue. The third line of code converts the RGB image into

18

a grayscale image. The im2gray() function converts the RGB image to a grayscale image by

forming a weighted sum of the red, green, and blue components [17]. The fourth line of code

adjusts the grayscale image for contrast. This step was eliminated in future versions of the

program, as the added contrast produced more issues during post-processing than resolved.

Figure 8 shows the changes between certain lines of code. Although these changes are not

visually apparent, changing the data type of each image is necessary for further image

processing.

Figure 8: Hyperspectral Image, RGB Image, Grayscale Image (Left to Right)

Figure 9: Code for Wiener Adaptive Noise Filtering

Continuing, the next line of code shown in Figure 9 employs an imaging filter known as a

wiener filter over the image [18]. The wiener filter is an adaptive filter that estimates the local

mean and variance around each pixel within a given neighborhood or surrounding pixels [18]. The

wiener filter performs little smoothing where variance between pixel values is large and more

smoothing when variance between pixel values is small [18]. This method increases contrast

throughout an image depending on the surrounding pixels, meaning the method is effective at

preserving edges between fibers and ensuring that separate fibers near one another are not counted

as one large fiber. In this case, the filter is using a 5 × 5 square centered over a given pixel as the

neighborhood for the pixel. Depending on the variance within the 5x5 square surrounding the

19

pixel, the filter will adjust the pixel to increase the overall variance and sharpen edges. Figure 10

shows the effects of Wiener filtering.

Figure 10: Contrast Adjusted Image, Wiener Filtered Image (Left to Right)

Figure 11: Code for Creating a Binary Image

 The next line of code shown in Figure 11 transforms the modified grayscale image into a

binary image. imbinarize() uses Otsu’s method to create a binary image [19]. To form a binary

image, a threshold value between 0 and 255 must be selected so that every entry less than the

selected value is overwritten to have a value of zero, and every entry greater than the selected value

is overwritten to have a value of 1. Entries equal to 0 are black, and entries equal to 1 are white.

Otsu’s method tests every value between 0 and 255, calculating the total variance between pixels

at each threshold [19]. The threshold that produces the maximum variance between pixels is

chosen to form the binary image. Preserving variance equates to preserving detail as data is

summarized into a binary image. An example of a binary image is shown below in Figure 12.

20

Figure 12: Binary Image

 Forming binary images discards a significant portion of the image data. Although some

detail is lost, considerable efficiency is gained. There are many image processing toolkit functions

that require binary images to be effective. Further, computations are simpler, and less data is used

overall when the image data can be summarized as Booleans instead of integers.

Figure 13: Code for Opening, Closing Image

 The final four lines shown in Figure 13 in the pre-processing segment modify the binary

image. The first line creates a morphological structuring element. A morphological structuring

element is another way of defining the neighborhood of pixels that a filter or morphological

operation will consider when modifying a pixel in an image [20]. A disk-shaped structure is

visualized below:

Figure 14: Example Disk Structuring Element for Morphological Operations [20]

21

 The command imopen() opens the image. “Opening” an image refers to the process of

rounding foreground objects (white pixels) by erosion and dilation [21]. Eroding an image shrinks

white spaces, while dilating grows them [22, 23]. Both processes together have the effect of

removing small image artifacts and smoothing edges of fibers so fibers that are very close to one

another are analyzed as two separate fibers, not as one. The next line imclose() closes the image.

Closing is another morphological operation and can be understood as the inverse process of

opening; the image is dilated, then eroded [24]. Consequently, closing an image decreases the size

of black spaces between fibers. Opening then immediately closing the image seems

counterintuitive. Remember that each image filtering process can be understood as simplifying or

removing information from an image. Even though opening and closing are inverse processes,

enough data is removed each time that the opened image is different enough from the original

binary image so that the closing the opened image produces a different image than before. Figure

15 helps to illustrate these differences. Neighborhood sizes and the order in which neighborhood

sizes are opened or closed were explored throughout the other research periods.

Figure 15: Opened Image, Closed Image (Left to Right)

Figure 16: Code for Filling Holes in Fibers

 The next line of code shown in Figure 16 is designed to fill holes in the image. Holes are

defined as clusters of background pixels, or black pixels, that do not connect to the edge of the

22

image [25]. Holes are clusters of black pixels that are truly surrounded by white pixels [25]. Filling

these holes eliminates any holes inside fibers that were created as a result of image artifacts or

other proceeding operations. Filling holes makes the binary image look neater and decreases the

chance of errors in analysis throughout the process. Figure 17 helps illustrate the effects of filling

holes.

Figure 17: Binary Image with Filled Holes

Figure 18: Code for Removing Large and Small Artifacts

 The line shown in Figure 18 marks the first line of post-processing. The command

identifies foreground objects, or fibers, as connected components and eliminates components of a

certain pixel area. Some images, like the one in Figure 19, had large artifacts, voids, streaky fibers,

or clustered fibers that could not be distinguished from one another.

23

Figure 19: Long, Streaky Fibers Sometimes Cannot be Measured or are Outliers

 The command bwpropfilt() allows for each connected component to be analyzed and

filtered for several metrics [26]. The area constraint has a lower bound, meaning elements that are

too small are also ignored by the filter [26]. The true impact and capabilities of bwpropfilt() are

analyzed throughout development. Figure 20 shows an example of the remaining data that would

be analyzed by bwpropfilt().

Figure 20: Final Binary Image to Be Analyzed in Post-Processing

24

All the remaining connected components can be summarized as a dictionary object in

MATLAB.

Figure 21: Dictionary and Property Arrays

For each connected component, there are several properties that the regionprops()

command can identify [27]. In Figure 21, the area, the 𝑥 and 𝑦 coordinates in pixels (where 𝑥 = 0

at the bottom left corner and reaches its maximum value in the lower right corner, 𝑦 = 0 at the top

left corner and reaches maximum value in the bottom left corner), the major axis length, and minor

axis length of each connected component are obtained and stored in the props dictionary [27].

These properties can be extracted into arrays as the following lines show. The final line creates

sum which is later used to store the sum of all the fiber angles.

25

Figure 22: Plotting, Measuring Fiber Angle, Reporting Mean Fiber Angle

Figure 22 shows how a plot of the binary image is made. A “+” symbol is plotted at the

centroid of the fiber. Next to the symbol are the major and minor axes of the fiber. After creating

and saving the image, the angle of each fiber and the average fiber angle for the image is created.

For this image, there were 44 identified fibers with an average angle of 37°. The full version of

this code can be found in Appendix A: Code from Summer Development.

26

Key Image Processing Errors

Figure 23: Final Image

Figure 24: Grayscale Image and Final Binary Image

27

Figure 23 shows the final image with the centroid and axis data. Figure 24 compares the

grayscale image to the final binary image. Both figures show important data that explains changes

made to the program and further study described throughout. The binary image in Figure 24

generally shows that the program does an excellent job of removing artifacts, voids, and other

errors in the image. Unfortunately, the program also seems to remove some slightly darker fibers

as well. Both figures can be used to show how some fibers that are distinct yet very close to one

another are evaluated as one large fiber. Note the locations of the centroids in Figure 23, namely

in the lower right, lower left, and upper center parts of the image, and compare them to their

corresponding clusters of fibers in the left hand side of Figure 24. When the fibers are separate, all

of these fibers are relatively straight. Clumped together, these fibers are measured as very

eccentric, or very slanted, ellipses, as in Figure 25. The program recognizing fewer ellipses at more

dramatic angles generally skews results and portrays the average angle as much higher than what

was originally discovered in the manual study.

Figure 25: Several Straight, Clustered Fibers are Interpreted as One, Eccentric Fiber

The tendency for the program to cluster fibers also proved to be highly detrimental in the

instance of clustered fibers, as shown in Figure 26.

28

Figure 26: Clustered Fibers

If the same image processing method described throughout was applied to Figure 26, the

resulting image would be recognized as one massive artifact or several massive artifacts and much

of the data would be ignored by the software. An example of this is shown in Figure 27. From left

to right and starting on the left again after the first three images, the image is transformed from a

grayscale to binary image, opened, closed, filled in, and edited by bwpropfilt().

29

Figure 27: Processing Clustered Images

The sensitivity of the thresholding technique also leads to some error. This error can be

observed in some of the clustered or overlapping fibers shown in Figure 24. Some artifacts are too

big to be eliminated by opening or closing the image but are not so dark that they are merged into

the foreground as part of the binary imaging. The threshold will not be perfect for each image, as

some data is always lost in creating a binary image. However, the exact technique that would

preserve the most data was unknown. A clearer illustration is shown in Figure 28.

Figure 28: Thresholding Error

30

A critical part of developing the code was verifying results and adjusting the pre-processing

commands to ensure that as much of the original data is preserved as possible. The size of structural

elements was determined by repeatedly examining the effect different size elements had on image.

The same applied for the type of commands used and the order commands were used in. The

question of how much each command impacted the final image was asked multiple times

throughout research. Discussion throughout the fall semester found that the easiest way to quantify

the impact of a certain method was to test the code on the images that were analyzed in the

statistical study and compare the number of fibers in the final image to the number of fibers

counted in the original image. With the number of variables that have been identified throughout

the discussion of the code thus far, running the code on each of the 3 sets of 30 images to try and

understand the exact impact of each variable would be an endless chore. The comparison technique

was only used in certain situations and is described further in work performed in the spring

semester.

31

Chapter 5 : ANALYZING MULTIPLE IMAGES AND CALIBRATING CODE

Analyzing the Entire Image Population

The summer semester developed an understanding of the tools available for image

processing and some of the capabilities of each tool. Work in the fall semester continued to explore

MATLAB’s image processing capabilities while also seeking a way to validate and improve the

accuracy of the program. While there was an understanding of how each processing method would

impact the data, the true size of the errors had not been quantified. The program had only analyzed

images one at a time throughout the summer, so the true breadth of the data had not been explored.

Small errors in the test images used in the summer could be large errors in others that had not been

tested with the code. To eventually improve the program, the validity of the methods used over the

summer needed to be tested on the entire data set. With an understanding of those errors, the

summer methods could be refined over the spring into a working product.

Much of the code from the summer semester was reused throughout the fall. The same

image processing techniques outlined above were studied for accuracy throughout the fall, so they

could not be changed. Other minor modifications were made, however. The program was first

modified to allow for batch processing of images, as shown in Figure 29 and Figure 30.

