THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF BIOBEHAVIORAL HEALTH

Genetic, Behavioral, and Health-Related Associations in the Journal Drug and Alcohol Dependence: A Scoping Review

DE'JAH RENEE COATES SPRING 2024

A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Biobehavioral Health with honors in Biobehavioral Health

Reviewed and approved* by the following:

Alexis R. Santos Assistant Professor of Human Development and Family Studies, and Demography Thesis Supervisor

> Marie Cross Assistant Teaching Professor of Biobehavioral Health Honors Adviser

> > * Electronic approvals are on file.

ABSTRACT

Substance use among people in the United States and emphasis on genetic influences has been present since early studies on the matter. Further interest in the complex interplay between substance use and genetics, and their joint influence on health, has also been of interest. However, this research is not without limitations, and study conditions, points of interest, and biological arguments vary from study to study. This situation highlights the need for studying the state of the field and the aforementioned variation. This thesis presents a scoping review of research that ties substance use, genetics, and health by focusing on the journal Drug and Alcohol Dependence, one of the major outlets in the field. A scoping review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for Scoping Reviews. A total of 120 studies address, in some way, the specific interest of this review. Results suggest wide variation in publication trends, sample demographics, substance use elements, the genetic marker, and study design. The resulting analysis reveals that the current literature encompasses a broad range of gene and behavior interactions and, moderately, acknowledges the health outcomes associated with long-term substance use. Despite the currently available literature covering a broad spectrum of genes, behaviors, and health outcomes, new studies are needed to continue to explore genetic diversity and demographics of the sample and address the limitations of current studies to broaden understanding of substance use disorder as it relates to health outcomes in the field and inform the development of novel treatments.

TABLE OF CONTENTS

LIST OF FIGURESii	ii
LIST OF TABLES	v
ACKNOWLEDGEMENTS v	1
Chapter 1 Introduction1	L
Genetic Influences on Substance Abuse Susceptibility4Rationale for a Scoping Review5The Journal on Drug and Alcohol Dependence6Behavioral and Health Outcomes7Honor's Project in Biobehavioral Health8	5 5 7
Chapter 2 Methods 1	0
Chapter 3 Results 1	3
Total Articles by Publication Year1Sample Size1Sample Demographics1Recognition of Limitations of Analyzed Studies1Genetic Influences and Genotypes of Interest1Behavioral Outcomes2Health-related Outcomes2	6 7 8 9 21
Chapter 4 Discussion2	23
Appendix A: Article Identification and Genes of Interest	29
Appendix B: Behavioral and Health Outcomes5	55
Appendix C: Study Limitations and Sample Demographics	50
BIBLIOGRAPHY	35
ACADEMIC VITAE) 6

LIST OF FIGURES

- Figure 1. PRISMA Flowchart and Identification and Screening of Relevant Articles in the journal Drug and Alcohol Dependence. Studies must meet the following inclusion criteria: (1) publication year between 2000-2023, (2) all populations studied, and experiments conducted, are within the United States, and (3) the article must identify a gene or genotype of interest.14
- Figure 3. Histogram of the Sample Size Distribution of Studies Analyzed from the Journal on Drug and Alcohol Dependence. Sample sizes observed from articles included range from n=8 to n=1,936,764 with the majority of the sample sizes falling on the left side of the distribution. 17

LIST OF TABLES

Table 1. Categorical Distribution of Genes and Biomarkers. The 15 categories of genes or
biomarker groups with the highest frequency of mention are listed in descending order.20

ACKNOWLEDGEMENTS

First, I would like to thank my exceptional thesis supervisor, Dr. Alexis Santos for his continuous support and for making this process so worthwhile. Despite any obstacle or circumstance that was presented to us during this time, I have had the privilege of working through them with someone solution-oriented, kind, and patient and for that I am so grateful.

To Dr. Marie Cross, thank you for your patience, your understanding, and your flexibility. To Dr. Nicole Webster and Dr. Latisha Franklin, thank you for being a listening ear when I needed one. Thank you for empathizing with me, and for believing in my potential to persevere and see this project to completion.

