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Abstract

Glauert’s rotor disk theory serves as the basis for wind turbine aerodynamics research, guiding
the design and development of optimum rotors. The long-established objective function in turbine
optimization is the maximization of power extraction from the wind. This thesis is an amend-
ment to Glauert’s original work on the optimum rotor disk solution, and it consists of analytical
derivations for power, thrust, and bending moment coefficients (CP , CT , CBe). Additionally, an
alternate mathematical approach is taken towards the optimization problem by means of calculus
of variations. Glauert’s original distributions for axial and angular induction factors (a and a′) are
recovered through the course of this amended work. Also included in this amendment are deriva-
tions for the exact integrals defining the thrust and bending moment coefficients as functions of
tip speed ratio (λ). An interesting finding pertaining to the convergence behavior for such coeffi-
cients is revealed—the thrust and bending moment coefficients have a finite, non-zero value as the
tip speed ratio approaches 0, which is proven analytically using L’Hôpital’s theorem. Indeed, the
limiting case for the thrust and bending moment coefficients of the actuator disk are 0.75 and 0.50,
respectively.
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1.1 Overview
The transition towards clean energy sources has gained significant traction globally, with wind

energy being a primary contributor to sustainable energy generation void of carbon emissions. Just
in the United States, wind power is the fourth-largest source of electricity generation, carrying
the ability to provide clean, cost-competitive power to over 46 million American homes [3]. The
Intergovernmental Panel on Climate Change (IPCC) recognizes that wind energy is a publicly fa-
vored climate change mitigation effort that has become increasingly cost effective, and therefore
supports its deployment globally [4]. Goal 7 under the 2030 Agenda for Sustainable Development
adopted by the United Nations General Assembly calls for access to affordable, reliable, sustain-
able, and modern energy amongst society as a whole [5]. Ongoing investments into wind turbine
development and optimization efforts are imperative in order to keep the commitment to minimiz-
ing anthropogenic, or human inflicted, climate change. The functionality of wind turbines can be
studied using foundational aerodynamic principles, which of course are coupled with experimental
and computational methods in wind energy research today.

1.2 History of Wind Turbines
Up until the late nineteenth century, windmills were primarily used as mechanical power

sources for purposes such as sawing wood, grinding grain, and lifting water from wells. James
Blyth of Scotland contributed to the development of modern vertical and horizontal-axis wind tur-
bines in 1887, fusing together the windmill with an electric generator to create a ”wind engine.” His
wind turbine consisted of a tripod design, supporting 4 meter blades carrying canvas sails. Shortly
after Blyth’s contributions to wind turbine technology, American innovator Charles Brush decided
to build the first turbine North America had seen at 18 meters tall with blade lengths exceeding 17
meters [6].

Figure 1.1: Blyth’s wind turbine powering his holiday home in Marykirk, Scotland in 1891.

In 1891, European inventor Poul la Cour was responsible for building the first wind turbine in
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Denmark. La Cour undertook years of blade research through wind tunnel testing, and La Cour
was able to prove the direct relationships between power, wind speed, and swept blade area. His
work had a lasting impact on Denmarks’ electricity generation capabilities, as by 1910, the nation
had over 100 wind turbines in operation for agricultural use [6].

Figure 1.2: Educationalist la Cour in front of his experimental turbines in 1899 [1].

Throughout the 20th century, there continued to be stable wind turbine developments across
the globe. Some notable structures were the 100 kW Balaclava wind turbine of 1931, the Smith-
Putnam first 1 MW turbine of 1941, the 200 kW Gedser turbine of 1956, as well as the 1.1 MW
Electricité de France turbine of 1963. It was not until the exponential rise of oil prices in the early
1970’s that wind energy production experienced a steep interest by investors [7].

There have been trends in wind turbine development to produce bigger wind turbines—in terms
of both hub height and blade diameter. In regard to hub height, taller turbine towers have the ability
to capture greater amounts of energy, as increased altitudes generally result in increased winds. It
is projected that the average hub height for offshore wind turbines in the United States will reach
150 meters by 2035 [8].

The relationship between power generated by a turbine and its rotor diameter is as follows:
P ∝ D2. As expected, future turbine design aims for larger rotor diameters in order for the blades
to sweep more area, hence producing more electricity. According to experts, it is anticipated that
rotor diameters will face rapid growth—at 174 meters for onshore turbines and 250 meters for
offshore turbines [9]. Figure 1.3 captures the growth of rotor diameters from the operational year
of 1990 to 2015. As observed, in just 25 years, wind turbine blade diameters have grown by
approximately 263%.
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Figure 1.3: The evolution of wind turbine blade diameters over the last few decades [2].

1.3 Thesis Outline
This undergraduate thesis is structured into 4 chapters. Chapter 1 gives a high-level overview

on wind energy—touching on global sustainability initiatives, the history of wind turbines, and a
fundamental aerodynamics review. Chapter 2 discusses different wind turbine aerodynamic models
capturing optimum performance, while delving further into Glauert’s rotor disk theory. Chapter
3 serves as an amendment to Glauert’s work, presenting an analytical derivation for the exact
thrust and bending moment coefficients associated with Glauert’s optimum model. Additionally,
this chapter includes an alternate mathematical approach to recover Glauert’s optimum induction
factor distributions by means of calculus of variation. The optimization problem is taken one step
further to account for the complete integrand within the definition of power coefficient, and those
results are then compared to Glauert’s existing model. Finally, Chapter 4 concludes this thesis
work and proposes next steps. This work has also been submitted to the AIAA Regional Student
Conference.

1.4 Basics of Momentum Theory
As a brief introduction, momentum theory allows for simplifications to be applied to the com-

plex systems of wind turbines with the ultimate goal of better understanding operating conditions in
time-varying, three dimensional, and turbulent flow conditions [10]. This theory is built on frame-
work set by the actuator disk model, and is reformulated within the rotor disk model to account for
angular momentum and kinetic energy added from wake rotation [11].

1.4.1 Actuator Disk Theory
A classical method of analyzing wind turbines is through a streamtube representation. Consider

an axi-symmetric streamtube which encompasses a wind turbine, as well as the axial wind passing
through it, as portrayed in Fig. 1.4. The cross section at the rotor is modeled as the actuator disk.
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The actuator disk is a circular, infinitely thin area inside which the turbine’s blades rotate. As a
reference, section 1 represents the entrance of the streamtube, section 2 represents the actuator
disk, and section 3 represents the exit plane of the streamtube.

Figure 1.4: Energy extracting axi-symmetric streamtube of a wind turbine.

Within the streamtube, mass, momentum, and energy flux are conserved. The uniform, one-
dimensional velocity that initially enters the streamtube is slowly extracted in the form of mo-
mentum and energy by the turbine; as a result, velocity decreases past the actuator disk and the
streamtube area increases as a consequence of mass conservation. Therefore, the mass flow rate,
ṁ, is equal along the entire streamtube, including at the entrance, actuator disk, and exit plane as
depicted by Eq. (1.1).

ṁ1 = ṁ2 = ṁ3 (1.1)

See Fig. 1.5 for a cross-sectional view of the streamtube. The mass flow rate can be defined
by the fluid density ρ, velocity V , and actuator disk area A, as shown in Eq. (1.2). With the
assumption of incompressible flow under the actuator disk model, note that the fluid density is
constant throughout the streamtube.