Figure 29: Datastore Object for Multiple Images

In the first line of Figure 29, the datastore object is created. The datastore object is used for

collections of data that are too large to fit within memory. The datastore object allows MATLAB

to individually retrieve images from a hard drive or other like storage system available to the

computer.

32

Figure 30: Reading Each Image with the Datastore

Images can be retrieved individually with the imread() function [28]. The size of the

datastore is known, as shown in the third line of Figure 29. Therefore, a for loop like that shown

in Figure 30 can be used to iterate through each image in each directory. After the img object is

created, the same processing developed throughout the summer occurs. The mean fiber angle for

each image is recorded, and the next image is processed. The process repeats itself until all images

are processed. The mean of means is finally calculated and reported as the average fiber angle.

This calculation uses the central limit theorem, assuming the fiber angles follow a normal

distribution.

A Brief Discussion of Efficiency

 Reading all the images through a datastore object could slow the program. Repeatedly

interfacing with a hard drive or remote drive is almost always slower than retrieving information

from RAM. Pre-loading all images into working memory would allow for much faster processing.

Table 2: Memory Requirements for Photos

Weight Percent Number of Images Memory Requirement (GB)

20 536 2.93

30 480 2.63

33

40 533 2.92

Table 2 shows the memory requirements for loading any given collection of images into

MATLAB. 2.93 gigabytes is a considerable amount of data, however loading all images into RAM

is a possible on the given hardware. Unfortunately, attempts at increasing the speed of the program

by loading all the images into RAM were ultimately fruitless. The readall() command uses a

datastore to create a celled array in working memory that contains all the images as RGB images;

these images are read with the imread() function [29]. The readimage() command requires a

datastore and an integer value as arguments to determine which image from which folder should

be read; each image is individually retrieved from the hard drive or remote data source [30]. The

readall() approach should be faster. However, the readimage() process was ultimately found to

be the quicker of the two approaches. When used to analyze the 40% image set, readimage()

approach completed in 11 minutes, and the readall() approach completed in 12.5 minutes. Both

approaches produced the same images and average fiber angle. Perhaps a larger difference would

be found between the two approaches if the data were stored on a remote drive or if a larger

quantity of data was read. Unfortunately, code efficiency was a much smaller concern than

validating and refining results. These methods were the only ones examined throughout the

semester for decreasing the load time of any images. Examining this process as part of future

research may prove to be very useful, especially if more data is used in the future.

34

Storing and Tracking Program Data

 The name of the image, the number of fibers in each image, and the average fiber angle

were written to a .csv file during runtime. Saving the data this way made comparing program

results to manual study results simple. The 20 wt% NiCF data from the manual study can be

visualized as shown in Figure 31 and Figure 32.

Figure 31: Cross-Section of Dog Bone Sample

Figure 32: Manual Study Data Selection

The cross section of the dog bone sample was divided into over 600 different SEM images.

The images are numbered from left to right, until the end of the row where the proceeding row is

numbered right to left. The yellow squares in Figure 32 represent the images that were selected for

analysis in the manual study. The scattering of images across the cross-section shown in Figure 32

35

was deemed to be the best selection to represent the data by Hollinger et al. The data collected by

Hollinger et al was illustrated in several ways, one of which was a fiber angle heat map.

Figure 33: 20 Weight % NiCF, Average Fiber Angle, Manual Study

Figure 34: 20 Weight % NiCF, Average Fiber Angle, Program Results

Figure 33 is a fiber angle heat map of the 20 wt% NiCF samples as determined by the

manual study performed by Hollinger et al. Figure 34 is a recreation of the fiber angle heat map

where the mean fiber angle shown in each cell was determined by the image processing program

developed over the summer. Both Figure 33 and Figure 34 share the same scale. Generally, the

main sources of error (thresholding, overlapping fibers, tightly clustered images) caused the mean

angle to appear inflated. Note the two light blue cells in Figure 34. At first glance, the light blue

seems indicative of accuracy. However, the mean angle of both cells is zero. The mean angle is

zero because both images were so tightly clustered that the program detected zero fibers and

reported a mean angle of zero to indicate the error. Heat maps showing the absolute difference and

36

percent difference between the manual study results and the program results were made to illustrate

the gravity of this error and provide further insight.

Figure 35: 20 Weight %, Absolute Difference Between Manual Study and Program Results

Figure 36: 20 Weight %, Percent Difference Between Manual Study and Program Results

Figure 35 and Figure 36 corroborate an insight promoted by Figure 33 and Figure 34. The

current level of error is unacceptable, and results are inaccurate. The percent errors shown in Figure

36 are rather significant. However, such extremes in data are not necessarily an indication of poor

image processing. The data was likely skewed by significant outliers, in the form of overlapping

fibers or tightly clustered images where many straight fibers are ignored. Simply ignoring

overlapping fibers or other outliers that are inevitably produced by applying a general image

processing workflow to a broad set of data could significantly reduce the error. Fine-tuning the

thresholding process to create a finer binary image or modifying the process to tackle clustered

images would be more difficult processes that eventually spanned the entire spring and following

summer development periods.

37

The heat map and error heat map were also constructed for the 30 and 40 wt% NiCF dog

bone samples. The insights from these graphs vary little from the insights generated by the above

figures. These graphs are included in Appendix B: Additional Heat Maps.

Hollinger et al. also produced histograms of the data. Each histogram is comprised of

several thousand data points of fiber angles which were measured manually. Figure 37 is a

histogram that shows the frequency of each fiber angle found throughout the sample images used

in the manual study of the 20 wt% NiCF cross section by Hollinger et al. Figure 38 shows the

program results for the frequency of the mean angles for each image within the population of 20

wt% images. Note that the summer development period found the mean angle for each photo, not

across all photos. The differences between Figure 37 and Figure 38 mean that few valid

conclusions can be drawn from comparing the two plots. These figures are included mostly for the

purpose of showing the development of ideas throughout the project. The main benefit of the

histogram created by Hollinger et al. was that the plot showed the spread of the population. A

mean summarizes the entire spread of data with one number. Showing the spread of means

ultimately shows a reduced population spread, which is counterintuitive to creating a histogram.

Ultimately, the two graphs show two different data spreads. The trends in Figure 37 and Figure 38

are followed closely in the 30 and 40 wt% samples as well.

38

Figure 37: Angle Distribution from Sample Images of 20 wt% NiCF Cross Section

Figure 38: Mean Photo Angle Distribution from Population of Images of 20 wt% NiCF Cross Section

 The central limit theorem states that the means of sufficiently large random samples (with

replacement) will be roughly normally distributed regardless of trends in the original population

[31]. The sample size, the number of images used to approximate the overall angle, is above 30

images in the 20 and 40 wt% NiCF groups; the sample size is large enough for the central limit

theorem to safely apply to those groups, but the same cannot be said for the 30wt% group [32].

39

According to Hollinger, the images were also selected in a sufficiently random method. The

distribution in Figure 38 is roughly normal, but notice the shift in the angle of the fibers. The

histogram seems to corroborate the overestimation trend shown in the heat maps. However, the

cause of the shift is still unclear. Further, the method that should be applied to revert or stop the

shift is also unclear. The program could be consistently merging fibers together to create many

fibers at an angle of 40 or 50 degrees, or the program could be merging fewer fibers together but

ultimately creating higher-angle fibers. More generally, the shift could be caused by a

misinterpretation of data or by a few impressive outliers (or perhaps both). Using the mean of the

mean image angles was easier to program at the time, but a mean of means is arguably a poor

representation of the mean angle due to the conditions of the central limit theorem and the

comparisons that would be drawn between the program and the previous study. Given the

capabilities of modern computing and the population size, computing the population mean angle

is fully possible and was naturally the next step in development.

40

Chapter 6 : CORRECTING THE MEAN WITH DATA OMISSION

TECHNIQUES

Continuation of Comparing Program Data to Manual Study Data

The program used throughout the summer and fall was modified to track the angle of the

fibers across the entire population, not to track the mean angle across each image. Listed below

are histograms comparing the program analysis of the entire population to the manual analysis of

the sample population. The comparison of the samples and the population is valid. The study is

statistically valid as previously discussed, and it is the only data that exists for comparison.

However, analyzing the entire population with the program, instead of just analyzing the same

images used in the study, seems tedious. The entire population was analyzed with the hopes of

obtaining as much information as possible surrounding the shortcomings of the program. With a

larger amount of data, trends are easier to identify. With 500 images, faults in image analysis

would be more obvious faster.

Figure 39: Angle Distribution from Sample Images of 20 wt% NiCF Cross Section

41

Figure 40: Population Angle Distribution from 20 wt% NiCF Cross Section

Figure 39 is identical to Figure 37 but is included above for convenience. Comparing the

two figures, Figure 40 has considerably more fibers. Further, the histogram is saddle-shaped, with

peaks near 30 degrees and 60 degrees. There are considerably more fibers between 30 and 50

degrees than in Figure 39. Further, the number of fibers above 50 degrees is an obvious deviation

from the data showed in Figure 39. The program is not generating a few outliers, rather it

overestimates the angle of fibers.

42

Figure 41: Angle Distribution from Sample Images of 30 wt% NiCF Cross Section

Figure 42: Population Angle Distribution from 30 wt% NiCF Cross Section

Figure 41 and Figure 42 are very similar to Figure 39 and Figure 40, the only difference is

that Figure 41 and Figure 42 represent the data for the 30 wt% cross section. The overestimation

is much more apparent in Figure 42 than in Figure 40. There is only one peak at 60 degrees, and

generally there are more eccentric fibers.

43

Figure 43: Angle Distribution from Sample Images of 40 wt% NiCF Cross Section

Figure 44: Population Angle Distribution from 40 wt% NiCF Cross Section

Figure 43 and Figure 44 show the results from the study and the program, respectively. Figure

44 is like Figure 40 with a saddle shape and peaks near 30 and 60 degrees. After studying the graphs

and comparing the images from each data set to the respective program-generated images, the

same errors with thresholding and clustered fibers seemed to be the cause of the inflated mean

angle. Discussion found that there were two main ways to combat overestimation. Data points that

44

are multiple clustered fibers or artifacts that persist through image processing could be ignored in

the final calculation. Alternatively, the image processing techniques could be refined to prevent

errant data from entering the image.

