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ABSTRACT 

 

Multimodal transfer learning offers a powerful solution for cross-modal retrieval tasks by 

leveraging knowledge across modalities. In this thesis, we explore a two-stage pre-training and 

fine-tuning approach within an existing multimodal transfer learning framework to improve 

model efficiency and adaptability. While we don't claim superiority in retrieval accuracy and 

robustness compared to traditional methods, our research provides valuable insights into 

optimizing performance for cross-modal retrieval tasks. 

This exploration involves dividing the model into pre-training and fine-tuning stages. By 

investigating various configurations within this framework, we aim to identify strategies that can 

reduce training time and epochs, while also enhancing the model's ability to adapt to new data 

categories. Our experiments analyze the factors that influence performance in this two-stage 

approach, providing valuable guidance for future research in multimodal transfer learning. 

This work contributes to advancing the design and optimization of cross-modal retrieval 

systems. By exploring segmentation strategies within existing models, our findings can inform 

the development of more efficient and adaptable retrieval systems for real-world applications.
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Chapter 1  

Introduction 

1.1 Background and Motivation 

Cross-modal retrieval (CMR) is a burgeoning field crucial for developing search systems 

that operate seamlessly across different modalities (e.g., text, images, video). CMR allows users 

to search for images using textual descriptions, retrieve videos matching an audio query, or 

discover text articles related to a photograph. This ability to bridge representational gaps between 

modalities opens up new possibilities for organizing, searching, and understanding our rich 

multimedia world. (Wang, Yin, Wang, Wu, & Wang, 2016) 

Transfer learning plays a vital role in addressing the hurdles of CMR. Labeled training 

data for specific cross-modal tasks is often limited, hindering the performance of models, 

especially when new or unseen data categories emerge. Transfer learning allows models to 

leverage knowledge gleaned from extensive datasets, often from different domains, and apply 

that knowledge to new target tasks. This transfer of representations improves generalization 

abilities and allows models to adapt more rapidly to novel data categories. 

Despite offering significant advantages, training complex CMR models can be a 

computationally intensive and time-consuming process. Additionally, ensuring that models 

smoothly adapt to new data categories remains a primary goal for real-world applications. 

Motivated by these challenges, our research focuses on strategies for improving the efficiency 
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and adaptability of CMR models. Specifically, we aim to reduce training time and computational 

demands, while simultaneously enhancing the capacity of models to quickly adjust to new data 

they encounter. 

Improving the efficiency and adaptability of CMR models has far-reaching benefits 

across various domains. In e-commerce, accurate and responsive image search using text 

descriptions can streamline product discovery for customers. In healthcare, cross-modal retrieval 

systems that link medical images with related diagnostic reports can improve the efficiency and 

accuracy of clinical decision-making. The ability to learn faster and adapt to new knowledge is 

critical for developing intelligent multimodal applications that can navigate the complexities of 

real-world data. 

1.2 Research Objectives 

This thesis explores the potential of optimizing performance within the current state-of-

the-art model for deep multimodal transfer learning (DMTL) in cross-modal retrieval (CMR) 

tasks. The model we reference is the one presented in the paper, "Deep Multimodal Transfer 

Learning for Cross-Modal Retrieval" (Zhen, Hu, Peng, Goh, & Zhou, 2022), which focus on 

transferring knowledge from labeled categories (source domain) to unlabeled categories (target 

domain) where the label sets are disjoint. Their method employs a joint learning strategy to 

assign pseudolabels to the target samples and leverages modality-specific networks to learn a 

shared semantic space, aiming to bridge the heterogeneity gap between modalities. 
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However, the original paper's primary emphasis lies on achieving high retrieval accuracy 

and robustness, potentially at the cost of training efficiency. In contrast, this thesis adopts a 

different perspective. We prioritize improving the efficiency and adaptability of CMR models 

while maintaining performance. This shift is motivated by the need for faster training times and 

the ability of models to adapt to new data categories often encountered in real-world 

applications. 

Our core research objective is to explore a two-stage pre-training and fine-tuning 

approach within an existing multimodal transfer learning framework. By investigating various 

configurations within this framework, we aim to identify strategies that can: 

• Reduce training time and computational resources required for training CMR models. 

• Enhance the model's ability to adapt and learn from new categories of data encountered 

after initial training. 

By achieving these objectives, we hope to contribute to the development of more efficient 

and adaptable CMR systems that can be readily deployed in real-world applications. 

1.3 Contributions of the Thesis 

This thesis investigated hybrid pre-training and fine-tuning strategies for effective 

knowledge transfer in cross-modal retrieval.  Several key contributions emerge from the 

experimental results and analysis: 
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• Importance of Joint Learning: The findings demonstrate the advantages of training 

models on both source and target data simultaneously. This joint learning strategy 

facilitates efficient knowledge transfer and adaptation to unlabelled target domains. 

• Parameter Tuning Sensitivity:  Optimal model performance is highly dependent on the 

careful tuning of hyperparameters, specifically those governing the balance between 

source and target data emphasis. These parameters need to be adjusted in accordance with 

dataset characteristics. 

• Dataset-Driven Strategies: The quantity and distribution of categories within the source 

dataset significantly influence knowledge transfer effectiveness. This highlights the need 

for dataset-aware strategies when selecting training data splits or designing augmentation 

techniques. 

1.4 Scope and Organisation of the Thesis 

This thesis investigates strategies for optimizing the efficiency and adaptability of 

multimodal transfer learning models within the context of cross-modal retrieval.  We explore the 

potential of a two-stage pre-training and fine-tuning approach to reduce training time, enhance 

adaptability to new data categories,  and ultimately contribute to the development of more 

practical cross-modal retrieval systems. 