ρV1A1 = ρV2A2 = ρV3A3 (1.2)

There exists a pressure jump, ∆p, across the actuator disk area, A, which causes a thrust force,
T in the streamwise direction. This external force on the streamtube is exactly balanced by the
axial momentum of the control volume, as equated in Eq. (1.3).

T = ∆pA = ṁ(V1 − V3) (1.3)

Substituting the mass flow rate relation for ṁ yields the following relationship present in Eq.
(1.4).

∆pA = ρV2A(V1 − V3) (1.4)
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Figure 1.5: Wind speed distribution inside axi-symmetric streamtube of a wind turbine.

To define the pressure jump present at the actuator disk in terms of V1 and V3, Bernoulli’s prin-
ciple must be applied. Since there exists a discontinuity in pressure at the actuator disk, Bernoulli’s
equation must be applied both upstream and downstream of the actuator disk. See Eq. (1.5) for the
upstream application, and see Eq. (1.6) for the downstream application.

p0 +
1

2
ρV 2

1 = p+
1

2
ρV 2

2 (1.5)

(p−∆p) +
1

2
ρV 2

2 = p0 +
1

2
ρV 2

3 (1.6)

Subtracting Eq. (1.5) by Eq. (1.6) yields a more simplified expression for the pressure jump
present at the actuator disk, as depicted by Eq. (1.7) [10].

∆p =
1

2
ρ(V 2

1 − V 2
3 ) (1.7)

1.4.2 Rotor Disk Theory
Now, there is an added dimension to the previous streamtube analysis—wake rotation—as de-

picted in Fig. 1.6. A rotor disk model is introduced, accounting for wake rotation resulting from
the angular momentum and kinetic energy of the rotating disk at an angular speed, Ω. The wake an-
gular velocity component, ω, results from rotor torque in the circumferential direction. It impacts
the overall efficiency of the turbine, thus also causing a decrease in the maximum attainable power
coefficient. The assumptions of the rotor disk model are as follows: one-dimensional, steady, in-
compressible, inviscid and irrotational flow.
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Figure 1.6: Energy extracting axi-symmetric streamtube of a wind turbine including wake rotation.

Now, the wake rotation must be integrated to accurately portray the pressure jump across the
rotor disk. In this case, the energy relation should be applied both upstream and downstream of the
rotor disk with the assumption that ∆p is solely used to generate power.

The upstream energy equation is as follows in Eq. (1.8). Again, Ω is the rotor disk’s angular
speed and r is the radial location of the disk’s annulus.

p+
1

2
ρ(Ωr)2 (1.8)

The downstream energy equation is presented in Eq. (1.9).

(p−∆p) +
1

2
ρ[(Ω + ω)r]2 (1.9)

Setting the two equations from above equal to each other results in a new ∆p equation repre-
sentative of rotor disk theory, as shown in Eq. (1.10) [10].

∆p = ρ(Ω +
1

2
ω)ωr2 = 2ρ(1 +

ω

2Ω
)
ω

2Ω
Ω2r2 (1.10)

These relations for the pressure jump based on momentum theory will return in the subsequent
section, serving as useful groundwork for the rest of this thesis.

1.4.3 Non-Dimensional Induction Factors
It is common practice to use non-dimensional coefficients in engineering analysis, allowing for

various test cases to be compared at once. In wind turbine aerodynamics, there are two essential
non-dimensional coefficients which define the axial velocity and wake rotation, respectively. The
axial induction factor, a, can be used to represent the reduction in wind speed at the actuator disk
in comparison to the freestream velocity. This dimensionless coefficient is defined in Eq. (1.11),
where V1 is the wind speed at the entrance plane and V2 is the speed at the rotor disk.
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a = 1− V2

V1

(1.11)

The angular induction factor, a′, relates the wake angular velocity component to its angular
speed, as shown in Eq. (1.12) [10].

a′ =
ω

2Ω
(1.12)

Equation (1.7) is rewritten in terms of the axial induction factor, a, below in Eq. (1.13).

∆p = 2ρV 2
0 a(1− a) (1.13)

Similarly, Eq. (1.10) is rewritten in terms of both a and a′ as shown in Eq. (1.14).

∆p = 2ρV 2
0 a

′(1 + a′)λ2
r (1.14)

With momentum theory applied, a relation between both induction factors can be represented
by Eq. (1.15). For future reference, this equation will be referred to as the ‘1st Relation.’

λ2
r =

a(1− a)

a′(1 + a′)
(1.15)
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Chapter 2

Optimum Wind Turbine Rotor
Performance Accounting for Wake Rotation
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2.1 Glauert’s Optimum Solution
Rotor power, P , is a function of fluid density, freestream velocity, disk area, and the dimen-

sionless power coefficient, CP as shown in Eq. (2.1).

P =
1

2
ρV 3

0 ACP (2.1)

Through rotor disk theory, an exact equation for CP is determined in terms of tip speed ratio,
axial and angular induction factors, as shown in Eq. (2.2). Betz’s law, computed by physicist
Albert Betz, revealed that the maximum power available to be extracted from the wind was 16

27
, or

approximately 59.3% [12]; this is the limit case for high λ’s in Eq. (2.2).

CP =
8

λ2

∫ λ

0

a′(1− a)λ3
r dλr (2.2)

In 1935, aerodynamicist Hermann Glauert approached the optimization problem of maximiz-
ing CP using the objective function f as defined in Eq. (2.3). Glauert’s decision to focus on this
truncated form of f , rather than the complete term of a′(1 − a)λ3

r within Eq. (2.2), stems from
his belief that the disk annuli operate independently from one another—even though a′(1 − a) is
incomplete according to the definition of CP [13].

This expression of interest has been defined by the function f in Eq. (2.3). In order to determine
the function’s maximum, one must differentiate both sides of the equation with respect to the axial
induction factor, a. Equation (2.4) must be set equal to 0 in order to find the appropriate stationary
point.

f = a′(1− a) (2.3)

df

da
=

da′

da
(1− a)− a′ = 0 (2.4)

Simplifying the equation above yields Eq. (2.5), a condition which must be satisfied at maxi-
mum CP .

da′

da
=

a′

1− a
(2.5)

Returning back to the ‘1st Relation’ presented in Eq. (1.15), a derivative with respect to a is
taken on both left and right sides of the equation, yielding Eq. (2.6).

1− 2a = λ2
r(1 + 2a′)

da′

da
(2.6)

For the λ2
r term, Eq. (1.15) is substituted in, and for the differential term, Eq. (2.5) is substituted

in.

1 + a′

1 + 2a′
=

a

1− 2a
(2.7)
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The result of some algebraic rearranging is the ‘2nd Relation’, which has been shown in Eq.
(2.8).

a′ =
1− 3a

4a− 1
(2.8)

In this relation, the angular induction factor, a′, is defined by solely the axial induction factor.
Therefore, the solution for a′ can be substituted back into the ‘1st Relation’ to yield a relationship
between λr and a:

λ2
r =

(1− a)(1− 4a)2

1− 3a
(2.9)

Equation (2.9) can be rearranged into a third-degree polynomial representing the optimal axial
induction factors across the rotor disk as a function of local tip speed ratios.