Both techniques have different strengths and weaknesses. Ignoring data is a simple process,

as outlined by the bwpropfilt() method shown in Figure 18. The command bwpropfilt() can filter

objects by major axis length, minor axis length, area, area circumscribed by a convex polygon,

percentage of area within the convex polygon filled by foreground components, perimeter,

orientation, and many other properties [26]. Further, the command creates another binary image

after removing connected components that do not match the criteria [26]. The regionprops()

method shown in Figure 21 can be used to identify the same properties that bwpropfilt() uses to

filter connected components [26, 27]. The two methods can be used in conjunction with one

another to quickly identify the consequences of any data elimination. A downside to eliminating

errant data is that some pertinent data is removed as well. Another downside is that the amount of

pertinent data that is removed is difficult to gauge. In the manual study by Hollinger et al., the

number of fibers measured in each sample image was recorded. However, the recorded fibers were

not marked on the image. Designating which objects the program should recognize as fibers can

be difficult. Further, knowing how much data is being ignored is also difficult for any images

outside the sample images used in the initial study. The program can be compared to the sample

image data, or it can be compared to the previous program iteration, so long as the previous

iteration is understood to be an accurate or desirable inclusion of data.

 Enhancing the image processing to create a binary image that accurately reflects the

original image is another method that can combat overestimation. A more accurate binary image

is almost always a benefit. With a more accurate image, less pertinent data is ignored. The new

45

binary image will never be perfect; some data will always be lost in making a binary image. But,

the loss in data allows for use of more robust and faster image processing tools. Regardless, refined

image processing techniques allow for more accurate binary images, which in turn indicate which

properties should be used in bwpropfilt() to allow for precise removal of errant data. The

downside to refining the image processing workflow is that the process is very difficult. There are

many different image processing tools in the MATLAB toolkit. The best way to truly know if a

method creates a more accurate binary image is to save and view the image with each change in

methodology. This process is, naturally, very tedious. Further, certain methods may work

excellently for some images but poorly for others. Additionally, the program cannot recognize

errors in data as simply as the human eye can. The desire to omit or include a feature needs to be

translated into a specific command or series of commands. Ultimately, there are infinitely many

ways to refine the binary image, but only a handful will be effective.

Omitting Data by Major Axis Length

 Omitting data is much easier than refining the image processing technique. Achieving

proper results by omission of errant data alone would be ideal, considering data omission is already

necessary to remove errant data that is inevitably created or recognized as part of binary imaging.

To start, connected components were eliminated by the size of the major axis. The reasoning was

that large connected components made of several different individual fibers would be eliminated

by such restrictions.

46
Table 3: Mean Angle Across Carbon Fiber Dog Bones

40 wt % 30 wt % 20 wt %

Manually Estimated

Average Angle (deg)

32.9 31.8 30.2

Program Estimated

Average Angle (deg)

47.4300 46.9675 45.3030

 Table 3 compares the mean angle from each sample according to the study by Hollinger et

al. compared to the mean angle determined from the newest rendition of the program from the fall

semester. With each modification made to the major axis criteria in the program, several

histograms were generated and Table 3 was revised.

 At first, connected components with major axis lengths of over 250 pixels were removed

from the data. For context, each pixel is about 0.125 microns. 250 pixels was chosen as a starting

point after examining images and noting the lengths of each fiber as indicated by the

regionprops() method. Ideally, 250 pixels would remove large outliers while still retaining as

much pertinent data as possible. Additionally, fibers with a major axis below a lower bound of 30

pixels were also eliminated with the intention of eliminating artifacts or objects that were too small

to be considered fibers.

47

Figure 45: 20 wt% Distribution, 250 Pixel Max and 30 Pixel Min Suppression

Figure 46: 30 wt% Distribution, 250 Pixel Max and 30 Pixel Min Suppression

48

Figure 47: 40 wt% Distribution, 250 Pixel Max and 30 Pixel Min Suppression

Table 4: Mean Angle, 250 Pixel Max and 30 Pixel Min Suppression

 40 wt % 30 wt % 20 wt %

Manually Estimated

Average Angle (deg)

32.9 31.8 30.2

Program Estimated

Average Angle (deg)

47.8634 47.2984 45.5750

 Figure 45, Figure 46, and Figure 47 all show minor improvements to the general shape of

the histogram. Generally, the peaks are slightly more accentuated. There are slightly fewer fibers

within the 40, 50, or 60-degree buckets. However, the means shown in Table 4 have slightly

increased, perhaps from the elimination of many more small, circular artifacts outweighing the

elimination of a few large elliptical fibers. Between all the newly saved binary images and the

binary images formed before major and minor axis suppression was introduced, there are few

notable differences.

 Moving forward, a 150-pixel maximum for the major axis length was introduced. 250

pixels in length was too conservative. 150 was chosen after consulting the original binary images.

Images like Figure 23 were generated with the major axis length listed on each fiber. Multiple

49

fibers across multiple images were reviewed to obtain this number. 150 pixels deletion, across 10

images, preserved roughly 75% of the components identified by the program. The 30-pixel

minimum still applies as well.

Figure 48: 20 wt% Distribution, 150 Pixel Max and 30 Pixel Min Suppression

Figure 49: 30 wt% Distribution, 150 Pixel Max and 30 Pixel Min Suppression

50

Figure 50: 40 wt% Distribution, 150 Pixel Max and 30 Pixel Min Suppression

Table 5: Mean Angle, 150 Pixel Suppression

 40 wt % 30 wt % 20 wt %

Manually Estimated

Average Angle (deg)

32.9 31.8 30.2

Program Estimated

Average Angle (deg)

46.7980 46.3750 44.8534

 The plots shown in Figure 50, Figure 49, and Figure 48 still maintain much of the original

shape seen in the previous histograms. The peaks are slightly more accentuated, however,

comparison between the new and old binary images still shows little difference. The averages in

Table 5 are slightly less than those shown in Table 4. Continuing the trend of suppressing smaller

and smaller connected components will eliminate some pertinent data. Suppressing more data may

provide additional insight about the peaks of the histogram. If the peak at 60 degrees is not

eliminated by suppressing more data, a change in strategy is required.

51

Figure 51: 20 wt% Distribution, 75 Pixel Max and 30 Pixel Min Suppression

Figure 52: 30 wt% Distribution, 75 Pixel Max and 30 Pixel Min Suppression

52

Figure 53: 40 wt% Distribution, 75 Pixel Max and 30 Pixel Min Suppression

Table 6: Mean Angle, 75 Pixel Suppression

 40 wt % 30 wt % 20 wt %

Manually Estimated

Average Angle (deg)

32.9 31.8 30.2

Program Estimated

Average Angle (deg)

42.3627 43.5870 40.9464

Generally, the shape of Figure 51, Figure 52, and Figure 53 are promising. While there are

still many more fibers within the 40, 50, and 60-degree buckets than measured by the manual

study, the peak at 60 degrees has diminished significantly. The shape of each figure is closer to

that of the distributions in the manual study. The remaining difference between the data filtered

for major axis length and the sample data from the study by Hollinger et al. has multiple

implications. The data outside the sample used in the original study could be much different than

the rest of the image data. This is unlikely, however. While the actual population mean will differ

slightly from the means in the study, the differences in Table 6 are not realistic. Some difference

between the means can be explained this way, but a quick glance between the binary images

53

filtered for major axis length and the original microscope images show that the binary imaging

still has inaccuracies that can only be remedied by better data omission or binary imaging

processes. Examining the binary images, many merged fibers and errant data were eliminated, but

a significant amount of pertinent data were removed as well. There were also many errant data

created because of poor thresholding that persisted through the major axis filtering. Filtering by

major axis length alone is not enough to excise all the errant data.

Figure 54: 20 wt%, 50 Pixel Max and 30 Pixel Min Suppression

Figure 55: 30 wt%, 50 Pixel Max and 30 Pixel Min Suppression

54

Figure 56: 40 wt%, 50 Pixel Max and 30 Pixel Min Suppression

Table 7: Mean Angle, 50 Pixel Max and 30 Pixel Min Suppression

 40 wt % 30 wt % 20 wt %

Manually Estimated

Average Angle (deg)

32.9 31.8 30.2

Program Estimated

Average Angle (deg)

43.2492 41.6208 39.3759

Percent Difference 10.05 30.88 30.38

The 50-pixel major axis suppression produces some interesting results. Although the mean

values shown in Table 7 are much smaller than previous data, the shape of Figure 54, Figure 55,

and Figure 56 resemble the same saddle shape shown in earlier plots. Although even fewer fibers

are found within the 40- and 50-pixel buckets, the peak at 60° has returned. These figures

corroborate the idea that there are more exact methods of data omission than suppressing

components based on major axis length. Additionally, note the scale on each of the figures shown

above. The decrease in scale with each more restrictive pixel suppression shows that limiting data

to objects equal to or below 75 pixels in length eliminates a considerable amount of the data. When

55

filtering by major axis length in the future, the exact pixel length will need to be studied further to

ensure as much errant data is removed, and as much pertinent data is persevered as possible.

Results from this study showed that data omission would likely not be as simple as

previously thought. Size is not the only valid criteria useful for filtering data. Further, there are

multiple other criteria that could be used in conjunction with one another to produce optimal

results. Omitting data, in this way, is very similar to refining the binary imaging technique.

Additionally, this study on major axis length showed that simply omitting data would not be

enough to achieve accurate results. The image pre-processing techniques would need to be

revisited to ensure as much pertinent data was included as possible. Exploring the different data

omission techniques was the next step in research during the spring semester.

56
Figure 54: 20 wt%, 50 Pixel Max and 30 Pixel Min Suppression

Chapter 7 : MORE DATA OMISSION TECHNIQUES

Omitting Data by Minor Axis Length

Another data omission technique that proved useful was filtering connected components

by minor axis length. Filtering by minor axis length works similarly to filtering by major axis

length. Filtering by major axis length can eliminate clustered fibers read as one large fiber or for

large artifacts that exceed a certain length. However, the limits or the exact pixel quantity that

should be used in the bwpropfilt() command are hard to identify. Previous discussion showed

that limits on the major axis removed pertinent data as well as errant data. The major axis criteria,

by itself, fails to distinguish between clustered fibers or elliptical fibers with a large major axis.