To my family, both chosen and by blood, thank you for being my rock. From my parents for the constant reminders of my own capabilities even when I forget, to my roommates for the endless words of encouragement and the comic relief. I argued with you all at the time, but I do genuinely appreciate you demanding that I close the laptop, eat dinner, and watch a movie. You all make even the hardest tasks in life a little easier.

Chapter 1

Introduction

Substance use disorder (SUD) is a mental condition affecting the behavior and brain function of an individual and impacting their ability to control their consumption of psychoactive substances such as drugs including tobacco and cannabis, alcohol, and medications such as opioids (NIMH, 2023). In addition to these commonly discussed effects, it impairs the quality of life of those who suffer from it in regard to their vocational, social, and physical functioning (Alexandre, 2011). Due to the functional nature of drugs to influence the body's physiological and biochemical processes, they can have a vast range of pharmacological effects. They can alter neurotransmitter functions, modify the cellular activities, and ultimately affect an individual's mood and overall health. The specific mechanisms of this action are dependent on the type of drug, its intended purpose, and its dosage.

According to the National Center for Drug Abuse Statistics (NCDAS), drug overdoses have claimed the lives of almost one million people in the United States since 1999 (2023). Furthermore, drug overdoses account for 96,700 deaths per year on average, with accidental overdoses becoming a leading cause of death for individuals aged 45 and over in recent years (NCDAS: *Drug Abuse Statistics*, 2023). As the prevalence of drug abuse steadily increases, there is also a need for understanding the genetic, behavioral, and health-related factors that are prevalent in the susceptible population and how the intersection of these factors contributes to the development and progression of SUD. Historically, tobacco use and nicotine addiction has been a topic of addiction research and drug policy and regulation. However, it has also been regarded as one of the less severe categories of drug use despite current evidence stating that there are no benign forms of tobacco and no safe level of exposure (WHO: *Tobacco*, 2023). Nicotine is highly addictive chemically, most commonly found in the tobacco plant, and is often administered through smoking cigars/cigarettes, inhalation of fine powders, and chewing tobacco. Due to its association with cancer and lung disease related morbidity, cigarette smoking is currently the leading cause of premature death in the United States, making it a growing subject of public health concern (Widysanto et al., 2018). The World Health Organization (WHO) estimated in 2023 that the proportion of the population that consumed tobacco and nicotine in some form was approximately 1.3 billion globally. In the United States, tobacco use accounts for the premature death of 435,000 people annually (WHO: *Tobacco*, 2023). Furthermore, these deaths related to tobacco use are more likely to occur in low to middle-income populations, as 80% of these 1.3 billion tobacco users reside in low-to-middle-income countries (WHO: *Tobacco*, 2023).

Similarly to nicotine consumption, excessive alcohol consumption has become an expected social norm in American society. As noted by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), 90% of adults in the U.S. have consumed alcohol in their lifetime, often as part of a celebration, social event, or to accompany a meal. In addition, 40% of these American adults drink in excess when compared to the low-risk guidelines established by the NIAAA (2013). As the consumption of alcohol increases from moderate use and dependency upon the physiological effects of ethanol begins to form, individuals become subject to the effects of alcohol use disorder, or alcoholism. Alcohol use disorder (AUD) and alcoholism are associated with short-term health risks, such as injuries and motor accidents, violence and

assault, alcohol poisoning, and risky sexual behavior, as well as long-term health risks, such as hypertension, cancer, weakening of the immune system, learning and memory issues, anxiety and depression, and social problems (CDC, 2024). Beyond these compromises to quality of life and physical and mental health, AUD is also responsible for approximately three million deaths per year, accounting for 6% of global deaths (NCDAS, 2024). Furthermore, according to the Centers for Disease Control and Prevention, excessive alcohol use in the United States is responsible for 20% of deaths among individuals aged 20-49 years and was found to significantly shorten the lives of these individuals by an average of 23 years (2024).