The thesis is organized as follows: 
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• Background Work: This section provides an overview of cross-modal retrieval, its 

significance, and the role of transfer learning in addressing CMR challenges. It also 

reviews relevant literature on existing optimization strategies in multimodal models. 

• Problem Formulation: This section formally defines the problem addressed in the 

thesis, outlining objectives and the specific challenges of optimizing training efficiency 

and adaptability for multimodal transfer learning. It also discusses the scope of the 

research and any key assumptions. 

• Methods and Experimental Setting: Here, we detail the proposed pre-training and fine-

tuning strategies, along with any modifications to the existing model architecture. The 

experimental setup description includes datasets, evaluation metrics, and hyperparameter 

settings. 

• Experimental Results with Observations: This section presents quantitative results of 

the experiments and a thorough analysis of performance relative to both traditional and 

state-of-the-art methods. Key observations and insights from the data are highlighted. 

• Discussion on Findings and Future Work: We analyze the implications of the 

experimental results, discussing how the proposed approach addresses the initial problem. 

We identify limitations and outline potential avenues for further research and 

improvement. 

• Conclusion: The thesis concludes with a summary of the research contributions, a 

restatement of the main findings, and their significance within the broader context of 

cross-modal retrieval.  
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Chapter 2  

Theoretical Foundations and Related Work 

2.1 Background 

This section provides a comprehensive overview of the background concepts and 

techniques relevant to the thesis, drawing upon the insights presented in the reference paper 

"Deep Multimodal Transfer Learning for Cross-Modal Retrieval".  

2.1.1 Cross-Modal Retrieval (CMR) 

CMR is an emerging field in information retrieval that deals with searching for relevant 

information across different modalities. In simpler terms, it allows users to retrieve information 

from one data type (modality) based on a query from another modality. Classic examples include 

searching for images using textual descriptions or vice versa, or finding videos that match an 

audio query. 

The ability to bridge the gap between different modalities presents significant 

opportunities for developing more intuitive and flexible search systems across various domains. 
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2.1.2 Transfer Learning 

Transfer learning is a machine learning technique that leverages knowledge gained from 

a source task to improve performance on a related target task. This approach is particularly 

beneficial when labeled data for the target task is scarce or expensive to acquire. In the context of 

CMR, transfer learning can be employed to transfer knowledge from labeled data in one domain 

(source domain) to a different domain (target domain) where labels are unavailable. This enables 

models to learn transferable representations that can be adapted to unseen categories in the target 

domain, improving overall retrieval accuracy. 

There are various categories of transfer learning approaches, but this thesis focuses on the 

application of transductive transfer learning for CMR tasks. In transductive transfer learning, 

both the source and target tasks are the same (i.e., CMR), but the data distributions differ 

between the source and target domains due to the lack of labels in the target domain. 

2.1.3 Labeled and Unlabeled Data Categories 

The effectiveness of CMR models heavily relies on the quality and quantity of training 

data. Training data typically consists of labeled and unlabeled categories. Labeled data refers to 

samples where each data point is associated with a corresponding category label. This label 

information provides crucial supervision for the model to learn the underlying relationships 

between modalities. Unlabeled data, on the other hand, lacks explicit category labels. While 

unlabeled data can still be informative for learning general patterns within a modality, it presents 

challenges for tasks like CMR that require identifying semantic relationships across modalities. 
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The original paper addresses the challenge of knowledge transfer in CMR scenarios 

where the source and target domains have disjoint label sets (Zhen et al., 2022). This means that 

the categories present in the labeled source domain are entirely different from the categories in 

the unlabeled target domain. This distinction is crucial because traditional transfer learning 

methods often assume that the source and target tasks share some common categories. 

2.1.4 Parameter Tuning 

The performance of machine learning models, including those for CMR, is highly 

sensitive to the hyperparameters chosen during training. Hyperparameters are essentially the 

settings that control the learning process of the model, but they are not directly learned from the 

data. Common examples of hyperparameters in deep learning models include learning rates, 

optimizer configurations, and network architectures. 

Finding the optimal hyperparameter configuration is crucial for achieving good 

performance. Grid search involves systematically evaluating a range of possible values for each 

hyperparameter, while random search randomly samples hyperparameter values from a 

predefined search space. 

2.1.5 Different Tasks in CMR 

CMR encompasses a wide range of tasks depending on the specific modalities involved. 

Here are the tasks we will be analyzing in this thesis: 
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• Image-to-Text Retrieval: Given a textual description, the task is to retrieve relevant 

images from a collection. 

• Text-to-Image Retrieval: Given an image, the task is to retrieve textual descriptions that 

accurately represent the image content. 

2.1.6 Zero-Shot Cross-Modal Retrieval  

Zero-shot learning (ZSL) is a challenging paradigm where a model must recognize or 

classify instances from categories that were unseen during training. In cross-modal retrieval, a 

zero-shot setting implies that the model is trained exclusively on a set of source categories and 

then directly tested on a disjoint set of target categories. This presents a significant challenge as 

the model has no prior exposure to any examples from the target categories. 

This thesis investigates cross-modal retrieval in a zero-shot setting.  Specifically, the 

following approach is employed: 

• Training: The model is trained on a labelled source dataset containing image-text pairs 

from a specific set of categories (e.g., "cat," "dog," "flower"). 

• Testing: The model's ability to generalize to unseen target categories is evaluated. The 

model is tested  on image-text pairs belonging to categories that were not present in the 

training data  (e.g., "airplane," "car," "building"). 