The goal of the program is to obtain the actual population mean angle and to include as much data

as possible. A new method of measurement needed to be used to retain pertinent data. The minor

axis, unlike the major axis, does not change with respect to the angle of the fiber.

57

Figure 57: Minor Axis Independence [33]

Figure 57 shows how the shape of the cross section of a fiber changes as its angle within

the surrounding nylon changes. The ellipse becomes more eccentric, but only the major axis

changes. The minor axis never deviates from the diameter of the fiber. If the average diameter of

a fiber is known, bwpropfilt() can be used to filter connected components based upon a tolerance

about the average diameter of the fiber. If the minor axis far exceeds acceptable bounds, the

connected component may be multiple clustered fibers or small artifacts formed as a result of poor

binary imaging. Minor axis filtering will also remove any errant data initially missed by using

bwpropfilt() to filter components based upon area. Components that exceeded the minimum area,

but still were thresholding errors, could be eliminated by failing to meet the minor axis

requirement. To start using minor axis filtering, the average diameter of a fiber needed to be

understood in units of pixels.

58

The manufacturer data sheet indicated that the average fiber was 6.75 microns in diameter

[10]. To find this length in pixels, an image and fiber were arbitrarily chosen to represent the

average pixel length of the fibers. Measuring multiple different fibers to find an average length

would have proven too time consuming for a method of data omission that, like major axis filtering,

only partially solved the problem or yielded no real results. This fiber was chosen and then

measured with ImageJ software; no scale or conversion was included in the images used by

Hollinger et al. This process is visualized in Figure 58.

Figure 58: Measuring the Diameter in ImageJ

59

The line tool was used to draw a line across the diameter of the fiber. Holding the “SHIFT”

key allows for the user to draw a straight line. With the “Set Scale” function beneath the “Analyze”

tab, 6.75 microns was used as the scale and the known length of the fiber diameter. Figure 59

visualizes this process.

Figure 59: Scaling in ImageJ

ImageJ found the scale to be approximately 8 pixels to one micron. The “distance in pixels”

entry in Figure 59 shows that the average fiber diameter is approximately 54 microns. Intervals

surrounding 54 pixels should prove useful for finding the criteria for bwpropfilt().

One shortcoming from previous work in data omission with major axis length was that the

exact quantity of omitted data was unknown. Omitting some pertinent data is unavoidable, but the

goal of data omission is to eliminate as much errant data as possible while preserving as much

relevant data. In addition to determining the average fiber diameter in terms of pixels,

modifications were also made to the program so that one method of data omission could be

compared to another or to a control image. Implementing this change in practice is relatively

simple. After the image is processed and fiber angles are initially measured, the same image can

60

be saved to another variable as part of bwpropfilt(). The connected components in the new image

can be analyzed in the same way as before. The filename of each image, the number of fibers in

each image, and the total number of fibers for both sets of images can be recorded to a .csv file for

further analysis in Microsoft Excel. Shown below is a continued analysis of major axis length

filtering.

Table 8: Summary of Results from Study by Hollinger et al

NiCF Weight Percent Number of Images Mean Angle

20 536 29.53

30 480 28.30

40 533 32.89

Table 8 summarizes the results of the statistical study by Hollinger et al. Table 8 is included

for convenience when reading future tables.

Table 9: 100 Pixel Length Maximum

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 48868 21.19 45.96 43.45 5.61 38.15

30 51080 39569 22.54 47.70 45.69 4.30 47.00

40 60816 46067 24.25 46.43 42.80 8.14 26.19

Table 9 shows the amount of data omitted or suppressed for each weight percent and the

impact of the suppression. Table 9 compares the number of components found via the 100-pixel

maximum filtering (for the minor axis) to the number of components found via a modified version

of the image processing program developed over the summer. Unlike the summer program, the

modified version does not open and close the image and uses bwareaopen(). The bwareaopen()

61

command does not open the image in the traditional sense with erosion and dilation, rather the

method simply eliminates connected components under a certain pixel area.

Figure 60: Modified Summer Code for Comparison

The code in Figure 60 was modified from the original code after some experimentation.

Ideally, the binary images produced by the code in Figure 60 capture as much data from the original

image as possible. After much experimentation and reviewing images, opening and closing the

image with imopen() and imclose() was found to have no real effect; these operations were

therefore removed. Other changes in order of image processing operations or arguments in the

program were found after much experimentation and review of the images.

The practice of comparison seen in Table 9 was used throughout development. Methods of

data omission and different image processing techniques were compared to one another and to the

modified summer code in Figure 60. The goal of comparing practices was to identify which

eliminated the least amount of overall data while reducing the mean to be as close as possible to

the means found by Hollinger et al. For comparing two methods of data omission or image

processing on the same image, eliminating less data while lowering the mean angle is desirable.

The second image ideally has more fibers and a lower mean angle than the first, meaning less data

had to be removed and a lower mean angle was found: only errant data was removed, and pertinent

data that would have been analyzed by Hollinger et al. or other researchers remains. Throughout

development, tables like Table 9 are used to illustrate the effectiveness of any given method.

62

For a 100-pixel maximum for the minor axis, the means shown in Table 9 still differ from

one another by over 25% for all weight percents. Additionally, the mean angle of the omitted data

set only differs from the original data set by an 8% maximum. These differences are unimpressive

and are also indicative that the data omission process should be further refined. A quick

comparison between the sixth column of Table 9 to the final column of Table 8 further shows how

little the omission shifted the data.

Note that this comparison made to illustrate data omission between two binary images is

not perfect. The number of fibers within the initial binary image is not perfectly representative of

all the data in the original image. Some excess fibers are included from thresholding errors, and

other fibers are clustered together or ignored by other inevitable imperfections in the process. No

process captures all the data short of manually measuring the data as Hollinger et al. did as part of

a very time-consuming procedure. This process could not hope to be repeated for every image, as

a glance at the middle column of Table 8 will show. The next best mode of comparison for images

not previously analyzed by Hollinger et al. is a binary image produced by the program that includes

as much relevant data as possible. The program cannot easily decide which data is pertinent and

errant, so including all errant and pertinent data and trying to have as little data cut as possible

while decreasing the distance between the program mean and the study mean as much as possible

is the closest measure of making sure only errant data is removed. Minimizing the percent ignored

data from one image to the next and the percent difference from the program to the study is an

effective way of making sure changes are feasible and incremental in nature while also regarding

the impact of the omission on the entire data set. Further, comparing the results of the program

only to the sample images used by Hollinger et al. is not necessarily the best course of action,

considering the underdeveloped state of the program. The goal is to see how each method affects

63

the entire spread of the data, not just one random sample. More images provide a broader

understanding of the underlying issues with the program and the data.

Table 10: 75 Pixel Length Maximum

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 41774 32.63 45.96 41.29 10.70 33.21

30 51080 33212 34.98 47.70 44.09 7.87 43.62

40 60816 38543 36.62 46.43 40.24 14.28 20.10

Table 10 shows definite reductions in the mean angle at the cost of roughly 10% more data

omission. Without comparing the binary images, the true impact of ignoring this quantity data is

difficult to contextualize. Generally, ignoring 30% or more data from the original image showed

noticeable but still acceptable levels of pertinent data omission in addition to errant data omission.

Table 11: Minor Axis Between 30 and 70 Pixels

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 40040 35.42 45.96 40.95 11.53 32.41

30 51080 30700 39.90 47.70 42.54 11.44 40.20

40 60816 41422 31.89 46.43 42.28 9.36 24.98

Table 11 shows the results for minor axis filtering where minor axes less than 30 pixels

and greater than 70 pixels are removed. 30 to 70 pixels was selected as an interval because the

range encompasses the estimated 54-pixel average diameter and provides some room for deviation.

The deviation or tolerance in diameter was not given by the manufacturer, so an interval of 30 to

70 pixels was created after viewing binary images. Compared to the major axis, more data is

removed while the percent difference between the program and study is generally unchanged.

64
Table 12: Minor Axis Between 50 and 100 Pixels

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 12002 80.64 45.96 47.78 3.88 47.21

30 51080 12567 75.40 47.70 47.73 0.06 51.11

40 60816 17576 71.10 46.43 44.95 3.24 30.99

Table 12 shows the results for minor axis filtering for minor axes between 50 and 100

pixels in length. Much more data is removed, yet the average angle is relatively unchanged. These

results do not necessarily imply that minor axis filtering is worse or has no place in the program.

The results in Table 11 are comparable, if slightly worse, than results from Table 10. The interval

used to form Table 12 is simply omitting the wrong spectrum of data. Too many smaller, more

circular fibers are eliminated with the 50- and 100-pixel constraints. Calibration of minor axis

filtering can possibly lead to better results. In fact, it is possible that the data removed by the minor

axis filtering and that the data removed by the major axis filtering are two different sects of errant

data. Major axis filtering is better for removing large artifacts or clustered fibers, but minor axis

filtering is better for removing misshapen objects that are the result of thresholding errors.

Combining both could improve the results considerably. For the following tables, let 𝐴 represent

the major axis and 𝐵 represent the minor axis.

Omitting Data by Major and Minor Axis Length

Table 13: 30 < A < 100, 30 < B < 70

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

65

20 62004 34116 44.98 45.96 36.74 22.30 21.76

30 51080 25606 49.87 47.70 38.27 21.94 29.95

40 60816 33552 44.83 46.43 36.84 19.57 11.33

Table 13 shows results for data omission when fibers are first rated against the major axis

criteria and then the minor axis criteria; any remaining components satisfy both requirements.

When filtering out connected components as in Table 13, about half of the data present in the

original binary image is removed. Studying each binary image, many of the removed fibers are

errant, but there is a significant amount of relevant data that is removed as well. Notice, however,

that the mean angle is much closer to the means found in the study. Although more data is ignored

than is desired, also notice that the amount of ignored data has increased marginally from the other

methods despite the use of two data omission methods. Major axis filtering removes clustered

fibers and long streaky fibers or artifacts, but it does not remove mishappen artifacts. Further, the

average angle does not change much with major axis filtering alone. Minor axis filtering removes

small mishappen artifacts but can also remove normal fibers. As a result, as many low angled fibers

are removed as artifacts are, leading to a small reduction in mean angle. Both methods combined

remove more errant data, but also more pertinent data, resulting in a smaller average angle.