More recently, research and law enforcement have developed a greater interest in cannabis use. Cannabis products refer to all of the products derived from the *Cannabis sativa* plant including, but not limited to: marijuana (products containing a significant amount of the mind-altering chemical tetrahydrocannabinol, or THC), hemp, and cannabidiol (CBD). Cannabis use disorder (CUD) presents a less severe risk than the aforementioned forms of drug use, making it an emerging public health and biomedical research concern (Connor et al., 2021). Of the 193 million global cannabis users, approximately 10% of them have been diagnosed with CUD (Connor et al., 2021). In the United States, 55 million individuals consistently use marijuana, with a large number of users (24%) being adolescents and young adults (ages 16-24) (NCDAS, 2023). Despite the lack of knowledge regarding the long-term effects of chronic cannabis use, current studies suggest potential risks including cognitive impairment, respiratory issues, and dependence. Thus, continuous research efforts are crucial to understanding the impact of prolonged cannabis use on the physical body and brain function.

Most immediate is the emergence of the opioid epidemic in the United States, which has been categorized as a public health emergency. Over 10 million people participate in opioid misuse each year, resulting in almost 50,000 deaths per year in the U.S. (NCDAS, 2024). The rise of opioid overdose attributed deaths can be outlined in three distinct waves beginning in the 1990s. According to the Centers for Disease Control, the first wave is characterized by an increase in prescription opioids in 1990, and overdose deaths from prescription overdose misuse began to be observed in 1999 (2013). The second wave began in 2010, when a rapid increase in overdose deaths involving heroin was observed. Most recently, the rise of synthetic opioid use has triggered the third wave of the opioid overdose death phenomenon. In 2013, there was a significant increase in deaths due to fentanyl, heroin, counterfeit pills, and cocaine usage (CDC, 2013).

Genetic Influences on Substance Abuse Susceptibility

Historically, it has been understood that a combination of genetic influence and environmental factors have an effect on behavior. Genetic variation has impacted the ways in which people differ in terms of their intellectual capacity, personality traits, mental health, and physical health. Predisposition to health outcomes, behavioral outcomes, and specific diseases and conditions, such as addiction, have been linked to genetic factors (Ducci & Goldman, 2012). In terms of addiction, existing genes of interest are being examined to determine whether they increase susceptibility and vulnerability or increase resilience toward developing a dependency upon chemical substances. This begs the question of whether addiction is inheritable, and if so, what portions of the genome can be manipulated to reduce adverse effects of drug consumption. According to Goldman et al, scientific understanding of addiction is largely enhanced by the identification of genes that play a role in altering substance-specific vulnerabilities and reactions (2005). This accounts for a variation in drug metabolism or drug receptors and influences the variation in reward or stress resiliency. Adopting a genetics perspective in examining drug use and substance abuse research has caused researchers to focus on the transmission and linkage of specific genes and the neurological basis of addiction. In addition, it has also shed light on evolutionary genetics and the growing field of epigenetics and gene and environment interactions. Recently, the emergence of newer and more accessible software and technology has facilitated access to genetic data which, when paired with behavioral surveys, provides increased potential for the treatment of addiction by understanding and manipulating the genome. Although they possess ethical implications, technologies such as CRISPR-Cas9 provide a promising concept for novel addiction treatment or prevention measures, if there is a potential significant linkage between gene functions and drug action (Li et al., 2020).

Rationale for a Scoping Review

Understanding that the topic of substance use spans multiple disciplines, it is essential to the field to discuss the implications and applications of such research from diverse perspectives. This study aims to synthesize the current knowledge on these major behavioral outcomes of drug use (nicotine dependency, alcoholism, cannabis use, and opioid misuse) as well as other emerging psychoactive substances and behaviors in the field. The aim of this work is to address this lack of synthesis of these studies, providing a specific and relevant body of work and analysis that specifically examines drug addiction in the United States at the intersection of behavioral and biological disciplines. This project will map the extent and range of the existing literature, while also acknowledging the knowledge gaps, common limitations of the current publications, and the sample composition of the articles that are published in the field and deemed relevant by specific inclusion criteria. Thus, it will produce a thorough analysis of reports studying the intersection of drug abuse, behavior, and health outcomes as it relates to chemical dependency and its related consequences in the United States population.

The Journal on Drug and Alcohol Dependence

The rationale for utilizing this journal for this review is related to the aims of this scoping review aligning with the aims of the editors of the journal *Drug and Alcohol Dependence*. The *journal Drug and Alcohol Dependence* is an international journal dedicated to publishing research articles, scholarly texts, and commentaries that primarily focus on drug, alcohol, and tobacco use and dependency. The studies featured in the journal range broadly from the genetic and molecular basis of such drug use, the pharmacological influences and actions of the drugs, the associated behavioral outcomes, and human-subject based studies involving treatment and interventions. Such studies utilize methods that span multiple disciplines and fields ranging from biology, sociology, and epidemiology to neuroscience and pharmacology.