This zero-shot setting mirrors real-world scenarios where a model trained on a limited set of data 

must adapt to new, potentially unrelated categories.  To succeed in this context, effective 
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knowledge transfer strategies are crucial for maximizing the model's ability to leverage 

information learned from the source domain and apply it to the unseen target domain. 

2.2 Related Work 

The paper "Deep Multimodal Transfer Learning for Cross-Modal Retrieval" by Liangli 

Zhen, Peng Hu, Xi Peng, Rick Siow Mong Goh, and Joey Tianyi Zhou addresses the challenge 

of knowledge transfer across different modalities in scenarios where the source and target 

domains have disjoint label sets. Their proposed deep multimodal transfer learning (DMTL) 

approach utilizes a joint learning strategy with modality-specific neural networks to create a 

shared semantic space for different modalities. This framework demonstrates significant 

improvements in retrieval accuracy for cross-modal tasks, advancing the state of the art.  

The work presented in the paper provides a strong foundation for our research.  Their 

exploration of transfer learning with disjoint label sets motivates our investigation of pre-training 

and fine-tuning strategies to optimize model efficiency and adaptability within this framework. 

2.2.1 DMTL Framework Overview 

The proposed Deep Multimodal Transfer Learning (DMTL) framework addresses the 

challenge of transferring knowledge from labeled categories in a source domain to unlabeled 

categories in a target domain for cross-modal retrieval (CMR). This scenario is particularly 
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interesting because the label sets of the source and target domains are disjoint, meaning they do 

not share any common categories. 

 

 

Figure 1 General Framework for DMTL method (Zhen et al., 2022) © 2022 IEEE 

 

Here's a breakdown of the key components in the DMTL framework: 

• Modality-Specific Networks: Framework employs two separate convolutional neural 

networks (CNNs) for image data and a natural language processing network (NLP Net) 

for text data as represented in Figure 1(A). These networks act as encoders, aiming to 

learn modality-specific representations for the input data. 
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• Shared Semantic Space: The CNN and NLP Net representations are projected into a 

shared latent space using fully connected layers as represented in Figure 1(B). This space 

aims to capture the underlying semantic relationships between different modalities. 

• Joint Learning with Pseudolabels: To bridge the gap between labeled and unlabeled 

data, DMTL incorporates a joint learning strategy. For each unlabeled sample in the 

target domain, a pseudolabel is assigned and iteratively refined during the training 

process. This pseudolabel serves as a temporary supervisory signal, guiding the network 

to learn transferable features even for unseen categories. 

• Category Information Exploitation: The framework leverages category information 

from the labeled source domain to guide the learning of pseudolabels for the unlabelled 

target domain. This is achieved by feeding the shared representations from both domains 

into a linear classifier for label prediction, even though the target categories are unknown 

as represented in Figure 1(C). 

• Heterogeneity Gap Reduction: By 

enforcing specific properties in the shared 

space, DMTL aims to reduce the 

heterogeneity gap between different 

modalities (Figure 1(D)). This is achieved 

by minimizing the distance between 

samples from the same category 

(homoinstances) and maximizing the distance between samples from different categories 

(heteroinstances). 

Figure 2 Hetrogenity Gap Reduction in Cross-

Modal Retrieval 
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Overall, the DMTL framework combines modality-specific encoders, a shared semantic 

space, joint learning with pseudolabels, category information exploitation, and heterogeneity gap 

reduction to achieve knowledge transfer for CMR in the target domain with disjoint categories. 

 2.2.2 Objective Function  

All the equations mentioned in this section is adapted from the formulation presented in 

Zhen et al. (2021) and  combines several key strategies for effective cross-modal retrieval in 

scenarios with unlabelled target data. 

The objective function in DMTL is:  

ℒ = ℒ𝑚 + 𝜆1ℒ𝑠 + 𝜆2ℒ𝑡 (1) 

• 𝓛𝒎: Modality-invariance loss. Aims to bridge the gap between different 

modalities (e.g., image and text) by ensuring that semantically related samples 

across modalities are brought closer in a shared embedding space. 

• 𝓛𝒔: Discrimination loss for the labeled source data. Encourages the model to learn 

discriminative features by leveraging the label information in the source domain. 

• 𝓛𝒕: Discrimination loss for the unlabeled target data. Seeks to learn discriminative 

features for the target domain by using pseudolabels and minimizing the 

difference between these pseudolabels over successive iterations. 

• 𝝀𝟏, 𝝀𝟐: Tradeoff parameters, controlling the relative importance of each loss term. 
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Discrimination loss for labelled source data is defined as:  

ℒ𝑠 =
1

𝑚
∑(||𝑃ℎ𝛼(𝑠𝑖

𝛼) − 𝑦𝑖||2  +  𝑃ℎ𝛽(𝑠𝑖
𝛽

) − 𝑦𝑖||2)

𝑚

𝑖=1

(2) 

• 𝑷: Weight matrix of a linear classifier used in the discriminative loss terms. 

• 𝒉𝜶, 𝒉𝜷: Transformation functions for image and text samples. These play a 

central role in mapping image and text samples into the shared embedding space. 

• 𝒔𝜶, 𝒔𝜷: Image and text samples, respectively. 

• 𝒚: Semantic label vectors of samples 

• 𝒎: Instances of image-text pair in source domain 

 

Discrimination loss for unlabeled target data is defined as:  

ℒ𝑡 =
1

𝑛
∑(||𝑃ℎ𝛼(𝑥𝑗

𝛼) − 𝑧𝑗
𝛼||2  +  𝑃ℎ𝛽(𝑥𝑖

𝛽
) − 𝑧𝑗

𝛽
||2)

𝑛

𝑗=1

(3) 

• 𝒙𝜶, 𝒙𝜷: Image and text samples, respectively. 