Both methods together also have a negative geometric implication. By limiting the major

and minor axis length, the maximum fiber angle is also limited. The inverse cosine function returns

a value of 90 degrees for an input of 0, or a line where the minor axis is zero. For an input of 1

where the major and minor axis are equal, the return value is zero. In Table 13, the smallest minor

axis is 𝑏 = 30 pixels, and the largest major axis is 𝑎 = 100 pixels. The largest possible angle for

any fiber is 72.5 degrees. Any other fiber will be ignored. Although both methods do eliminate

errant data, any pertinent data above 72.5 degrees is certainly eliminated.

66

𝜃𝑓 = arccos (
30

100
) = 72.5°

Reviewing the histograms in Figure 40, Figure 42, and Figure 44, eliminating the entire

population above 72.5 degrees seems reckless. Further, claiming that only errant data was removed

and that the resulting images and statistics are a fair assessment of the data would be false.

Although many fibers above 72.5 degrees are the result of image processing errors, there is no way

to verify how much errant data is removed or how much pertinent data is retained short of counting

individual fibers. These techniques should not be used together, or at least used sparingly together,

to avoid this issue.

To better illustrate the effects of using both techniques together, the procedure was repeated

with harsher constraints on the lengths of the major and minor axes.

Table 14: 30 < A < 75, 30 < B < 70

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 27892 55.02 45.96 32.48 34.37 9.51

30 51080 20146 60.56 47.70 34.05 33.39 18.44

40 60816 27060 55.51 46.43 32.45 35.45 1.35

67

Figure 61: 20 Weight %, 30 < A < 75, 30 < B < 70

Figure 62: 30 Weight %, 30 < A < 75, 30 < B < 70

68

Figure 63: 40 Weight %, 30 < A < 75, 30 < B < 70

The data reduction can be seen more harshly in Table 14 and Figure 61, Figure 62, and

Figure 63. Although the mean values are much closer to those shown in Table 8, the data reduction

has increased to half of the data within the original binary image. Additionally, the histograms

show no data in buckets for fibers angled above 65 degrees. These histograms also show less

skewness than previous program generated graphs or the graphs from the original study. The

distributions are arguably normal in the most recent plots. Viewing binary images now, the amount

of pertinent data ignored is significant. Harsher constraints beyond those shown in Table 14 found

the means delving below the values found in the original study.

Omitting Data by Solidity

One other data omission property that was analyzed was the solidity of a figure. Solidity

was mentioned briefly as bwpropfilt() was mentioned at the start of discussion of data omission.

69

Solidity is the ratio of white pixel area to total area found within a convex polygon circumscribed

to any connected component [34]. A simpler way of envisioning solidity is wrapping a rubber band

around a connected component [34]. The ratio of the white area inside the rubber band to the total

area inside the rubber band is solidity.

Figure 64: "Hollow" Component (Left) versus "Solid" Component (Right)

 Figure 64 helps to clarify the concept of solidity. Solidity is an attractive property because

of its ability to remove artifacts or thresholding errors. As previously mentioned, thresholding can

create oddly shaped components that are recognized as fibers. Additionally, thresholding can also

cause several very clustered fibers to be recognized as one large fiber. Clusters of fibers and

artifacts often form irregular or “hollow” shapes, whereas fibers themselves are very regular

“solid” shapes. Filtering by solidity could eliminate more errant data and preserve more relevant

data than major and minor axis filtering, especially considering the geometry constraints imposed

by major and minor axis filtering.

Table 15: Suppressing Components Less Than 0.85 Solidity

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 41123 33.68 45.96 39.78 14.42 29.58

30 51080 29503 42.24 47.70 40.70 15.84 35.94

40 60816 43601 28.31 46.43 41.24 11.84 22.53

70

Figure 65: 20 wt%, 0.85 Solidity

Figure 66: 30 wt%, 0.85 Solidity

71

Figure 67: 40 wt%, 0.85 Solidity

Figure 68: Example Component Under 0.85 Solidity

 Figure 68 shows an example of a figure with less than 0.85 solidity. This component has a

solidity of 0.83. Note that this image is not a perfect match for any component under a solidity of

0.85, but it does create a satisfactory mental image. Although these figures do not perfectly match

the histograms from the original study, note the smaller peak at 60° present in Figure 65, Figure

72

66, and Figure 67. Also, note the percent ignored data and mean angle values in Table 15 compared

to Table 9, Table 11, or Table 13. Both sets of values are considerably lower with solidity than

with other tests. Increasing the solidity requirement will likely omit more data and decrease the

mean angle like the other properties did. However, solidity provides an increased level of

confidence that the data points that persist after filtering are truly fibers.

Table 16: Suppressing Objects Less Than 0.9 Solidity

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 30968 50.05 45.96 35.89 24.61 19.44

30 51080 20734 59.41 47.70 36.85 25.67 26.25

40 60816 33444 45.01 46.43 37.72 20.70 13.68

Figure 69: 20 wt%, 0.9 Solidity

73

Figure 70: 30 wt%, 0.9 Solidity

Figure 71: 40 wt%, 0.9 Solidity

 The shape of Figure 69, Figure 70, and Figure 71 more closely resemble the skewed shape

of the initial graphs (Figure 39, Figure 41, Figure 43). The second peak at 60° is largely diminished,

the initial peak at 30° is much more defined, and there are generally less fibers above 60°.

Additionally, the means also seem smaller for data lost compared to Table 14. Because of the shape

74

of the histograms and the additional level of confidence that comes with the solidity property, this

increase in lost data can be treated less as an error and more as a statement concerning the binary

imagine process. The thresholding process is not perfect, rather it is less accurate than previously

thought. Comparing the solidity images to the original images, one can see that very solid fibers

are ignored. Artifacts introduced by thresholding and pre-processing are “contaminating”

otherwise normal fibers and preventing the program from recognizing them.

75

Table 17: Suppressing Objects Less Than 0.925 Solidity

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 24968 59.73 45.96 33.46 31.45 12.48

30 51080 15858 68.95 47.70 34.51 32.09 19.77

40 60816 26640 56.20 46.43 35.40 26.96 7.35

Figure 72: 20 wt%, 0.925 Solidity

76

Figure 73: 30 wt%, 0.925 Solidity

Figure 74: 40 wt%, 0.925 Solidity

Further solidity filtering enhances the shape of the plots, as seen in Figure 72, Figure 73,

and Figure 74. Beyond the positive changes to the shape of the graph, Table 17 and the new images

show that the increased solidity requirements are too restrictive and are eliminating too much

77

pertinent data: almost no fibers were visible as solidity was increased above 0.95. Despite the

shape of the graph, there are still many small artifacts that bypass the area filtration requirement

yet are too solid to be omitted by the solidity requirement. In the future, it is likely that a

combination of the minor axis and solidity properties will be used to properly omit data.

Continuing forward, the image pre-processing must be revisited. Trying to solve the problem

solely with data omission has shown multiple times that the thresholding process and other image

processing techniques need refined to preserve as much of the original data as possible.

Comparing to the Original Study

 When changing the image processing techniques used to create binary images, smaller sets

of data were focused. Specifically, the sample sets used by Hollinger et al. were analyzed.

Recorded for these sample sets are the number of fibers found in each image by Hollinger et al.

As mentioned previously, finding the correct processing methods, input requirements and rules for

these methods, and the order in which to apply each method is challenging. With a large set of

data, one can easily make hundreds of changes and feel as though none of them modified the

results. The best way to refine pre-processing techniques is to change only one variable at a time

and carefully observe the impact of the change on a small set of data. After understanding how the

change affects the data on a small scope, only then can the change be applied to a large set of data

and modified further.

 These changes required many, many iterations. Please understand that not every step could

be recorded or described in-depth, or the thesis would never be published. Chapters 8 and 9 serve

as a summary of the many different techniques used and eventually which techniques produced

78

fair results. The process and results could only be verified on the 20 wt% samples. For

completeness, the results for the same process applied to the 30 and 40 wt% samples are included

as well.

79

Chapter 8 : REVISIONS TO IMAGE PROCESSIN CODE AND FINAL RESULTS

Binary Imaging Technique: Constant Threshold, Adaptive Thresholding

 Earlier, Figure 11 and the surrounding text described how imbinarize() used Otsu’s

method to maximize variance at the edges of objects to minimize the loss of data when creating a

binary image. Otsu’s method is robust and can be applied to most images with success, however,

it is not necessarily the fastest or most accurate solution for every image. Sometimes extra details

and artifacts are included when the binary image is created, which necessitates data omission and

inevitably causes errant data to skew results. When faced with the task of improving the

thresholding process, two methods seemed applicable.

 First, a constant threshold could be used for each set of data. Unlike Otsu’s method where

each image has a unique threshold value computed at runtime, the user would instead decide on

one threshold value that would apply to all images in one data set. An advantage to choosing a

constant threshold to apply to each image is that it is considerably faster than finding the optimal

threshold for each image. Additionally, a value can be picked to the convenience of the user. If the

user does not desire complex data omission techniques to be used, a more conservative threshold

can be chosen to eliminate artifacts. The downside to choosing a more conservative threshold that

works for each image is, of course, the data that is inevitably lost with a more conservative

threshold. Clustered images often suffer from the error shown in Figure 27; all the fibers are

considered one large fiber and ignored.

 Second, thresholds can be generated adaptively for each section of the image. When an

adaptive threshold is generated, a threshold is generated based on the local mean intensity in the

neighborhood of each pixel [35]. Such a technique uses much more computing power than simply

80

choosing a threshold for each image or applying Otsu’s method. However, adaptive thresholds

give much greater control over the quality of the binary image.

 Both methods require the user to have a certain understanding of the code and willingness

to modify any other preexisting image processing or data omission techniques to remove data.

Personally, I found choosing an adaptive threshold was easier. With a constant threshold, I

struggled to determine an exact threshold. Much of image processing is based off heuristics and

user satisfaction, but I could not tell the difference between thresholds or determine an optimal

threshold value. I found development to be much easier when the threshold had an empirical source

that could be explained and verified as more than a matter of personal preference. However, each

set of images used by Hollinger et al. were tested. Intensity values above 180 were found to

produce reliable results for all three data sets.