The aims of the journal *Drug and Alcohol Dependence* include providing researchers, physicians, and policy makers with access to the scientific literature from different backgrounds and perspectives by consolidating this material into one single journal. It is intended to be an inclusive, accessible resource providing such information after publications selected to be featured have been subjected to rigorous review by editors. The journal *Drug and Alcohol Dependence* editors recognize that drug, alcohol, and tobacco dependence must be studied from an interdisciplinary perspective to increase understanding of substance use and its impact on the

population. The goal is to promote understanding of the multiple aspects that contribute to drug abuse in humans and collect transferable findings that can be utilized to inform drug policy, further scientific studies, expand treatment and prevention practices, and promote successful interventions.

Behavioral and Health Outcomes

In relation to drug abuse and SUD, the behavioral outcomes that are commonly associated include the symptoms and physical results of the pharmacological and chemical interactions occurring between the body and the drug. In this study, there is a special interest in the behaviors that are indicative of dependency and addiction to commonly accessible drugs. Dependency refers to the chronic, progressive impairment - involving psychological, social, and physiological dysfunction - directly associated with psychoactive substance use (Miyasato, 2010). Addiction is characterized by chronic drug seeking despite adverse consequences. Such outcomes of consistent drug use contribute to the stress, decision-making, reward circuitry, and self-control behaviors. The prevalent behavioral outcomes associated in studies of interest can be categorized into the following: tobacco use and nicotine dependency, alcohol use disorder and alcohol consumption, cannabis use, opioid misuse and abuse, and illicit drug use.

Those exhibiting drug abuse behaviors or addiction often experience at least one associated health issue. Health outcomes, such as cancer or lung disease, due to carcinogen exposure of repetitive drug inhalation are prevalent. Pharmacological interaction with drug receptors and chemical changes to brain function are also associated with the dysfunction of neural circuitry, leading to cognitive and psychological disorders. While an individual may be diagnosed with both SUD and mental disorders, there is insufficient evidence to support the hypothesis that one is caused by the other. In addition, there is a broad and extensive list of factors contributing to an individual's susceptibility to both drug abuse behaviors and psychiatric disorders as they share common risk factors.

In the available studies for review, common comorbidities include lung disease and cancer, psychiatric conditions and disorders, social or cognitive impairment and dysfunction, and death, among others. In addition, the impact of drugs on behavior (decision-making and risk-reward behaviors) has also linked drug use to infectious disease susceptibility. Sharing drug injection equipment and an increase in risk-taking or reckless behavior often contributes to drug use associations with hepatitis C virus (HCV) and human immunodeficiency virus (HIV).

Honor's Project in Biobehavioral Health

The proposed project addresses the three dimensions of scholarship of the Department of Biobehavioral Health at The Pennsylvania State University. These dimensions are biological, behavioral and health. It addresses the topic of substance abuse from a transdisciplinary perspective. The biological dimension is addressed through a focus on the genotypes associated with substance use. This is clearly delineated in the inclusion/exclusion criteria for the studies being analyzed. The behavioral dimension is addressed by: 1) focusing on substance use as a focal area, 2) documenting different behaviors captured under the broad umbrella of substance use, or 3) focusing on those with substance use as the target study population. This is accomplished in three ways: 1) the selection of a research outlet that focuses on substance use (*Drug and Alcohol Dependence*), 2) focusing on substance abuse as an outcome, and/or 3) substance use being a condition of the sample being analyzed within the study. Finally, the project addresses health by including information on health outcomes studied as part of the articles included in the analysis, with commonly associated health outcomes ranging from mental health status to physical consequences and comorbidities. Aside from covering each individual dimension of Biobehavioral Health, this thesis will provide a synthesis of the body of literature and highlight specific elements of study design such as target population, sample composition, and inclusion of limitations.