• 𝒛𝜶, 𝒛𝜷: Pseudolabels for the unlabelled target data, representing the degree of 

similarity/dissimilarity between the target data and the categories in the source 

domain. 

• 𝒏: Instances of image-text pair in source domain 

 

During training, the pseudolabels of the samples in the target data set will be updated at 

each iteration by:  
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𝑧𝑗
𝛼 = 𝑃ℎ𝛼(𝑥𝑗

𝛼) (4) 

𝑧𝑗
𝛽

= 𝑃ℎ𝛽(𝑥𝑗
𝛽

) (5) 

2.2.3 Optimization Goals:  

To achieve effective cross-modal retrieval with knowledge transfer to an unlabelled 

target domain, the optimization process outlined in Section 2.2.2  pursues several interconnected 

goals: 

• Cross-Modal Matching: Minimize the gap between different modalities (image and 

text) through the modality-invariance loss (ℒ𝑚). This encourages the model to find 

representations where related image and text samples are close together. 

• Knowledge Transfer: Utilize labeled source data (ℒ𝑠) to guide model learning and 

transfer knowledge to the target domain, while also incorporating information from 

unlabeled target data (ℒ𝑡). 

• Discriminative Feature Learning: Learn features that effectively distinguish between 

different categories, particularly focusing on the unlabeled target data and the knowledge 

transferred from the source domain.  
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Chapter 3  

Problem Formulation  

Cross-Modal Retrieval (CMR) tackles the fundamental problem of enabling seamless 

search across different modalities like images and text. The central challenge stems from the fact 

that these modalities exist in distinct representational spaces, making direct comparisons 

difficult. To bridge this gap, CMR aims to learn transformations (ℎ𝛼 for images, ℎ𝛽 for text) that 

map samples from both modalities into a shared embedding space. In this space, the goal is for 

semantically related items to cluster together, regardless of whether they are images or text. 

A major hurdle in real-world CMR applications is the limited availability of labeled data 

for new or niche domains. This thesis addresses this challenge by proposing a transfer learning 

approach specifically designed to leverage knowledge from a labeled source domain and 

effectively transfer it to a target domain with unlabeled data. This strategy is crucial for scenarios 

where the categories of interest in the target domain might be entirely different from those with 

readily available labels.  

Following the notation of the “Deep Multimodal Transfer Learning for Cross-Modal 

Retrieval” Paper, we will formalize the problem setup:  

• Source Domain 

o Contains 𝑪𝒔 labelled categories 

o 𝒎 instances of image-text pair denoted as 𝑺 =  {(𝒔𝒊
𝜶, 𝒔𝒊

𝜷
)}𝒊=𝟏

𝒎  
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o Each pair (𝑠𝑖
𝛼 , 𝑠𝑖

𝛽
) possesses a label vector 𝒚𝒊  =  [𝒚𝟏𝒊, 𝒚𝟐𝒊, . . . , 𝒚𝑪𝒔𝒊]  ∈  ℝ𝑪𝒔 , 

indicating which category the sample belongs to. If the ith instance belongs to the 

kth category, 𝒚𝒌𝒊 =  𝟏 , otherwise 𝒚𝒌𝒊 =  𝟎 

• Target Domain 

o Contains 𝑪𝒙 unlabeled new categories 

o 𝒏 instances of image-text pair denoted as 𝑿 =  {(𝒙𝒋
𝜶, 𝒙𝒋

𝜷
)}𝒋=𝟏

𝒏  

o Samples in target domain are without labels 

Importantly, target domain categories have no overlap with the source domain categories, 

signifying a need for knowledge transfer to unseen categories. 

 

Figure 3 Two-Stage training approach for Cross-Modal Retrieval 

To tackle this, the thesis adopts a two-stage training approach as illustrated in Figure 3. 

The first stage, pre-training, involves training a cross-modal model on a large and potentially 
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more generic multimodal dataset.  This stage is essential for the model to learn robust cross-

modal correspondences that generalize well.  Even if the pre-training data is not a perfect domain 

match for the target data, it provides a strong foundation for mapping into a shared representation 

space.  The second stage, fine-tuning, focuses on tailoring the pre-trained model to the specifics 

of the target dataset, including its unique data distribution and categories. 

This two-stage approach offers several key advantages.  Pre-training on a diverse dataset 

significantly improves model performance and generalization, mitigating overfitting, which is a 

critical concern when the target dataset is small. Additionally, starting from a pre-trained state 

leads to significantly faster convergence during fine-tuning, saving training time and 

computational resources.  Finally, this method is resource-efficient. In cases where the target 

dataset is relatively small, it leverages the knowledge learned during pre-training, compensating 

for the limited data in the target domain. 
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Chapter 4  

Methods and Experimental Settings 

4.1 Methods - Experimental Progression for Enhanced Cross-Modal Retrieval 

This thesis investigates a deep multimodal transfer learning approach to facilitate cross-

modal retrieval (CMR), specifically focusing on the challenge of transferring knowledge from a 

labeled source domain to a target domain with unlabeled data and disjoint categories.  An 

iterative experimental design was adopted to explore various strategies and analyze their impact 

on CMR performance in this setting. 

4.1.1 Version 1: Pre-training & Zero-Shot Testing 

 

Figure 4. Version 1 - Pretraining stage trained only on source labelled dataset 
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• Procedure: The initial model was pre-trained solely on the source labelled dataset using 

the objective function ℒ = ℒ𝑚 + 𝜆1ℒ𝑠. It was then directly evaluated on the target 

domain without any exposure to target data. 