Eroding Images

 Figure 13 and surrounding text discussed opening and closing an image. Opening an image

was composed of an erosion and a dilation. Connected components were made smaller and then

made larger; the consequence of these transformations was that tiny, dark spaces were widened

and that the edges of any connected components appeared smoother and more solid (in the

understanding of the bwpropfilt() command for filtering by solidity). Opening the image alone is

rarely enough to separate clustered fibers. For clustered fibers and images full of clustered fibers,

an erosion and only an erosion would need to be used to separate fibers before other operations

could be used.

81

 Eroding an image is like any other morphological operation in MATLAB. A structuring

element must be designated [36]. A disk element was used to maintain as much of the original

shape of the fibers as possible, as practice found that small shapes were slightly distorted after

erosions. After certain morphological operations including erosion, wiener filtering was used to

smooth any jagged edges that may occur as a result.

Shelling Images

 For clustered fibers, one other technique was employed along with erosion to ensure

separation. Eroding the image multiple times or with larger structural elements produced deformed

fibers or fibers that were small enough to be mistaken for erroneous elements. The bwperim()

function was used to find foreground pixels on the perimeter of any connected components [37].

Because binary images are either black or white, the pixels on the perimeter can be easily set to

black.

Figure 75: Setting Perimeter Pixels to Black [38]

Figure 75 visualizes the explanation above. The perimeter of the image in question,

border, is saved in shell. The second line in the for-loop changes the found perimeter into black

pixels.

82

Excluding Elements on the Edge of the Image

 Finally, one last major change was made to the pre-processing code. In all the previously

mentioned images, there are fibers that lie on the edge of the field of view of the camera. These

fibers appear as extreme ellipses to the program.

Figure 76: Fibers on the Edge of the Image

 Figure 76 highlights some of these fibers with red circles. Fortunately, MATLAB has a

very convenient function for identifying and eliminating objects on the edge of images. The

command imclearborder() was used to eliminate fibers on the edge of the image [39].

83

Revised Code

Figure 77: Revised Image Processing

 After reading the image, transforming the image into an RGB image, and then transforming

the image into a grayscale image, the image was sharpened. The command imsharpen() provides

extra contrast about the edges of objects within the image. The command imsharpen() uses a

technique known as unsharp masking, where a blurry version of the same image is subtracted from

the original image, producing a clearer image [40].

 A binary image is formed from the sharpened image in the following line. A sensitivity of

0.75 was found to work especially well for clustered images over many different tests. The image

is then filtered for objects larger than 200 pixels in area (objects smaller than 200 pixels are

removed). The command bwareaopen() is deceptively named; the command does not truly erode

and dilate connected components, rather it acts in the same way as bwpropfilt() when filtering

objects by area [41]. The image is then eroded, shrinking the fibers. The image is eroded before

84

the borders of the image are cleared because before erosion many elements touch elements that

also touch the edge of the image and clearing the border would clear many relevant fibers. After

the border is cleared, the outer shell of each component is removed three times. Three was found

to be the number of iterations that provided the most clarity while also retaining the original shape

of the object. After removing the perimeter of each component, the holes within the image were

filled. Filling holes is important because fibers with holes in the center could fail solidity criteria

used later in the program. The binary image is then filtered by area and smoothed with a wiener

filter. The image is opened afterwards, also to smooth the fibers. Finally, the remaining fibers are

filtered by solidity. Although not pictured in Figure 77, the final image was filtered by minor axis

length to remove any artifacts or seriously deformed fibers.

85

Figure 78: Images Corresponding to "Montage" Command

Ignore the final blank square in Figure 78; montage() shows all the images in a row.

Because there is an odd number of images, there is one cell left blank. Each image can be compared

to the last to show which fibers were removed by the relevant command. This technique, when

compared to previous techniques, leads to some interesting conclusions.

86

Chapter 9 : FINAL RESULTS

Table 18: Statistics for New Image Processing Technique

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 62004 42152 32.02 45.96 36.33 23.41 18.43

30 51080 42723 16.36 47.70 35.09 30.46 9.84

40 60816 58402 3.97 46.43 42.07 9.85 24.46

 The code used to obtain the results in Table 18 is included in Appendix C: Final Code,

Comparison of Initial Methods to Final Methods. The new image processing technique eliminates

considerably less data while decreasing the mean angle significantly. To even get below 36°, data

omission alone was often over 50% of the data, as shown in Table 17. The new technique produces

impressive results for the 30-weight percent specimen, reducing a mere 16% of the data and

differing from the study results by only 10%. The 40-weight percent samples, however, behave

very strangely. Only 4% of the data was ignored, yet the percent difference between the program

mean and the manual study mean is the largest of Table 18 at 24%. The reduced number of ignored

data shows that the new technique preserves many more fibers than past techniques using the

summer code and data omission could. To gain a better understanding of the new techniques, the

new binary images must be viewed.

Previously, new image processing techniques had been compared to old image processing

techniques. The percent difference in fiber count between the two techniques is rather large, which

indicated that a technique omitted too much data. Example images like those shown above suggest

the new methodology is more accurate than the original, even though the number of fibers is lower.

Comparing these two techniques, especially over the scope of the entire population, does not allow

87

for direct conclusions. For example, comparing two data omission methods makes sense;

whichever omits less data and has means closer to the study means is a better technique. However,

comparing two entirely different techniques only by the number of fibers collected and the mean

angle fails to account for several confounding variables. One image processing technique could

allow for more artifacts to be counted as fibers in the new binary image. The artifacts could be

small and circular, which would ultimately decrease the mean. One technique could produce an

image that is very different than the original, but the data could imply that the image is more

accurate to the original study. A similar scenario could be causing the 40 wt% specimen to have

confusing results. Instead, the two techniques will be compared over the sample data set used by

Hollinger et al. This way, the exact number of fibers found by both image processing techniques

can be compared to the true number of fibers within an image. The binary images produced by

both techniques can also be compared visually to determine which methodology is more accurate

and further any errors in the new methodology.

Overview

Table 19: Statistics for Sample Image Sets

NiCF

Weight

Percent

Original

number of

fibers

Suppressed

Number of

fibers

Percent

Ignored

Data

Mean

Angle,

original

Mean Angle,

suppressed

Percent

Difference,

original to

suppressed

Percent

Difference,

program to

study

20 3822 2680 29.88 46.23 36.77 22.80 19.62

30 1683 1766 -4.93 46.81 35.87 26.46 12.03

40 3545 2987 15.74 46.45 42.63 8.57 25.76

 Overall, the results from the sample tend to accurately reflect the results shown in Table

18, which gives further credibility to the sampling used by Hollinger et al. to represent the

88

respective populations. The results from the samples match the results of the population, yet the

results from both do not match the results from the study shown in Table 8. Future versions of the

program may be able to use a small sample of the total images to achieve accurate results much

faster. Regardless, the sampling of images for the 30-weight percent, although having fewer

images than the others, is accurate to the results for the entire 30-weight percent population. The

30-weight percent population has a negative percent ignored data; the value is listed as negative to

indicate that the new image processing techniques outlined in Figure 77 found more data than the

modified summer code did.

89

20 Weight Percent

Table 20: Elements and Mean Angle Found for 20 wt% Sample Images

 Table 20 displays the number of elements found by the modified summer code (intended

to include as much data as possible), the number of elements found by the new image processing

code developed in the spring semester, the number of elements found by Hollinger et al. in the

manual study, and the mean angles for each of the three aforementioned entities. Generally, the

new image processing code finds fewer elements than the summer code and by the study. Despite

this, the mean angle for the new code is lower than that found by the summer code but is still

higher than the mean angle found by Hollinger et al. in most cases. Inspecting the binary images

formed by the new code, the program seems to continue to overestimate the angle of fibers. Fibers

Photo # elements (Summer) # Elements (New) # elements (Study) Mean Angle (Old) Mean Angle (New) Mean Angle (Study)

70 158 81 139 47.2521 34.2427 31.7

78 100 161 234 46.9125 37.2747 32.66

86 20 9 26 56.1095 44.542 31.31

94 100 158 279 38.5861 36.0593 26.95

102 182 64 45 46.0517 33.8573 26.42

156 81 61 64 42.1698 35.9982 26.7

164 132 69 90 44.8109 37.0089 26.93

172 132 40 144 44.1256 34.3855 26.07

184 205 50 91 49.0886 36.1745 26.1

192 100 48 67 45.3968 34.1714 25.6

242 106 75 96 43.1667 33.0503 26.56

250 160 145 229 47.811 38.2453 26.37

258 173 43 42 48.8433 40.8371 28.15

266 115 58 82 47.2682 38.1134 30.68

274 104 290 513 47.9851 32.5518 26.19

282 122 195 284 43.0411 37.5918 26.12

336 1 104 140 55.7002 36.5595 29.67

344 1 48 103 77.2056 36.6349 31.25

356 198 31 83 55.1417 38.0126 39.95

364 122 78 137 45.0455 38.2389 31.01

372 0 97 152 0 37.868 34.98

422 166 72 116 50.5443 43.6986 40.21

430 0 43 75 0 39.6694 39.87

438 124 23 76 48.1792 41.2674 34.06

446 113 98 134 47.9264 39.9466 32.71

454 152 75 118 47.341 40.4717 34.6

508 113 69 85 42.0552 37.7279 30.84

516 161 106 149 42.1748 33.6257 25.34

524 135 47 92 44.1541 36.6978 27.78

536 129 52 94 43.4788 35.8394 26.68

544 139 65 95 44.9449 33.9733 30.93

602 142 78 101 44.1121 41.5363 35.02

610 136 47 104 43.7432 38.6884 27.81

90

are slightly distended, perhaps by some of the morphological operations. Although clumping of

fibers is much less of an issue with the images formed by the new code, some fibers still suffer

from clumping or thresholding errors. These errors can be seen especially in clustered images.

Although many more fibers are found by the new code than the previous code, which often omitted

all the fibers in a clumped image as errant data, at best only half the fibers in clustered images are

found. Ignoring so many low-angled data points can skew the data higher. Additionally, many

fibers are omitted by the solidity and minor axis criterion because of these errors. The lack of extra

data points also contributes to the gap between the results of the new code and the manual study.