16a3 − 24a2 + (9− 3λ2
r)a+ (λ2

r − 1) = 0 (2.10)

Using the Newton–Raphson algorithm, displayed in Eq. (2.11), a solution for the optimum
axial induction factor, a, can be determined for a range of λr values.

ai+1 = ai −
f(ai)

f ′(ai)
(2.11)

To begin using this root-finding method, an initial guess is set based on the operating range of
a ∈ [1

4
, 1
3
]: a0 = 0.3. From here, Eq. (2.12), which has the appropriate expressions for f(ai) and

f ′(ai) substituted in, is solved iteratively until the convergence criterion set by Eq. (2.13) is met.

ai+1 = ai −
16a3i − 24a2i + (9− 3λ2

r)ai + (λ2
r − 1)

48a2i − 48ai + (9− 3λ2
r)

(2.12)

|ai+1 − ai| < 10−6 (2.13)

Once the values for a have been populated, Eq. (2.8) is used to calculate the angular induction
factor, a′, for a range of local tip speed ratios. These optimum induction factors have been tabulated
in Table 2.1, as well as plotted in Fig. 2.1 for a λr range of 0 to 10. As noted in the figure’s legend,
a is represented by the solid black line and a′ is represented by the dashed black line.



12

Table 2.1: Optimum induction factors for Glauert’s actuator disk model.

λr a a′

0 0.250000 ∞
1 0.316987 0.183013
2 0.327896 0.052354
3 0.330747 0.024018
4 0.331842 0.013671

5 0.332367 0.008799

6 0.332658 0.006129

7 0.332835 0.004511

8 0.332951 0.003458

9 0.333031 0.002735

10 0.333088 0.002216

Figure 2.1: Glauert’s theoretical solutions for optimum axial and angular induction factors, a and
a’ respectively, as a function of local tip speed ratio, λr

2.1.1 Limiting Case for Low and High Tip Speed Ratio
Once again, the universal relation is written out in Eq. (2.14). The goal now is to understand

the behavior of a as λr tends to both 0 and infinity.

16a3 − 24a2 + (9− 3λ2
r)a+ (λ2

r − 1) = 0 (2.14)

First, the lower limiting case of λr → 0 will be addressed. See Eq. (2.15) for the resulting
expression.

16a3 − 24a2 + 9a− 1 = 0 (2.15)
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The expression above can be factored into two terms as displayed in Eq. (2.16), from which
the zeros can be easily extracted.

(a− 1)(4a− 1)2 = 0 (2.16)

The roots of Eq. (2.16) are a = 1
4

and 1, and from momentum theory it is known that the valid
operating range is a ∈ [1

4
, 1
3
]. Therefore, as λr tends to 0, a = 1

4
. Now, the upper limiting case for

the universal relation will be handled.

The variables a and λr are currently coupled in the equation above. To decouple them, the
terms (1 − 3a) and (1 + λ2

r) are factored out through algebraic manipulation, as shown in Eq.
(2.17).

16a3 − 24a2 + 12a− 2 + (1− 3a)(1 + λ2
r) = 0 (2.17)

Next, all of the terms with a are simply kept on the left-hand side of the equation, whereas the
term with λ2

r is brought to the right-hand side as done so in Eq. (2.18).

16a3 − 24a2 + 12a− 2

1− 3a
= −(1 + λ2

r) (2.18)

Further simplification is done on the equation above, while bringing the (1 + λ2
r) term into the

denominator, as shown in Eq. (2.19).

1

1 + λ2
r

=
1− 3a

−2(2a− 1)3
(2.19)

Now, the limit of the left-hand side of Eq. (2.19) can be taken as λr → ∞. Since the term in
the denominator consists of λ2

r , this limit approaches 0 as depicted by Eq. (2.20).

lim
λr→∞

1

1 + λ2
r

= 0 (2.20)

Setting the right-hand side of Eq. (2.19) equal to 0 in order to find the zeroes, as done so in Eq.
(2.21), reveals the upper bound for a.

1− 3a

−2(2a− 1)3
= 0 (2.21)

As an overview, as λr tends to infinity, the value for a approaches 1
3

with the exception that
a ̸= 1

2
.

2.1.2 Derivation of Maximum Power Coefficient
Knowing these optimum flow conditions based on Glauert’s model can allow for the exact

solution for CP to be determined. Returning back to Eq. (2.2), there is the λ3
rdλr term that must be

accounted for in order to fully represent the integral for CP as a function of a. An approach to this
would be differentiating both sides of Eq. (2.9), which will result in a new expression for 2λrdλr.
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2λrdλr =
6(4a− 1)(1− 2a)2

(1− 3a)2
da (2.22)

The λ3
rdλr term of interest can then be broken into a λ2

r and λrdλr term, for which Equations
2.9 and 2.22 can be substituted in. Now, the integral for the maximum power coefficient can be
defined by just one unknown, a, as done so in Eq. (2.23). Note that the limits of integration have
been modified to account for the variable substitution from λr to a. The value of the lower bound,
a1, can be calculated by setting λr equal to 0 in Eq. (2.10) and solving for a such that a1 = 1

4
. The

upper bound, a2 is the solution to Eq. (2.10) for a variable input of λr.

CPmax =
8

λ2

∫ λ

0

a′(1− a)λ2
r · λr dλr

=
24

λ2

∫ a2

a1

(1− a)2(1− 4a)2(1− 2a)2

(1− 3a)2
da

(2.23)

Through integration by substitution, a new variable x = 1− 3a is introduced to allow for ease
of calculability. Differentiating this equation for x with respect to a allows for da to be rewritten as
−1

3
dx. From here, the exact integral can be expressed in terms of only x as shown by Eq. (2.24),

and furthermore, it can be solved analytically. Note that the integration bounds must be adjusted
to account for the substitution from a into terms of x.

CPmax = − 1

λ2
· 8

729

∫ x2

x1

[
(x+ 2)(4x− 1)(2x+ 1)

x

]2
dx (2.24)

An intermediate step simplifying the terms within the integral is shown in Eq. (2.25). To
avoid representing the exact integral as a negative expression, the bounds of integration have been
switched instead. Therefore, the lower limit becomes x2 = 1 − 3a2 and the upper limit becomes
x1 = 1− 3a1 =

1
4
.

CPmax =
1

λ2
·
(
2

9

)3 ∫ x1

x2

[
64x4 + 288x3 + 372x2 + 76x− 63− 12

x
+

4

x2

]
dx (2.25)

The exact solution for CPmax has been depicted in Eq. 2.26. Hence, we obtain:

CPmax =
1

λ2
·
(
2

9

)3[
64

5
x5 + 72x4 + 124x3 + 38x2 − 63x− 12lnx− 4

x

]x1=
1
4

x2=1−3a2

(2.26)

The λ2 term within the denominator of the CPmax exact solution is being evaluated at λ2 =
λ2
r|a2; therefore, Eq. (2.9) can be substituted into the denominator as done so in Eq. (2.27). It is

evident that at exactly λr = 0, where a2 = 1
4
, there exists a singularity where CPmax is not defined.