• Reasoning: This setup served as a baseline to assess whether the model acquires any 

generalizable cross-modal knowledge during pre-training even without explicit 

knowledge transfer techniques. A degree of performance in this zero-shot scenario would 

indicate the potential for transfer learning. 

• Aim: Establish the value of pre-training and gauge if source domain knowledge offers at 

least a basic starting point for target domain performance. 

4.1.2 Version 2: Pre-training & Fine-tuning (with Labelled Target Data) 

 

Figure 5. Version 2 - Fine-tuning stage trained only on unlabelled target dataset 

• Procedure: The pre-trained model (from Version 1) underwent fine-tuning with the 

addition of labeled target data, using the same objective function ℒ = ℒ𝑚 + 𝜆1ℒ𝑡. Here 

the formulation of ℒ𝑡 is same as ℒ𝑠 because we know the labels of target data.  
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• Reasoning: While not directly aligned with the unlabelled target data problem, this 

version is crucial for verifying model correctness. The model performance is expected to 

be higher and not to be compared with other versions. Success here suggests that the 

model has the capacity to adapt to new data when labels are available, strengthening the 

validity of subsequent variations. 

• Aim: Validate the model architecture and optimization pipeline, ensuring the ability to 

learn within the transfer learning framework. 

4.1.3 Version 3: Pre-training, Fine-tuning (with Pseudolabels) 

 

Figure 6. Version 3 - Fine-tuning stage trained on unlabelled target dataset 

• Procedure: Pre-training remained as in Version 1. Fine-tuning then incorporated the 

unlabelled target data with pseudolabels, modifying the objective function to ℒ = ℒ𝑚 +

𝜆1ℒ𝑠 + 𝜆2ℒ𝑡. 
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• Reasoning: This introduces the core idea of knowledge transfer using pseudolabels to 

represent target domain semantics based on source domain knowledge. It aligns with the 

thesis's focus on scenarios where target labels are unavailable. 

• Aim: Investigate the effectiveness of pseudolabels as a substitute for true labels and 

quantify gains in target domain performance due to this transfer strategy. 

4.1.4 Version 4: Full Source Data for Pre-training & Fine-tuning 

 

Figure 7. Version 4, Version 5, Version 6 - Fine-tuning stage trained on labelled source 

dataset and unlabelled target dataset utilizing joint-learning strategy 
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• Procedure: Pre-training used the entire source dataset. Fine-tuning continued to leverage 

pseudolabels on the unlabelled target data while also incorporating the entire source 

dataset, maintaining ℒ = ℒ𝑚 + 𝜆1ℒ𝑠 + 𝜆2ℒ𝑡. 

• Reasoning: Exposing the model to more source data during both stages offers potential 

improvement in the quality of representation learning and pseudolabels. 

• Aim: Determine if maximizing source domain knowledge benefits cross-modal 

alignment and overall performance in the transfer setting. 

4.1.5 Version 5: Category-Split Source Data 

• Procedure: Source data was split by category for pre-training and fine-tuning. Fine-

tuning still used pseudolabels with the target data. Objective functions remained as in 

Version 4: ℒ = ℒ𝑚 + 𝜆1ℒ𝑠 + 𝜆2ℒ𝑡. 

• Reasoning: This probes the model's ability to transfer knowledge even when pre-training 

and fine-tuning source categories are non-overlapping. This simulates a more realistic 

and challenging scenario where the pre-training data might not directly cover the 

categories of interest. 

• Aim: Examine the robustness of knowledge transfer when the source and target 

categories are less aligned. 
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4.1.6 Version 6: Randomly-Split Source Data 

• Procedure: Pre-training and fine-tuning utilized randomly divided halves of the source 

dataset. The rest of the setup mirrored Version 4: ℒ = ℒ𝑚 + 𝜆1ℒ𝑠 + 𝜆2ℒ𝑡. 

• Reasoning: This acts as a control for Version 5, demonstrating whether gains are due to 

category-specific transfer or simply from increased source data. 

• Aim: Isolate the impact of category alignment on knowledge transfer vs. the effect of 

having more source data during both training stages. 

4.2 Experimental Setting 

4.2.1 Dataset – Wikipedia Dataset 

The primary dataset for this research is derived from Wikipedia's "featured articles" 

(Pereira et al, 2014).  It offers a rich collection of 2866 image-text pairs, each encompassing a 

single image and a corresponding text description (several paragraphs) related to the image 

content.  The dataset covers ten high-level semantic categories, such as art, history, and sports, 

providing a diverse range of content for model training and testing.  Following established 

practice, the dataset is divided into a training set of 2173 pairs and a testing set of 693 pairs to 

ensure consistency and facilitate comparison with original paper. 
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4.2.2 Experimental Setup  

The experimental design centers on transductive transfer learning, a scenario where the 

model has access to unlabelled target data during training but not the true category labels. This 

setting simulates real-world challenges where knowledge transfer is required to unseen domains 

with potentially new or unlabelled categories. 

To evaluate model performance under these conditions, both the training and testing sets 

from Wikipedia dataset are randomly split into source and target subsets. Each subset 

encompasses 50% of the original categories within that dataset. This approach ensures that 

models must generalize their knowledge and transfer it effectively to unseen categories during 

the testing phase. 

For feature representation, consistency with the original paper is maintained by 

employing VGGNet (Simonyan, & Zisserman, 2014) for image features and Doc2Vec (Lau, & 

Baldwin, 2014) for text features. VGGNet, a widely used convolutional neural network 

architecture, has proven effective in learning robust image representations. Doc2Vec, a word 

embedding model, captures the semantic relationships between words within the text 

descriptions. 