30 Weight Percent

Table 21: Elements and Mean Angle Found for 30 Weight % Sample Images

 Table 21 shows similar results to Table 20. The program finds fewer fibers than what a

human could find in a manual study in clustered images. Something to note about both data sets is

that the number of fibers found by the new code never exceeds the number of elements found in

the manual study. Inspection of the images supports the idea that the new code does not create

Photo # Elements (Summer) # Elements (New) # Elements (Study) Mean Angle (old) Mean Angle (New) Mean Angle (study)

51 167 108 251 46.9469 35.1271 26.24

59 149 73 112 44.8331 33.6794 26.26

105 137 99 171 43.0178 29.9741 19.3

113 169 83 145 47.5317 35.0901 32

121 145 77 191 43.4848 32.0518 24.46

133 123 90 128 44.7432 35.278 30.3

141 117 101 172 44.5781 33.7255 28.28

191 12 94 158 58.6047 34.7167 31.64

199 153 92 148 44.503 35.415 21.42

207 131 48 101 50.6728 38.6944 33.91

215 134 70 110 54.8063 64.038 66.23

223 0 43 79 0 45.5768 40.88

277 108 196 289 46.843 32.6826 25.85

285 6 51 88 56.1465 34.9123 27.26

297 112 121 248 47.7205 42.1478 41.66

305 6 74 121 55.4453 34.1468 29.36

313 14 346 868 52.7962 33.3263 18.89

91

significant quantities of errant data from thresholding errors, as can be seen in images and in data

from the summer code. The new code also finds more data points overall than the summer code

and produces a lower mean angle. This observation speaks partially to the success of the new code,

but also to the shortcomings of the old code. Even by reviewing the images, it is unclear whether

the old model is a poor fit for the data or if the new model is an excellent fit for the data. The new

code appears to find fewer of the available points (according to the study) in the 30 weight percent

images than with the 20 weight percent images, so the data likely does not favor the new code as

much as it rejects the old code. Regardless, note that the model has varying levels of effectiveness

between populations. Eventually, the goal for the program is to accurately read any data regardless

of differences in the quality of photos or in the method in which images are captured. Despite this,

certain variations in image quality between populations may be unavoidable. Future code should

be written to incorporate these differences. Machine learning or perhaps more advanced image

processing techniques may be used to make sure all images are of the same quality when analyzed

by the program.

92

Figure 79: New Code Angle Distribution from Sample Images of 30 wt% Cross Section

 Figure 79 shows the spread of the data. Compared to Figure 41, these figures are very

similar. Figure 79 is shifted about 5 degrees to the right, which is expected given that the mean of

the program-assessed data is about 5 degrees higher than the mean from the manual study. The

bins do not align exactly between the two graphs, especially with the bins housing fibers angled

between 40 and 50 degrees. Such a shift is likely a continuing issue with the program, given that

the sample mean aligns so closely with the population mean. A histogram of the entire population

could provide some insights, however.

93

Figure 80: New Code Angle Distribution from Population Images of 30 wt% Cross Section

Figure 80 is unsurprisingly very similar to Figure 79. The trend exists throughout the

population, not only in the sample image.

94

40 Weight Percent

Table 22: Elements and Mean Angle Found for 40 wt% Sample Images

 Table 22 shows the results of the final sample image set. Generally, the results follow those

seen in the previous tables; the new image processing code predicts lower angles while finding

slightly less fibers. In most clustered or streaky images, image 232 or 544 for example, the program

struggles to find more fibers. Both images and their respective binary images can be seen in Figure

81, Figure 82, and Figure 83 and Figure 84, Figure 85, and Figure 86, respectively.

Photo # Elements (Summer) # Elements (New) # Elements (Study) Mean Angle (Summer) Mean angle (New) Mean Angle (Study)

48 136 84 115 41.0541 37.3265 23.54

56 154 106 118 39.7999 37.5081 23.13

112 129 156 290 45.5291 38.4804 23.37

120 146 110 161 44.7121 41.2781 22.87

132 155 100 107 37.7594 34.7226 25.62

140 119 109 208 46.0757 41.126 34.11

148 131 210 419 44.8115 35.1807 25.5

200 110 67 145 57.8683 60.8283 63.9

208 136 153 222 43.9636 39.1617 31.64

216 152 65 100 39.2464 33.6733 21.34

224 49 221 620 48.3162 39.6825 33.44

232 50 247 429 54.3299 51.0116 47.65

288 127 25 36 54.257 53.518 58.74

296 135 29 108 48.565 46.4128 31.83

308 12 170 564 61.7561 39.079 23.23

316 131 32 35 60.8279 51.2143 61.7

368 65 109 57 60.2239 66.4283 64.98

376 153 86 70 45.7249 40.2196 33.24

384 123 70 63 41.777 36.9928 28.97

392 141 67 60 49.298 40.7125 32.79

400 125 56 49 56.4454 57.4244 64.68

456 106 39 51 57.6391 54.5321 58.4

464 16 60 48 54.8596 42.267 38.36

476 139 54 67 38.6671 35.418 25.44

484 118 144 117 53.0571 57.045 56

492 163 146 119 45.9523 38.3296 27.02

544 8 18 39 54.8291 50.685 47.51

552 121 54 87 42.2876 36.0327 31.1

560 133 44 91 37.2017 31.2153 23.07

568 132 74 117 43.8072 39.0239 22.66

576 130 82 138 41.1284 36.8558 22.56

95

Figure 81: Image 232, 40 wt%

Figure 82: Image 232, 40 wt%, Summer Code

96

Figure 83: Image 232, 40 wt%, New Code

Figure 84: Image 544, 40 wt%

97

Figure 85: Image 544, 40 wt%, Summer Code

Figure 86: Image 544, 40 wt%, New Code

Table 22 also shows that the new code finds more fibers in images 484 and 492 than were

found in the original study.

98

Figure 87: Image 484, 40 wt %

Figure 88: Image 484, 40 wt %, Counted Fibers

99

Figure 89: Image 484, 40 wt %, New Code

Figure 87 shows many fibers, but many of them appear to have broken or eroded edges.

Figure 88 depicts the same image but with fibers that I would have liked the program to consider.

I have almost as many fibers as the program, but still more than Hollinger et al. Hollinger et al.

likely saw many of these fibers as incomplete and broken and did not measure them as a result.

Many of these fibers that closely overlap with each other, when separated, have pieces missing

from the overlap. However, these fibers still passed the solidity filtering implemented in the code.

For the 40-weight percent population, where very little data is eliminated, the solidity requirement

could possibly be made more stringent. Whatever modification is eventually made, the final binary

images must be consulted to make sure that the program is making a fair interpretation of the data;

the means could match the study at the cost of eliminating significant quantities of pertinent data.

100

Chapter 10 : FINAL CONCLUSIONS AND EXTENSIONS OF THE PROJECT

 Although the program is currently impressive, it still cannot properly estimate the true

means of each population. Future developers should consider implementing machine learning into

the program to optimize the use of several different image processing techniques at the same time

to properly identify fibers.

 Future developers should also consider the speed and efficiency of the program. Much of

the past year and a half of development was dedicated to improving the accuracy of the program.

There is little discussion dedicated to the speed of the program. For reference, analyzing one

population of over 500 images requires approximately 20 minutes. If using the program that

compares one set of binary images to another, the program requires upwards of 40 minutes to

obtain results (the program creates two sets of binary images, hence doubling the required time).

The program requires roughly 5 minutes to analyze a sample set of 30 images, up to 10 minutes if

the code for comparing images is run. Another version of the code that does not save images or

write to a .csv file was developed; this program analyzed and compared two image processing

techniques over an entire population set of more than 500 images in less than 10 minutes. While

some of these results are promising, the runtime will only increase as more features are added to

the code. Almost no effort was made to optimize the code, so there are many ways to improve.

Future projects could also implement multithreading or multiprocessing elements to decrease

program runtime for large sets of images.

 The image processing code can and should be modified to analyze factors other than fiber

angle. Figure 3 shows many variables that could be verified by the program in addition to finding

fiber angle. The program could also identify voids of plastic in the dog bone samples as well.

Darker or lighter plastic surrounding the fibers may indicate a certain density of plastic. Knowing

101

factors about not only the fibers but the nylon surrounding them could be used to develop an

understanding of how the composite fills the mold. Further, the data could be used in CFD

applications like ANSYS Polyflow to predict the average fiber angle and the conductivity of the

specimen before the sample is even manufactured. The applications of image processing in quality

engineering are truly limitless.

102

103

Appendix A: Code from Summer Development

%{
Written by Max Myers under Dr. Hollinger
6/20/2022 - Image processing for determining orientation of NiCF fibers
Made for processing the small .png files, used to build .tif analysis
%}
% start with general pre-processing
s4 = imread("S4_9_02.png"); % import image
s4 = s4(:,:,1:3); % extract only channels 1,2,3
S4gs = im2gray(s4); % convert to grayscale image
s4adj = imadjust(s4gs); % adjust for contrast
s4smooth = wiener2(s4adj, 5); % remove noise
S4bw = imbinarize(S4gs); % convert to binary image
SE = strel("disk", 5); % filter for opening image
s4open = imopen(s4bw, SE); % open image, connect dark areas and remove small

bright areas
s4close = imclose(s4open, SE);
S1bw = imfill(s4close, "holes"); % fill holes, may be necessary
% connect objects, eliminate tiny marks, etc.
ellipses = bwpropfilt(S1bw, "Area", [1000 10000]); % only show objects within

this pixel area
% separate overlapping objects
% find properties
props = regionprops(ellipses, 'Area', 'Centroi', 'MajorAxisLength',

'MinorAxisLength');
allAreas = [props.Area];
majorAxisLength = [props.MajorAxisLength];
minorAxisLength = [props.MinorAxisLength];
sum = 0;
% display major / minor axis on each image
figure
imshow(ellipses);
axis('on', 'image');
impixelinfo;
hold on;
centroids = vertcat(props.Centroid);

for i = 1:length(props)
 x = props(i).Centroid(1);
 y = props(i).Centroid(2);
 a = props(i).MajorAxisLength;
 b = props(i).MinorAxisLength;
 plot(x, y, 'r+', 'LineWidth', 2, 'MarkerSize', 15);
 str = sprintf(' (%.1f, %.1f)', a, b);
 text(x, y, str, 'Color', 'r', 'FontSize', 6, 'FontWeight', 'bold');
end

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]);

for i = 1:numel(majorAxisLength)
 angle = acosd(minorAxisLength(i) / majorAxisLength(i));
 sum = sum + angle;
end

numel(majorAxisLength)
meanAngle = sum / numel(majorAxisLength)

104

Figure 90: Changes to Image From Each Line of Pre-Processing

105

Appendix B: Additional Heat Maps

Figure 91: 30 wt% Angle Heat Map

Figure 92: 30 wt% Error Heat Map

106

Figure 93: 40 wt% Angle Heat Map

Figure 94: 40 wt% Error Heat Map

107

Appendix C: Final Code, Comparison of Initial Methods to Final Methods

108

109

110

References

[1] F. C. &. H. E. Association, "Fuel Cell Basics," Fuel Cell & Hydrogen Energy Association, 2022.