Therefore, a limit for CPmax as λr approaches 0, or as a2 approaches 1
4
, must be taken as completed

in Eq. (2.28). Below, C represents the constant value computed by evaluating the terms within the
square brackets in Eq. (2.26) at x1.
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CPmax =
(1− 3a2)

(1− a2)(1− 4a2)2
·
(
2

9

)3[
C − 64

5
(1− 3a2)

5 + 72(1− 3a2)
4 + 124(1− 3a2)

3

+ 38(1− 3a2)
2 − 63(1− 3a2)− 12ln(1− 3a2)−

4

(1− 3a2)

]
(2.27)

lim
a2→ 1

4

CPmax =
0

0
(2.28)

Since evaluating this limit results in the indeterminate form of 0
0
, the mathematical theorem

known as L’Hôpital’s rule can be applied to determine the true limit using derivatives. The theorem
equates the following limits, where c is a point on an open interval for which functions f and g are
differentiable:

lim
a2→c

f(a2)

g(a2)
= lim

a2→c

f ′(a2)

g′(a2)
= lim

a2→c

f ′′(a2)

g′′(a2)
(2.29)

For ease of reference, the functions f and g extracted from Eq. (2.27) have been explicitly
stated below in Eqs. (3.12) and (3.13), respectively.

f(a2) =

(
2

9

)3[
C − 64

5
(1− 3a2)

5 + 72(1− 3a2)
4 + 124(1− 3a2)

3

+ 38(1− 3a2)
2 − 63(1− 3a2)− 12ln(1− 3a2)−

4

(1− 3a2)

] (2.30)

g(a2) =
(1− a2)(1− 4a2)

2

1− 3a2
(2.31)

lim
a2→ 1

4

f ′(a2)

g′(a2)
= lim

a2→ 1
4

24(64a62 − 224a52 + 308a42 − 212a32 + 77a22 − 14a2 + 1)

(3a2 − 1)2

6(4a2 − 1)(4a22 − 4a2 + 1)

(3a2 − 1)2

=
0

0
(2.32)

Applying L’Hôpital’s rule twice proves the following: lima2→ 1
4
CPmax = f ′′(a2)

g′′(a2)
= 0. For

explicitness, the limit of the ratio of f ′′(a2) and g′′(a2) has been listed out in Eq. (2.33).

lim
a2→ 1

4

f ′′(a2)

g′′(a2)
= lim

a2→ 1
4

96(192a62 − 600a52 + 742a42 − 467a32 + 159a22 − 28a2 + 2)

12(24a32 − 24a22 + 8a2 − 1)
= 0 (2.33)

These results for CPmax, representing Glauert’s optimum model, have been plotted for a range
of λ as seen in Fig. 2.2. The black dotted horizontal line represents the theoretical Betz limit at
16
27

= 0.593. The analytical solution derived from Glauert’s optimum model approaches within 2%
of the Betz limit at tip speed ratios greater than 7.5.
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Table 2.2: Maximum power coefficient, CPmax, for Glauert’s actuator disk model.

λ CPmax

→ 0 0
1 0.415496
2 0.511187
3 0.545398
4 0.561487
5 0.570387
6 0.575859
7 0.579479
8 0.582007
9 0.583848

10 0.585234

Figure 2.2: Maximum power coefficient, CPmax, for Glauert’s actuator disk model and Betz’s
theoretical limit.

As shown above, this is the classical solution found by Glauert’s original optimum rotor model.
In later sections, some new transformations are developed to analytically determine exact solutions
to both thrust coefficient, CT , and bending moment coefficient, CBe.

2.2 Optimum Wind Turbine Rotor Models in Literature
There exist various aerodynamic rotor models in literature that define optimum performance

of a wind turbine using slightly different approximations. For the purpose of this thesis, Glauert’s
optimum model, which is widely accepted by the researchers in the wind energy discipline, has
been explored in great detail. However, it is still imperative to understand alternate aerodynamic
models, especially for the purpose of identifying existing models’ limitations, as well as building
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on Glauert’s accepted empirical approach.

The calculus detailing Glauert’s theory has been shown in earlier sections, but essentially his
assumption is as follows: streamtube elements behave separately from each other, so an annulus
by annulus approach can be taken. Again, Glauert optimized f(a, a′) = a′(1 − a) for each λr

individually, which resulted in the ‘1st Relation’ depicted by Eq. (1.15).

Another optimum rotor model was devised by Burton, Sharpe et al, where it was proposed
that the additional pressure terms Glauert included in his analysis could be neglected—the only
contributor to power extraction would then be the rate of change in axial momentum. This resulted
in the following relation:

λ2
r =

a(1− a)

a′
. (2.34)

Ultimately, it was concluded that the optimal turbine performance was at a constant axial in-
duction factor and variable angular induction factor:

a =
1

3
(2.35)

and

a′ =
2

9λ2
r

. (2.36)

This model proved that regardless of tip speed ratio, the CPmax for an optimum rotor remained
at 16

27
, which is the Betz limit.

The next optimum rotor model studied was of Joukowsky’s, which was based on the assumption
that a rotor is subject to constant circulation, where Γ = 2πruθ; here, uθ is the azimuthal velocity
directly behind the rotor plane. Using this optimum model, the relations for axial and angular
induction factors were as follows:

125a5 − 325a4 + 290a3 − 106a2 + (17− 12λ4)a+ 4λ2 − 1 = 0 (2.37)

and

a′ =
λ2

λ2
r

· (3a− 1)1/2

(5a− 1)1/2
. (2.38)

This model is not applicable for tip speed ratios any less than 0.93. The CPmax values calcu-
lated using the Joukowsky model are always above the Betz limit of 16

27
, converging to this limit as

the tip speed ratio tends to infinity.

The final optimum model that will be discussed is of Burton et al, which provided an approx-
imation to Glauert’s work. Burton’s assumption was that the sole contributor to power extraction
was the rate of change in axial momentum, and that additional pressure terms should be ignored.
His altered ‘1st Relation’ then became what is seen in Eq. (2.39) [14].
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λ2
r =

a(1− a)

a′
(2.39)

One can observe that the (1 + a′) term in the denominator of the original relation presented in
Eq. (1.15) has been removed; this is based on the assumption that (1 + a′) ≈ 1 [10].
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Chapter 3

Amendment to Glauert’s Optimum Rotor
Model
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3.1 Derivation of Thrust Coefficient Based on Glauert’s Opti-
mum Solution

In wind turbine aerodynamics, the force of the wind on the rotor is known as thrust, which acts
in the streamwise direction. Returning to actuator disk theory, the incremental thrust, dT produced
by each annulus can be related to the pressure jump across the disk, as well as the area of the local
disk annulus:

dT = ∆p dA (3.1)

Based on actuator disk theory, the pressure jump, ∆p becomes: ∆p = 2ρV 2
0 a(1 − a). For a

circular disk, dA is simply: dA = 2πrdr. As a result, the incremental thrust can be rewritten as
shown in Eq. (3.2).

dT = 4πρV 2
0 a(1− a)rdr (3.2)

Dividing these results by 1
2
ρAV 2

0 yields a simplified expression for dCT .

dCT =
8

λ2
a(1− a)λrdλr (3.3)

Similar to how the exact integral for CP was computed over a range of tip speed ratios, the
integral for CT can also be solved analytically using Glauert’s optimum flow distributions. CT

is defined by the integral in Eq. (3.7), where integration by substitution is applied once again.
The same substitution is carried through, where x = 1 − 3a. The exact solution for CT has been
depicted below.