On top of these feature extractors, a multi-layer perceptron (MLP) architecture is 

implemented. The MLP consists of three fully-connected layers with ReLU (Rectified Linear 

Unit) (Nair, & Hinton, 2010) activation functions. The number of hidden units in these layers is 

4096, 4096, and 512, respectively (Zhen et al., 2022). These layers project the high-dimensional 

feature vectors obtained from VGGNet and Doc2Vec into a shared embedding space, allowing 

for effective cross-modal retrieval. 
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The entire model is trained end-to-end using the PyTorch framework. The Adam 

optimizer (Kan, Shan, Zhang, Lao, & Chen, 2014), a popular optimization algorithm for deep 

learning models, is employed with a learning rate of 10-4. A batch size of 100 samples is used for 

training, and the maximum number of training epochs is set to 50. These hyperparameters were 

chosen based on a combination of empirical evaluation and reference to established practices in 

deep learning research. 

4.2.3 Evaluation Metrics  

To assess the effectiveness of the proposed methods in CMR tasks, primary evaluation 

metric used is mean average precision (mAP) (Rasiwasia et al., 2010 ).  

mAP is a widely adopted and robust metric in CMR tasks. It considers both the precision 

of retrieved results and their ranking order. The calculation of mAP involves iterating over all 

queries in the test set. For each query, the model retrieves a set of nearest neighbors from the 

target data based on their similarity in the shared embedding space. Precision is calculated at 

various ranking thresholds (e.g., top 1, top 5, top 10 retrieved items).  Essentially, precision 

measures the proportion of relevant items within the retrieved set at a specific ranking position. 

Mean Average Precision (mAP) is then obtained by averaging the precision values across all 

ranking thresholds and all queries in the test set. 

 

Here's the mathematical equation for mAP: 
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𝐴𝑃 =  
1

𝑅
∑ 𝑃(

𝑁

𝑟=1

𝑟)𝜎(𝑟) 

 

where: 

• R: Number of relevant items for a specific query 

• N: Total number of samples in the target data 

• 𝜎(𝒓): Indicator function (1 if the 𝑟th retrieved item is relevant to the query, 0 

otherwise) 

• 𝑷(𝒓): Precision at ranking position 𝑟 



28 

Chapter 5  

Experiment Results and Observations  

The experimental results presented in this section provide crucial evidence for evaluating 

the effectiveness of the proposed cross-modal retrieval methods.  By analyzing performance 

across model versions (summarized in Table 1), key trends are identified that illuminate the 

impact of specific techniques and parameter choices.  These observations inform understanding 

of the strengths and potential limitations of the proposed approach within the context of 

knowledge transfer for unlabelled target domains. 

5.1 Analysis of Model Versions 

5.1.1 Version 1: Pretraining on Source Labelled Dataset Only 

• Summary: This version establishes a baseline performance (mAP: 0.300 ± 0.038) 

without any knowledge transfer to the target domain. It serves as a reference point to 

gauge the effectiveness of subsequent versions that incorporate transfer learning 

strategies. 

• Observations: The mAP score is considerably lower compared to the original paper's 

model (mAP: 0.523 ± 0.066). This indicates that directly applying the model trained on 

the source domain to the target domain (zero-shot learning) yields limited performance. 
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• Insights: This finding aligns with the well-known challenges of directly applying models 

trained on a source domain to a target domain with different data distributions. The 

model struggles to generalize effectively without some adaptation to the target data. 

5.1.2 Version 2: Fine-Tuning on Target Labelled Dataset 

• Summary: This version introduces fine-tuning on the target labelled dataset after 

pretraining on the source labelled dataset. It achieves a significant improvement in mAP 

(0.815 ± 0.030) compared to Version 1, demonstrating the benefit of target-specific 

adaptation. 

• Observations: The mAP score surpasses the original paper's model, suggesting that fine-

tuning on the target labelled data can be highly effective when labelled target data is 

available. This highlights the importance of target-specific adjustments for performance 

gains. 

• Insights: This confirms the effectiveness of transfer learning when the target domain has 

labelled data. The model leverages the knowledge learned from the source domain and 

refines it on the target domain, leading to superior performance. The model performance 

was expected to be higher and not to be compared with other versions because it doesn’t 

align with our original problem setting of transferring knowledge to unlabelled target 

dataset. 
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Table 1 Performance comparison in terms of the (Mean ± Std) mAP scores on Wikipedia 

dataset over ten times of Monte Carlo simulations 

Version Stage Parameter Image => Text Text => Image Average Avg. Epoch 

Original Source (Zero 

Shot) 