[Online]. Available: https://www.fchea.org/fuelcells. [Accessed 29 May 2023].

[2] New Age Metals Inc, "PGM-Based Fuel Cells: Applications for Industry," New Age Metals Inc,

2021. [Online]. Available: https://newagemetals.com/pgm-based-fuel-cells-

applications-for-industry/. [Accessed 29 May 2023].

[3] DOE Staff, "Hydrogen Fuel Cells," November 2008. [Online]. Available:

https://www.nrc.gov/docs/ML1002/ML100280723.pdf. [Accessed 29 May 2023].

[4] DOE Staff, "Hydrogen and Fuel Cell Technologies Office," Department of Energy, 2022. [Online].

Available: https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-

technologies-office. [Accessed 29 May 2023].

[5] R. Zameroski, C. Krypta, B. Young, S. Sanei and A. Hollinger, "Mechanical and electrical

properties of injection-molded mwcnt-reinforced polyamide 66 hybrid composites,"

Journal of Composites Science, vol. 177, p. 4, 2020.

[6] C. Krypta, B. Young, A. Santamaria and A. Hollinger, "Multiwalled Carbon Nanotube-Filled

Polymer Composites for Direct Injection Molding of Bipolar Plates," ECS

Transactions, pp. 109,199, 2022.

[7] Texas Injection Molding Staff, "Plastic Injection Molding With Nylon (Polyamide)," Texas

Injection Molding, 2023. [Online]. Available:

https://texasinjectionmolding.com/nylon-pa-injection-

molding/#:~:text=Nylon%20is%20easy%20to%20process,that%20demonstrate%2

0many%20attractive%20properties.. [Accessed 29 May 2023].

111

[8] "Four-terminal sensing," Wikipedia, 13 December 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Four-terminal_sensing. [Accessed 29 May 2023].

[9] M. Weber and M. Kamal, "Estimation of the volume resistivity of electrically conductive

composites," Polymer composites, pp. 711-725, 1997.

[10] Teijin Carbon Europe GmbH, "Teijin Carbon Fiber Business," [Online]. Available:

https://www.teijincarbon.com/products/short-fibers/chopped-fibers. [Accessed 5

July 2023].

[11] carattinim, "Classifying Conic Sections Notes," Geogebra, 23 May 2017. [Online]. Available:

https://www.geogebra.org/m/tavYVNth. [Accessed 29 May 2023].

[12] Saylor Academy, "Ellipses," Saylor Academey, 2012. [Online]. Available:

https://saylordotorg.github.io/text_intermediate-algebra/s11-03-ellipses.html.

[Accessed 29 May 2023].

[13] S. Patel, "Best Image Processing Tools used in Machine Learning," Kaggle, 2021. [Online].

Available: https://www.kaggle.com/general/212054. [Accessed 29 May 2023].

[14] The Mathworks, Inc, "Image Processing Toolbox," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/index.html?s_tid=hc_product_card.

[Accessed 29 May 2023].

[15] The Mathworks, Inc., "Image Processing Onramp," Mathworks, 2023. [Online]. Available:

https://matlabacademy.mathworks.com/details/image-processing-

onramp/imageprocessing. [Accessed 29 May 2023].

[16] The Mathworks, Inc., "Image Filtering and Enhancement," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/image-types-in-the-toolbox.html.

[Accessed 29 May 2023].

112

[17] The Mathworks, Inc., "im2gray," Mathwokrs, 2023. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/im2gray.html. [Accessed 29 May

2023].

[18] The Mathworks, Inc., "wiener2," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/wiener2.html#d124e325808.

[Accessed 29 May 2023].

[19] The Mathworks, Inc., "imbinarize," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/imbinarize.html#bu1w0rc-1-method.

[Accessed 29 May 2023].

[20] The Mathworks, Inc., "strel," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/strel.html#d124e304921. [Accessed

29 May 2023].

[21] The Mathworks, Inc., "imclose," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/imclose.html. [Accessed 29 May

2023].

[22] R. Fisher, S. Perkins, A. Walker and E. Wolfart, "Erosion," W3C Markup Validation Service, 2003.

[Online]. Available: https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm.

[Accessed 29 May 2023].

[23] R. Fisher, S. Perkins, A. Walker and E. Wolfart, "Dilation," W3C Markup Validation Service, 2003.

[Online]. Available: https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm.

[Accessed 29 May 2023].

[24] The Mathworks, Inc., "imclose," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/imclose.html. [Accessed 29 May

2023].

113

[25] The Mathworks, Inc., "imfill," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/imfill.html. [Accessed 29 May 2023].

[26] The Mathworks, Inc., "bwpropfilt," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/bwpropfilt.html. [Accessed 29 May

2023].

[27] The Mathworks, Inc., "regionprops," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/regionprops.html. [Accessed 29 May

2023].

[28] The Mathworks, Inc., "imread," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/imread.html. [Accessed 29 May

2023].

[29] The Mathworks, Inc., "readall," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/matlab.io.datastore.readall.html.

[Accessed 29 May 2023].

[30] The Mathworks, Inc., "readimage," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/matlab.io.datastore.imagedatastore.re

adimage.html. [Accessed 29 May 2023].

[31] W. W. LaMorte, "Central Limit Theorem," Boston University School of Public Health, 24 July

2017. [Online]. Available: https://sphweb.bumc.bu.edu/otlt/mph-

modules/bs/bs704_probability/BS704_Probability12.html#:~:text=The%20central

%20limit%20theorem%20states,will%20be%20approximately%20normally%20dis

tributed.. [Accessed 29 May 2023].

[32] A. Ganti, "Central Limit Theorem (CLT): Definition and Key Characteristics," Investopedia, 10

March 2023. [Online]. Available:

114

https://www.investopedia.com/terms/c/central_limit_theorem.asp#:~:text=Key%20

Takeaways,for%20the%20CLT%20to%20hold.. [Accessed 29 May 2023].

[33] M. Sloggatt, "The Elegant Ellipse," Kaz Roadshow, 30 March 2012. [Online]. Available:

https://www.thisiscarpentry.com/2012/03/30/the-elegant-ellipse/. [Accessed 29

May 2023].

[34] The Mathworks, Inc., "solidity concept in labeled components," Mathorks, 14 August 2012.

[Online]. Available: https://www.mathworks.com/matlabcentral/answers/45999-

solidity-concept-in-labeled-components. [Accessed 29 May 2023].

[35] The Mathworks, Inc., "adaptthresh," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/adaptthresh.html#namevaluepairargu

ments. [Accessed 29 May 2023].

[36] The Mathworks, Inc., "imerode," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/imerode.html. [Accessed 29 May

2023].

[37] The Mathworks, Inc., "bwperim," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/bwperim.html. [Accessed 29 May

2023].

[38] The Mathworks, Inc., "Is it possible to erode only the outermost layer of a circle?," Mathworks, 31

May 2022. [Online]. Available:

https://www.mathworks.com/matlabcentral/answers/1730775-is-it-possible-to-

erode-only-the-outermost-layer-of-a-circle. [Accessed 29 May 2023].

[39] The Mathworks, Inc., "imclearborder," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/imclearborder.html. [Accessed 29

May 2023].

115

[40] The Mathworks, Inc., "imsharpen," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/imsharpen.html. [Accessed 29 May

2023].

[41] The Mathworks, Inc., "bwareaopen," Mathworks, 2023. [Online]. Available:

https://www.mathworks.com/help/images/ref/bwareaopen.html. [Accessed 29 May

2023].

ACADEMIC VITA

Summary:

 Mechanical engineering Schreyer Honors Scholar applying for full-time position while

seeking opportunities for learning and continued growth.

Education and Academic Honors:

Mechanical Engineering Bachelor of Science, French and Math minors - Graduating 8/2023

Pennsylvania State University: The Behrend College

• Schreyer Honors College, Fall of 2020

• Tau Beta Pi, Fall of 2022

Engineering Experience:

Senior Design Project: Tennis Prosthesis (September 2022 - April 2023)

• Designing and manufacturing a body-powered prosthesis to help serve in tennis matches

Schreyer Honors College Undergraduate Thesis (May 2022 - August 2023)

• Image processing in MATLAB to improve manufacturing of hydrogen fuel cells

Wabtec Corporation Co-op (August - November 2022, January - April 2023)

• Working in safety and compliance for marine diesel engines

• Internally audited documents required for type approvals

Wabtec Corporation Internship (May - July 2022)

• Created an Excel VBA tool to predict the cost of a project during the tender phase

• Communicated with managers of product lines to revise work breakdown structures

Behrend Undergraduate Computer Engineering Research (May - August 2021)

• $4500 to independently develop an IoT system that quickly locates faults in power grids

Lemelson-MIT InvenTeam Grant Recipient (2018)

• Received $10,000 to design a bluetooth stethoscope and self-cleaning carrying case for

clinical settings

Work Experience:

Tutor at Behrend Learning Resource Center (2020-present)

• Tutor math, physics, computer science, engineering, and French

Engineering Dynamics Teaching Assistant (2021)

• Fairly award partial credit, help students understand errors, analyze student performance

Lifeguard (2015-2022, seasonal)

• Red Cross Certified Lifeguard, ensured safety of patrons and taught swim lessons

Skills and Languages:

CAD Modeling/Simulation

• FDM/SLA 3D printing, Autodesk Inventor, ANSYS Mechanical and Fluent, GRANTA,

ImageJ, SolidWorks

Programming Languages/Computer Skills

• MATLAB, C++, Python, VBA, Microsoft Office, Google Suite,Ubuntu/Debian Linux

Languages

• English (native), French (conversant)