CT =
8

λ2

∫ λ

0

a(1− a)λr dλr

= −24

λ2

∫ λ

0

a(1− a)(1− 4a)(1− 2a)2

(1− 3a)2
da

(3.4)

CT =
1

λ2
· 8

243

∫ x1

x2

[
(1− x)(2 + x)(1− 4x)(1 + 2x)2

x2

]
dx (3.5)

CT = − 1

λ2
· 8

243

∫ x2

x1

(
16x3 + 28x2 − 20x− 25− 1

x
+

2

x2

)
dx (3.6)

CT =
1

λ2
· 8

243

[
4x4 +

28

3
x3 − 10x2 − 25x− lnx− 2

x

]x1=
1
4

x2=1−3a2

(3.7)

To better understand the behavior of the CT function, Eq. (3.7) is rewritten in terms of solely a.
This can be done by substituting the ‘1st Relation’ for λ2

r in the denominator above. Additionally,
the values for x1 and x2 should be substituted in as well, being 1

4
and (1− 3a2) respectively, where

a2 is simply a(λr).
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λ2 = λ2
r|a2 (3.8)

CT =
(1− 3a2)

(1− a2)(1− 4a2)2
· 8

243

[(
4(
1

4
)4 +

28

3
(
1

4
)3 − 10(

1

4
)2 − 25(

1

4
)− ln(

1

4
)− 8

)
−

(
4(1− 3a2)

4 +
28

3
(1− 3a2)

3 − 10(1− 3a2)
2 − 25(1− 3a2)− ln(1− 3a2)−

2

(1− 3a2)

)]
(3.9)

At exactly λr = 0, where a2 =
1
4
, there exists a singularity and CT is not defined. Therefore, a

limit for CT as λr approaches 0, or as a2 approaches 1
4
, must be taken as shown in Eq. (3.10).

lim
a2→ 1

4

CT =
0

0
(3.10)

Since evaluating this limit results in the indeterminate form of 0
0
, the mathematical theorem

known as L’Hôpital’s rule can be applied to determine the true limit using derivatives. The theorem
equates the following limits, where c is a point on an open interval for which functions f and g are
differentiable:

lim
a2→c

f(a2)

g(a2)
= lim

a2→c

f ′(a2)

g′(a2)
(3.11)

For ease of reference, the functions f and g extracted from Eq. (3.9) have been explicitly stated
below in Eqs. (3.12) and (3.13), respectively. Here, C represents the constant first term within the
square brackets of Eq. (3.9).

f(a2) =
8

243

[
C −

(
4(1− 3a2)

4 +
28

3
(1− 3a2)

3 − 10(1− 3a2)
2

− 25(1− 3a2)− ln(1− 3a2)−
2

(1− 3a2)

)] (3.12)

g(a2) =
(1− a2)(1− 4a2)

2

1− 3a2
(3.13)

Applying L’Hôpital’s rule once results in the following expressions for f ′(a2) and g′(a2),
shown by the limit of CT as a2 approaches 1

4
in Eq. (3.14). Both functions have the (3a2 − 1)2

term appearing in the denominator, which can be cancelled out with one another. Again, the
lima2→ 1

4

f ′(a2)
g′(a2)

results in the indeterminate form of 0
0
.

lim
a2→ 1

4

f ′(a2)

g′(a2)
= lim

a2→ 1
4

−24a2(16a
4
2 − 36a32 + 28a22 − 9a2 + 1)

(3a2 − 1)2

6(4a2 − 1)(4a22 − 4a2 + 1)

(3a2 − 1)2

=
0

0
(3.14)
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It is valid to apply L’Hôpital’s rule a second time, as the indeterminate solution is retained.
Equation (3.15) displays the lima2→ 1

4

f ′′(a2)
g′′(a2)

, which does indeed result in a2 definite value of 0.75.

lim
a2→ 1

4

f ′′(a2)

g′′(a2)
= lim

a2→ 1
4

−80a42 + 144a32 − 84a22 + 18a2 − 1

12a22 − 10a2 + 2
= 0.75 (3.15)

The behavior of the CT function for λr ranging from 0 to 10 has been plotted in Fig. 3.1. As
the tip speed ratio approaches 0, CT converges to 0.75 as proven earlier. On the upper end of the
λr range, the value of CT approaches 8

9
. Recall back to actuator disk theory, where the definition

is: CT = 4a(1 − a). Note that at the upper limit of λr at a = 1
3

also resulted in the same definite
value of 8

9
.

Table 3.1: Thrust coefficient, CT , for Glauert’s actuator disk model.

λ CT

0.001 0.750192
1 0.845797
2 0.868902
3 0.877260
4 0.881210
5 0.883400
6 0.884749
7 0.885643
8 0.886267
9 0.886722

10 0.887065

Figure 3.1: Thrust coefficient CT as a function of tip speed ratio, λ. for optimal a and a’ distribu-
tion.
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3.2 Derivation of Bending Moment Coefficient Based on Glauert’s
Optimum Solution

The bending moment is an important structural parameter when assessing the loading of wind
turbine blades, whether this be in the design phase or in fatigue studies. Equation (3.16) showcases
the general definition of elemental bending moment, dBe, as well as its relation to the elemental
thrust, dT and the local lever arm r.

dBe = dCBe ·
1

2
ρAV 2

0 R = dT · r (3.16)

Rewriting the equation for dCBe in terms of dCT allows for Eq. (3.3) to be substituted in, after
which integration can take place in order to solve for CBe exactly.

dCBe = dCT · r
R

=
8

λ2
a(1− a)λrdλr ·

r

R

=
8

λ3
a(1− a)λ2

rdλr

(3.17)

CBe =

∫
dCBe =

8

λ3

∫ λ

0

a(1− a)λ2
rdλr (3.18)

The exact integral for the bending moment coefficient is defined by Eq. (3.18). Identical
integration substitution is performed where x = 1− 3a so that CBe can be solved for analytically,
as shown in Eq. (3.19). Again, CBe is defined using Glauert’s optimum a and a′ flow conditions.

CBe =
8

λ3

∫ λ

0

a(1− a)λ2
r dλr

= −24

λ3

∫ λ

0

a(1− a)3/2(1− 4a)2(1− 2a)2

(1− 3a)5/2
da

(3.19)

CBe =
1

λ3
· 8

243 · 271/2

∫ x2

x1

(1− x)(2 + x)3/2(1− 4x)2(1 + 2x)2

x5/2
dx (3.20)

CBe =
1

λ3
· 8

243 · 271/2

[
−24ln((x+ 2)1/2 + x1/2)

− (x+ 2)1/2(192x6 + 408x5 − 532x4 − 890x3 + 585x2 − 260x+ 20)

15x3/2

]x1=
1
4

x2=1−3a2

(3.21)

To better understand the behavior of the CBe function, Eq. (3.23) has been rewritten in terms
of solely a. This means substituting Eq. (3.22) in for λ3

r in the denominator. The values for x1 and
x2 should be substituted in as well, being 1

4
and (1− 3a2) respectively, where a2 is simply a(λr).
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λ3
r = −(1− a2)

3
2 (1− 4a2)

3

(1− 3a2)
3
2

(3.22)

CBe = − (1− 3a2)
3/2

(1− a2)3/2(1− 4a2)3
· 8

243 · 271/2

[(
−24ln[(

1

4
+ 2)1/2 + (

1

4
]1/2)

−
(1
4
+ 2)1/2 · (192(1

4
)6 + 408(1

4
)5 − 532(1

4
)4 − 890(1

4
)3 + 585(1

4
)2 − 260(1

4
) + 20)