𝜆1  =  0.8 0.305  ± 0.042 0.295 ± 0.034 0.300 ± 0.038 18 

Source + Target 𝜆1  =  0.5 

𝜆2  =  4.0 

0.502 ± 0.067 0.545 ± 0.070 0.523 ± 0.066 20 

1 Pretraining 𝜆1  =  0.8 0.305  ± 0.042 0.295 ± 0.034 0.300 ± 0.038 18 

2 Pretraining  𝜆1  =  0.8 0.305  ± 0.042 0.295 ± 0.034 0.300 ± 0.038 18 

Fine-Tuning 𝜆1  =  3.0 0.711  ± 0.040 0.920 ± 0.025 0.815 ± 0.030 13.4 

3 Pretraining 𝜆1  =  0.8 0.305  ± 0.042 0.295 ± 0.034 0.300 ± 0.038 18 

Fine-Tuning 𝜆2  =  2.0 0.468  ± 0.073 0.467 ± 0.072 0.468 ± 0.072 19.9 

4 Pretraining 𝜆1  =  0.8 0.305  ± 0.042 0.295 ± 0.034 0.300 ± 0.038 18 

Fine-Tuning 𝜆1  =  1.0 

𝜆2  =  2.5 

0.479  ± 0.064 0.514 ± 0.067 0.497 ± 0.065 13.4 

5 Pretraining 𝜆1  =  0.5 0.269  ± 0.033 0.271 ± 0.021 0.270 ± 0.026 12.5 

Fine-Tuning 𝜆1  =  0.8 

𝜆2  =  3.2 

0.476  ± 0.075 0.504 ± 0.079 0.490 ± 0.076 15.3 

6 Pretraining 𝜆1  =  1.2 0.291  ± 0.028 0.284 ± 0.028 0.287 ± 0.028 28.2 

Fine-Tuning 𝜆1  =  0.8 

𝜆2  =  2.5 

0.470  ± 0.064 0.496 ± 0.069 0.483 ± 0.066 17.8 
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5.1.3 Version 3: Fine-Tuning on Target Unlabelled Dataset with Pseudolabels 

• Summary: This version explores using pseudolabels for fine-tuning on the target 

unlabelled dataset. However, the mAP score (0.468 ± 0.072) falls below both Version 1 

and the original paper's model. 

• Observations: The performance is lower than expected, indicating that using 

pseudolabels for fine-tuning on the target unlabelled data not be as effective as using 

labelled target data (as in Version 2). 

• Insights: There are two possible explanations. First, the quality of pseudolabels 

generated from the source model might be insufficient for effective fine-tuning on the 

target domain. Second, jointly training with source and target data, as in the original 

paper's model, might be crucial for successful knowledge transfer, even when using 

labelled data for the target domain (as opposed to pseudolabels). 

 

5.1.4 Version 4: Fine-Tuning on Full Source Labelled + Target Unlabelled Dataset 

• Summary: This version showcases the best performance among models (excluding the 

original paper's) with an mAP of 0.497 ± 0.065. It achieves a good balance between 

training speed and adaptability, fulfilling thesis goals. 

• Observations: While it performs slightly lower than the original paper's model, this 

version offers a significant advantage in training efficiency by leveraging both source and 
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target data during fine-tuning. This aligns with thesis objectives of achieving fast training 

and adaptability. 

• Insights: The inclusion of the target unlabelled data during fine-tuning likely helps the 

model adapt to the target domain to some extent, even without explicit labels. This 

suggests that the model can learn from the structure and distribution of the target data, 

even if the labels are unavailable.  

5.1.5 Version 5: Fine-Tuning with Half Source Categories + Target Unlabelled Dataset 

• Summary: This version investigates the impact of using a limited set of source 

categories during fine-tuning. The mAP score (0.490 ± 0.076) is slightly lower compared 

to Version 4. 

• Observations: The performance dip suggests that using a reduced set of source 

categories for fine-tuning might hinder the model's ability to transfer knowledge 

effectively to the target domain. 

• Insights: Fewer source categories might limit the variety of features the model can learn 

from and transfer to the target domain. This underlines the importance of having a 

sufficient number of source categories during fine-tuning for optimal performance. 
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5.1.6 Version 6: Fine-Tuning with Half Source Labelled + Target Unlabelled Dataset 

• Summary: This version explores splitting the source data in half for pretraining and fine-

tuning, along with target unlabelled data. The mAP score (0.483 ± 0.066) is the lowest 

among Versions 4-6. 

• Observations: The performance decline and increase in training epochs suggest 

challenges with this approach. This may be due to the random split potentially creating 

suboptimal data distributions for either pretraining or fine-tuning stages. Interestingly, the 

pretraining result was better than Version 5. This suggests the split might have provided 

more diverse categories during pretraining, but the limited data for fine-tuning could have 

hampered performance. 

• Insights: Source data quantity and diversity seem crucial for both pretraining and fine-

tuning. Random splitting might create imbalances. This emphasizes the need for a 

sufficient amount of source data, even when adapting to unlabelled target data. Splitting 

the source data based on category similarity could potentially improve results, ensuring a 

well-distributed variety of features for both training stages. 

5.2 Parameter Tuning Trends 

This section analyzes the impact of parameter tuning on model performance, focusing 

specifically on the weighting between 𝜆1 (ℒ𝑠  parameter) and 𝜆2 (ℒ𝑡 parameter).  By examining 

trends in heatmaps and mAP scores across different  model versions, we can gain insights into 
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how these parameters influence knowledge transfer and adaptation to the unlabelled target 

domain. 

5.2.1 Original Version 

The heatmap for the 

original model reveals a positive 

correlation between accuracy and 

higher values of 𝜆2 

(ℒ𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟). Conversely, 

increasing 𝜆1 (ℒ𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 

appears to have a lesser or slightly 

negative impact on performance. 

This underscores the importance of 

prioritizing the model's ability to 

learn effectively from pseudolabels on the target dataset. By giving more weight to the unseen 

loss, the joint-learning process successfully guides knowledge transfer to the target domain, 

subsequently improving the overall mAP score. Aligning with this finding, we selected the 𝜆1 as 

0.5 and 𝜆2 as 4.0 in the original model.  

Figure 8 Heatmap of Original Version: Impact of 𝝀𝟏 and 

𝝀𝟐 on mAP scores 



35 

5.2.2 Version 4 (Full Source 

Pretraining; Full Source + Target 

Fine-tuning) 

In Version 4, while a higher 𝜆2 still 

benefits performance, the heatmap 

suggests the need for balance between 

both parameters.  Excessively 

increasing 𝜆2 while heavily 

suppressing 𝜆1 potentially harms the 

model's ability to consolidate the knowledge acquired during pretraining.  This implies that while 

knowledge transfer to the target domain is crucial, it's also important to retain and leverage the 

information learned from the labelled source dataset. Aligning with this finding, we selected the 

𝜆1 as 1.0 and 𝜆2 as 2.5 in the version 4 model. 

5.2.3 Version 5 (Category-Split Source 

Data + Target Data) 

Version 5 exhibits a distinct trend 

where higher 𝜆2values combined with lower 

𝜆1values lead to generally better mAP 

scores. This could be attributed to the 

Figure 9 Heatmap of Version 4: Impact of 𝝀𝟏 and 𝝀𝟐 on mAP 

scores 

Figure 10. Heatmap of Version 5: Impact of 𝝀𝟏 and 𝝀𝟐 

on mAP scores 
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limited set of source categories available during fine-tuning.  Prioritizing pseudolabel learning  

(high 𝜆2)  helps the model compensate for the reduced source knowledge, maximizing the 

transfer potential.  Minimizing the focus on the seen loss (low 𝜆1) prevents the model from 

overfitting to the source categories, potentially enhancing generalizability. Aligning with this 

finding, we selected the 𝜆1 as 0.8 and 𝜆2 

as 3.2 in the version 5 model. 

5.2.4 Version 6 (Randomly-Split 

Source Data + Target Data) 

Interestingly, in Version 6, the 

optimal mAP scores seem to occur when 

both 𝜆1 and 𝜆2are increased but with few 

irregularities. The potentially uneven 

distribution of categories due to random 

splitting might explain this irregularity. The increased emphasis on both source and target data 

during training likely forces the model to aggressively learn category representations from the 

limited source data while simultaneously maximizing knowledge transfer to the target domain. 

Aligning with this finding, we selected the 𝜆1 as 0.8 and 𝜆2 as 2.5 in the version 6 model. 

Figure 11. Heatmap of Version 6: Impact of 𝝀𝟏 and 𝝀𝟐 on 

mAP scores 
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5.2.5 Key Takeaways 

• Prioritizing Target Domain: Across most versions, increased weighting on 𝜆2 (unseen 

loss) is beneficial, underlining the significance of effective pseudolabel learning and 

knowledge transfer for unlabelled target domains. 

• Contextual Balance: The optimal balance between 𝜆1 and 𝜆2 seems to depend on the 

quantity and distribution of the source labelled data. 

• Dataset Influence: The manner in which the source dataset is split has a marked impact 

on parameter tuning trends. 
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Chapter 6  

Discussion  

6.1 Summary of Findings 

Our experimental results offer valuable insights into cross-modal retrieval with a focus on 

knowledge transfer to unlabelled target domains. Key findings include: 

 

1. Benefits of Joint Learning: Versions incorporating simultaneous training with both 

source and target data (as in the original paper and, to some extent, Version 4) 

demonstrate improved performance. This emphasizes the value of joint learning in 

guiding knowledge transfer and facilitating adaptation to the target domain, particularly 

when using pseudolabels. 

 

2. Importance of Parameter Tuning: The optimal balance between 𝜆1 and 𝜆2 parameters 

is highly dependent on the specific dataset characteristics. The quantity and distribution 

of source data categories in both pretraining and fine-tuning stages significantly influence 

the effectiveness of transfer learning strategies. 
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3. Source Data Matters: Sufficient quantity and diversity within the source labelled data 

are crucial for both building robust initial representations (pretraining) and enabling 

effective fine-tuning on the target domain. 

6.3 Implications and Future Work 

Building upon these findings, several potential strategies can be explored to further 

optimize adaptation speed and accuracy using joint learning techniques: 

1. Strategic Dataset Splits: Instead of random source data splits, investigating splits based 

on category similarity or semantic relatedness could improve knowledge transfer 

efficiency, potentially influencing optimal parameter choices.  This could optimize 

learning from limited source data. 

2. Improved Pseudolabeling: Experiment with advanced pseudolabeling techniques to 

enhance confidence or quality scores associated with pseudolabels.  More reliable 

pseudolabels could further improve knowledge transfer even with limited source data. 

3. Testing on Diverse Datasets: Evaluating our strategies across a wider range of cross-

modal datasets with varying characteristics and diverse categories to assess their broader 

applicability. 
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Chapter 7  

Conclusion  

This thesis investigated the effectiveness of hybrid pre-training and fine-tuning strategies 

in facilitating knowledge transfer for cross-modal retrieval.  

Key findings highlight the advantages of joint learning with source and target data for 

promoting knowledge transfer. While the two-stage approach of pre-training and fine-tuning 

demonstrably improved training efficiency in terms of epochs required, the results emphasize the 

critical role of both source and target domains being present during the same training stage. This 

simultaneous training allows the model to effectively leverage information from both domains, 

leading to improved adaptability and performance. 

Additionally, the study underscores the importance of dataset-specific parameter tuning. 

The optimal trade-off between parameters governing the emphasis on source and target data 

directly depends on the characteristics of the source dataset, including the number and 

distribution of categories. 

Overall, this thesis contributes to the understanding of effective knowledge transfer 

techniques in cross-modal retrieval. The findings establish a strong foundation for the continued 

exploration of hybrid training strategies aimed at improving the performance and efficiency of 

cross-modal retrieval models, while highlighting the importance of considering both source and 

target data concurrently during training for optimal knowledge transfer. 
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