15 · (1
4
)3/2

)
−

(
−24ln[(3− 3a2)

1/2 + (1− 3a2)
1/2]

− (3− 3a2)
1/2 · (192(1− 3a2)

6 + 408(1− 3a2)
5 − 532(1− 3a2)

4 − 890(1− 3a2)
3)

15 · (1− 3a2)3/2

+
−585(1− 3a2)

2 + 260(1− 3a2)− 20)

15 · (1− 3a2)3/2

)]
(3.23)

lim
a→ 1

4

CBe =
0

0
(3.24)

For ease of reference, the functions f and g extracted from Eq. (3.23) have been explicitly
stated below in Eqs. (3.25) and (3.26) respectively. Here, C represents the constant first term
within the square brackets of Eq. (3.23).

f(a) =
8

243 · 271/2

[
C −

(
(−24ln[(3− 3a2)

1/2 + (1− 3a2)
1/2]

− (3− 3a2)
1/2 · (192(1− 3a2)

6 + 408(1− 3a2)
5 − 532(1− 3a2)

4 − 890(1− 3a2)
3)

15 · (1− 3a2)3/2

+
−585(1− 3a2)

2 + 260(1− 3a2)− 20)

15 · (1− 3a2)3/2

)]
(3.25)

g(a) = −(1− a2)
3/2(1− 4a2)

3

(1− 3a2)3/2
(3.26)

Using L’Hôpital’s rule as shown in Eq. (3.29) leads to the indeterminate form of 0
0
.

f ′(a2) =
3359232a72 − 11757312a62 + 16166304a52 − 11127456a42 + 4041576a32 − 734832a22 + 52488a2

3
13
2 (1− 3a2)

5
2 (3− 3a2)1/2

(3.27)

g′(a2) =
9(1− a2)

1/2 (4a2 − 1)2 (4a22 − 4a2 + 1)

(1− 3a2)
5
2

(3.28)
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CBe = lim
a2→ 1

4

f ′(a2)

g′(a2)
=

0

0
(3.29)

L’Hôpital’s rule was applied twice more to evaluate the limit to a definite value, being 0.50 as
displayed in Eq. (3.35).

f ′′(a2) =

120932352a82 − 519001344a72 + 925888320a62 − 893765664a52 + 509553504a42
− 175414896a32 + 35429400a22 − 3779136a2 + 157464

3
13
2 (1− 3a2)

7
2 (3− 3a2)3/2

(3.30)

g′′(a2) =
3456a52 − 7776a42 + 6624a32 − 2736a22 + 558a2 − 45

(1− 3a2)7/2(1− a2)1/2
(3.31)

CBe = lim
a2→ 1

4

f ′′(a2)

g′′(a2)
=

0

0
(3.32)

f ′′′(a2) =

3265173504a92 − 16597965312a82 + 36147435840a72 − 44231007744a62 + 33530384160a52
− 16363658880a42 + 5158048248a32 − 1017532368a22 + 114791256a2 − 5668704

3
13
2 (1− 3a2)

9
2 (3− 3a2)

5
2

(3.33)

g′′′(a2) =
10368a62 − 31104a52 + 36288a42 − 21312a32 + 6642a22 − 1026a2 + 63

(1− 3a2)
9
2 (1− a2)

3
2

(3.34)

CBe = lim
a2→ 1

4

f ′′′(a2)

g′′′(a2)
= 0.50 (3.35)
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Table 3.2: Bending moment coefficient, CBe, for Glauert’s actuator disk model.

λ CBe

0.001 0.500144
1 0.568533
2 0.582845
3 0.587443
4 0.589431
5 0.590459
6 0.591058
7 0.591436
8 0.591691
9 0.591869

10 0.592000

Figure 3.2: Bending moment coefficient CBe as a function of tip speed ratio, λ. for optimal a and
a’ distribution.

3.3 Summary of Coefficients Derived from Glauert’s Optimum
Model

In Fig. 3.3, the three coefficients of interest, CP , CT , and CBe, have been plotted over a range
of design tip speed ratios from 0 to 10. As listed in the legend, CP has been represented by a solid
line, CT by a dotted line, and CBe by a dashed line. Note that Glauert’s original work only showed
the derivation of CP based on optimum flow conditions. Exact analytical conditions to CT and
CBe above constitute the first part of this work’s amendment to Glauert’s solution.
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Figure 3.3: Power CP , thrust CT , and bending moment coefficients CBe as functions of tip speed
ratio, λ. for optimal a and a′ distribution.

At λ = 0, there is zero CP ; however, there exists finite bending moment and thrust indicated by
their respective coefficients, representing the loading of a non-rotating actuator disk. For this lower
limit of λ, CBe = 0.5 and CT = 0.75. As depicted in the figure, CP grows exponentially from 0
to 0.5852 over the observed interval for λ. CT and CBe do not follow similar growth trends as CP ;
both coefficients increase at a fairly slower rate, with a percent increase of 18.25% and 18.37%,
respectively. It is also interesting to note that the upper limit of both CP and CBe at λ = 10 hovers
around approximately 0.59.

This visualization highlights the variation amongst the three coefficients of interest for increas-
ing λ. For λ > 6, the coefficients all start to levelize approximately towards their upper limit; CP

shifts by 1.63%, however CT ’s and CBe’s variation remains under 0.5%.

For further visualization effects, the spanwise derivatives of power, thrust, and bending moment
coefficients per unit length have been plotted along r

R
for the following λ’s in Fig. 3.4: 2, 4, 6,

8, and 10. For added clarity, the exact definitions of the dCP

d r
R

, dCT

d r
R

, and dCBe

d r
R

have been explicitly
written out in Eqs. (3.36), (3.37), and (3.38).

dCP

d( r
R
)
= 8a′(1− a)λ2

r ·
r

R
(3.36)

dCT

d( r
R
)
= 8a(1− a) · r

R
(3.37)

dCBe

d( r
R
)
= 8a(1− a) · ( r

R
)2 (3.38)

Although the primary objective function in wind turbine optimization is to output maximum
power, it is imperative to understand the relationship between various design parameters that CP

may influence. For instance, being cognizant of high root-flap bending moments and the resulting
fatigue loads is also a note to be mindful of, since these require additional blade weight and cost
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Figure 3.4: Spanwise derivatives of power, thrust, and bending moment coefficients per unit length
as a function of the non-dimensional blade radius, r

R
, for a range of design tip speed ratios.

[10]. Since the optimal CP region corresponds to fairly constant CBe values, minimizing the
bending moment coefficient for maximum power coefficient is not a concern in this case.

3.4 A Calculus of Variations Approach to Glauert’s Optimum
Solution

As a review, Glauert’s derivation of the optimum flow conditions has been presented in the first
part of Section 2.1 of this thesis. An alternate mathematical approach to Glauert’s method is taken
to address the same optimization problem—maximizing CP

3.4.1 Glauert’s Optimum Rotor Model with Original Pressure Balance
Proceeding with an annulus-by-annulus approach, the mathematical method of Lagrange mul-

tipliers can be applied here under the constraint of a pressure jump, which the ‘1st Relation’ from
Eq. (1.15) accounts for. The Lagrangian function, as depicted in Eq. (3.39), relates the gradients of
the function to the gradients of the set constraint, where f(a, a′) is the expression to be optimized
for as defined in Eq. (3.40), Ω is the Lagrange multiplier, and g(a, a′) is the equality constraint of
the ‘1st Relation’ as defined in Eq. (3.41).

L(a, a′,Ω) = f(a, a′) + Ωg(a, a′) (3.39)

f(a, a′) = a′(1− a) (3.40)

g(a, a′) = a(1− a)− a′(1 + a′)λ2
r (3.41)

To maximize f(a, a′) under the equality constraint of g(a, a′) = 0, the stationary points of
L(a, a′,Ω) must be determined by setting all partial derivatives of L with respect to a, a′, and Ω
equal to 0. Those partial derivatives become Eqs. (3.42), (3.43), and (3.44), respectively.
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∂L
∂a

= −a′ + Ω(1− 2a) = 0 (3.42)

∂L
∂a′

= 1− a− Ωλ2
r(1 + 2a′) = 0 (3.43)

∂L
∂Ω

= a(1− a)− a′(1 + a′)λ2
r = 0 (3.44)

3.4.2 Establishing a Relation for the Optimal Axial Induction Factor a(λr)

Starting with the first partial derivative, Eq. (3.42) can be rearranged to solve for a′(Ω, a), as
shown:

a′ = Ω(1− 2a) (3.45)

This expression for a′ is then to be substituted into the second partial derivative, Eq. (3.43).
After some algebraic rearranging of the following Eq. (3.46), the quadratic formula can easily be
applied in order to solve for Ω(a).

1− a− Ωλ2
r[1 + 2Ω(1− 2a)] = 0 (3.46)

Ω2(4aλ2
r − 2λ2

r) + Ω(−λ2
r) + (1− a) = 0

Ω =
λ2
r ±

√
λ4
r − 4(4aλ2

r − 2λ2
r)(1− a)

2(4aλ2
r − 2λ2

r)

The expression above for Ω(a) can then be substituted back into Eq. (3.45) to yield a simplified
expression for a′(a). Now, a′ is solely a function of a:

a′ =
−λ2

r ±
√

λ2
r − 24a+ 16a2 + 8

4λr

(3.47)

This simplified expression for a′(a) is then substituted into the third partial derivative, Eq.
(3.44), reducing to Eq. (3.48) for a which only varies based on the independent variable, λr.

a− a2 −
−λ2

r + 8a2 − 12a+ λr

√
λ2
r + 16a2 − 24a+ 8 + 4

8
= 0 (3.48)

Upon further simplification, a fourth-order polynomial for for a(λr) can be extracted as indi-
cated by Eq. (3.49).

16a4 − 40a3 + (33− 3λ2
r)a

2 + (4λ2
r − 10)a+ (1− λ2

r) = 0 (3.49)

As referenced earlier in Eq. (2.10), Glauert’s universal relation is of the third-order in com-
parison to the fourth-order polynomial from Eq. (3.49). Dividing Eq. (3.49) by its factor a − 1
recovers the original Glauert’s polynomial from Eq. (2.10).
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3.4.3 Establishing a Relation for the Optimal Angular Induction Factor a′(λr)

The same system of equations can be solved to compute a polynomial for a′(λr). This time,
Eq. (3.42) is solved for Ω rather than a′, yielding the following:

Ω =
a′

1− 2a
(3.50)

The steps used to solve for a(a′) from the second partial derivative, Eq. (3.43), can be observed
below. Some algebraic rearranging has been performed so that the quadratic formula can simply
be applied to solve for a.

1− a− a′

1− 2a
· λ2

r(1 + 2a′) = 0 (3.51)

2a2 − 3a+ (1− λ2
ra

′ − 2(a′)2λ2
r) = 0

a =
3±

√
9− 8(1− λ2

ra
′ − 2(a′)2λ2

r)

4

Finally, this solved expression for a(a′) is substituted into the third Lagrangian partial deriva-
tive, being Eq. (3.44). By doing as such, a polynomial for a′(λr) can be extracted. An intermediate
step has been shown in Eq. (3.52) before displaying the final third-order polynomial derived using
this Lagrangian multiplier approach.

−
√
1 + 8a′λ2

r + 16(a′)2λ2
r − 4a′λ2

r − 8(a′)2λ2
r + 1

8
− a′(1 + a′)λ2

r = 0 (3.52)

16λ2
r(a

′)3 + 24λ2
r(a

′)2 + (9λ2
r − 3)a′ − 2 = 0 (3.53)

Similar to Eq. (3.49), the relation for a′(λr) presented in Eq. (3.53) also recovers Glauert’s
results.

3.5 Optimum Rotor Model of Burton, Sharpe et al. Using Mod-
ified Pressure Balance

The function f(a, a′) can be modified slightly to optimize for the complete expression within
the CP integral originally presented in Eq. (2.2), such that f(a, a′) = a′(1 − a)λ3

r now. Recall
Glauert’s approach, where the function to be optimized was truncated to a′(1− a). This modifica-
tion was observed within the work of Burton, Sharpe et al., where the assumption 1 + a′ ≈ 1 was
made, producing a new relation for λ2

r as previously shown in Eq. (2.34) [15].

Regardless, the same process from earlier is carried out to find the stationary points of L(a, a′,Ω).
The partial derivatives now work out to be Eqs. (3.54), (3.55), and (3.56) respectively.

∂L
∂a

= −a′λ3
r + Ω(1− 2a) = 0 (3.54)
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∂L
∂a′

= λ3
r(1− a)− Ω(1 + a′)λ2

r = 0 (3.55)

∂L
∂Ω

= a(1− a)− a′(1 + a′)λ2
r = 0 (3.56)

3.5.1 Modified Relation for Optimal Axial Induction Factor a(λr)

In order to solve this system of equations, the Lagrangian partial derivative with respect to a′

will be addressed first. Equation (3.55) is solved for Ω.

Ω =
λr(1− a)

1 + a′
(3.57)

The expression for Ω is then substituted back into the Lagrangian partial derivative with respect
to a in Eq. (3.54), yielding the following:

−a′λ3
r +

λr(1− a)

1 + a′
(1− 2a) = 0

Once again, the equation is to be rearranged such that the quadratic formula can easily be
applied in order to extract a polynomial for a′(a).

λ3
r(a

′)2 + λ3
ra

′ − (1− a)(1− 2a)λr = 0 (3.58)

a′ =
−λ3

r ±
√

λ6
r + 4λ4

r(1− a)(1− 2a)

2λ3
r

(3.59)

This expression for a′ is substituted into Eq. (3.56), which simplifies greatly into a quadratic
equation for a solely dependent on the independent variable, λr. Upon solving Eq. (3.60), two
solutions for a are determined.

a− a2 − (2a− 1)(a− 1) = 0 (3.60)

a =
1

3
, 1

Given that momentum theory is only valid for a ⊂ (0, 1
2
), the solution a = 1 can be eliminated,

leaving a = 1
3
.

3.5.2 Modified Relation for Optimal Angular Induction Factor a′(λr)

Once again, the system of equations from 3.54 through 3.56 need to be solved to determine a
polynomial for a′(λr). Ω was also solved first with this approach, however the Lagrangian partial
derivative with respect to a was used instead.

Ω =
a′λ3

r

1− 2a
(3.61)
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Now, the expression for Ω can be substituted into Eq. (3.55) and simplified fully to obtain an
expression for a(a′).

λ3
r(1− a)− a′λ3

r

1− 2a
(1 + a′)λ2

r = 0 (3.62)

2λ3
ra

2 − 3λ3
ra+ λ3

r − a′λ3
r(1 + a′)λ2

r = 0

a =
3 +

√
8λ2

r(a
′)2 + 8λ2

ra
′ + 1

4

Thus, this expression is used in the final Lagrangian partial derivative with respect to Ω in order
to eliminate the last unknown variable a. For simplicity, only one intermediate step and the final
polynomial for the optimal axial induction factor using the complete term have been displayed.

−
√

8λ2
r(a

′)2 + 8λ2
ra

′ + 1− 4λ2
r(a

′)2 − 4λ2
ra

′ + 1

8
− a′λ2

r − λ2
r(a

′)2 = 0 (3.63)

9λ2
r(a

′)3 + 18λ2
r(a

′)2 + (9λ2
r − 2)a′ − 2 = 0 (3.64)

Interestingly, (a′ + 1) is a factor of the polynomial in Eq. (3.64). Dividing this factor by this
polynomial results in the second-order polynomial presented in Eq. (3.65).

9λ2
r(a

′)2 + 9λ2
ra

′ − 2 = 0 (3.65)

Rewriting the equation above as an expression for a′ yields the following relation presented in
Eq. (3.66). As expected, this solution exactly matches the equality constraint set based on the ‘1st
Relation’ in Eq. (1.15), when computed at the optimum solution, a = 1

3
.

a′ = −1

2
+

√
9λ2

r + 8

6λr

(3.66)

3.6 Visual Representation of Flow Conditions Using Different
Optimum Models

The iterative Newton–Raphson method was used to plot a and a′ distributions based on the re-
spective optimum relations. To the left, Fig. 3.5 highlights the variation present between Glauert’s
optimum rotor disk solution, the flow conditions derived in this section using the amended model,
as well as the optimum rotor model of Burton and Sharpe. The x− axis has been limited to a maxi-
mum of λr = 6, because variation amongst the two models beyond that chosen λr is negligible. To
the right, the scaled spanwise distributions for λ = 4 (black) and λ = 8 (red) have been displayed
representing the three models as well.
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Figure 3.5: Comparison of optimum flow distributions for Glauert’s solution, the amendment,
and the optimum model of Burton and Sharpe using universal solution (left) and scaled spanwise
distributions (right) for λ = 4 (black) and λ = 8 (red).

Glauert’s optimum flow conditions have been noted by a solid line, whereas the optimum flow
conditions based on the extended objective function have been displayed by a dashed line. The
optimum rotor model of Burton and Sharpe has been displayed by the dotted line. Recall that
the a distribution approaches 1

3
, whereas the a′ distribution approaches 0 for increasing λr values.

There exist minuscule differences between the three optimization models for desirable operating λ
ranges.

To better understand how the variation in optimal a and a′ distributions influence the maxi-
mum power coefficient, both the original and amended model’s CPmax derived values have been
displayed in Table 3.3, along with the associated percent errors. These same results have been
plotted in Fig. 3.6

Table 3.3: Variation in maximum power coefficient between Glauert’s actuator disk model
(CPmax,G) and the amended model (CPmax,A).

λr CPmax,G CPmax,A % Error
0.001 0.0009 0.5926 ∞

1 0.4155 0.5926 42.62
2 0.5112 0.5926 15.92
3 0.5454 0.5926 8.65
4 0.5615 0.5926 5.54
5 0.5704 0.5926 3.89
6 0.5759 0.5926 2.91
7 0.5795 0.5926 2.26
8 0.5820 0.5926 1.82
9 0.5838 0.5926 1.50

10 0.5852 0.5926 1.26
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Figure 3.6: Power coefficient CP variation between Glauert’s model and the amended model for
local tip speed ratios, λr.

Since the optimum a populated from the amended model was not a distribution, but rather a
constant 1

3
, the associated CPmax value is also constant at 0.5926. Note that this value is very close

to Betz’s Limit of 16
27

, and Glauert’s model approaches a slightly smaller value of CPmax, but nev-
ertheless also approaches this limit. Figure 3.6 helps highlight the fact that the variation between
the two models observed above is primarily prevalent for low λ, particularly under 5.

Using the same two models, being Glauert’s and the amendment, the variation within CT and
CBe can also be analyzed through Table 3.4 and 3.5, as well as Figs. 3.7 and 3.8.

Table 3.4: Variation in thrust coefficient, CT , between Glauert’s actuator disk model and the
amended model.

λr CT,G CT,L % Error
0.001 0.7502 0.8889 18.49

1 0.8458 0.8889 5.09
2 0.8689 0.8889 2.30
3 0.8773 0.8889 1.33
4 0.8812 0.8889 0.87
5 0.8834 0.8889 0.62
6 0.8847 0.8889 0.47
7 0.8856 0.8889 0.37
8 0.8863 0.8889 0.30
9 0.8867 0.8889 0.24

10 0.8871 0.8889 0.21
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Figure 3.7: Thrust coefficient CT variation between Glauert’s model and the amended model for
low tip speed ratios, λr.

Table 3.5: Variation in bending moment coefficient, CBe, between Glauert’s actuator disk model
and the amended model.

λr CBe,G CBe,L % Error
0.001 0.5001 0.5926 18.48

1 0.5685 0.5926 4.23
2 0.5828 0.5926 1.67
3 0.5874 0.5926 0.88
4 0.5894 0.5926 0.54
5 0.5905 0.5926 0.36
6 0.5911 0.5926 0.26
7 0.5914 0.5926 0.20
8 0.5917 0.5926 0.15
9 0.5919 0.5926 0.12

10 0.5920 0.5926 0.10
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Figure 3.8: Bending moment coefficient CBe variation between Glauert’s model and the amended
model for low tip speed ratios, λr.



37

Chapter 4

Conclusion and Future Work
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4.1 Conclusion
Within this work, Glauert’s optimum rotor disk solution was used to derive exact solutions for

the power, thrust, and bending moment coefficients (CP , CT , and CBe). L’Hôpital’s theorem was
employed to determine the convergence behavior of these coefficients as the tip speed ratio, λ,
approached 0. It was determined that the limiting case for CP , CT , and CBe was 0, 0.75, and 0.50
respectively. Additionally, an alternative approach using calculus of variations was taken to address
the classical objective function in wind turbine optimization—to maximize CP . The resulting
optimum flow conditions recovered Glauert’s optimum rotor solution, thus confirming the validity
of this existing aerodynamic performance model using an alternate mathematical method. Next,
the classical objective function is modified to study effects on optimum a and a′ flow distributions,
serving as an amendment to Glauert’s optimization work. It is determined that for desired operating
tip speed ratios (λ > 4), there is no considerable difference in optimum flow conditions between
the amended model, Burton and Sharpe’s work, and finally, Glauert’s solution.
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4.2 Future Work
Next steps include evolving the optimization problem to include a thrust constraint. In other

words, how can one maximize the power coefficient, CP , while holding the thrust coefficient, CT ,
constant. With new turbine concepts such as the ”Low Induction Rotor,” where the rotor thrust and
power is slightly compromised in order to decrease blade loading, it becomes of greater interest
to understand how the optimum induction factors are affected. By implementing an equality con-
straint on CT , one can better understand the optimal design space that considers root-flap bending
moments, while also aiming for maximum power extraction by the wind turbine.
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