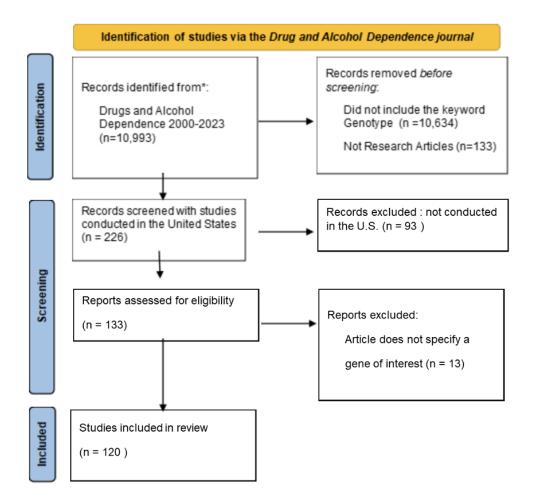
Chapter 2

Methods

In order to fully examine the association between genes of interest, drug and alcohol use behaviors, and related health outcomes that is currently publicly available, it was determined that a scoping review would be beneficial. Utilizing a scoping review as the approach allows for the researcher to outline the current knowledge and understanding while also identifying the potential gaps of knowledge that remain in the literature (Arksey & O'Malley, 2005). This scoping review was conducted in accordance with the steps outlined by Arksey & O'Malley (2005): identifying the question or purpose of the research effort, identifying relevant studies for further analysis, selecting the studies, collecting and organizing the data, and summarizing and reporting the results. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for Scoping Reviews checklist was also utilized to provide guidance for synthesizing the key concepts and relevant findings (Tricco et al., 2018).

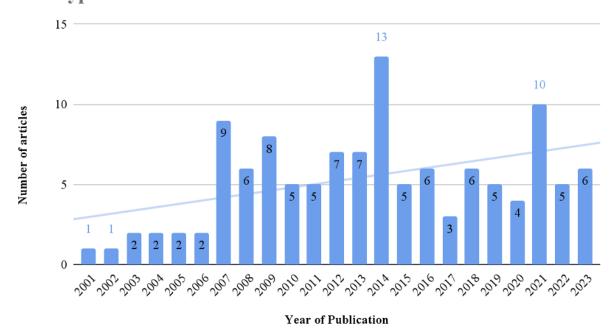
Peer-reviewed literature deemed relevant for the study was obtained through a utilization of the ScienceDirect platform. This study included all articles published in the journal *Drug and Alcohol Dependence*, which is one of the flagship journals in the area of interest. Access to ScienceDirect and the journal *Drug and Alcohol Dependence* were provided by The Pennsylvania State University. The database was searched using the term of interest ("*genotype*"). Studies included in the analysis were those published between the years of 2000-2023. We excluded those which were not categorized as a "Research Article" as determined by the journal's publication criteria, resulting in 226 research articles available for analysis. Additionally, articles were excluded if they were not conducted in the United States or primarily discussed a population outside of the United States and did not discuss a specific gene or genotype, further excluding another 93 articles. Despite not being the focal point of the analysis, comments are provided (when needed) to highlight instances of interest within the excluded articles. The remaining 133 articles obtained were analyzed. A clear flowchart for the articles being considered is shown in Figure 1 in Chapter 3. From each article, the following data were extracted and organized in a database: Article Title; Year of Publication; Genes or Genotypes of interest; Behavioral outcomes studied; Sample size; Stage of lifespan of the population; Health outcomes discussed; and Study limitations (whether or not they existed, and qualitative information).

Each article is given a unique ID for purposes of being identified across our summary tables or within the text. In Appendix Table A (Table A, hereafter), the following data are presented: Article ID; Article - Authors and Title; Year of Publication; and Genes or Genotypes of interest. For purposes of simplicity, we omit the article names and authors from any subsequent tables. However, the Article ID is included in each table to allow the reader to consult when needed. In Appendix Table B (Table B, hereafter), the following data are presented: Article ID; Behavioral outcomes studied; and Health outcomes discussed. In Appendix Table C (Table C, hereafter) the following data are presented: Stage of lifespan of the population; Sample size; Study limitations (whether or not they existed, and qualitative information). In summary, Tables A and B show information about the biobehavioral aspect of each study and Table C presents information about study design elements.


All data were analyzed using Statistical Package for the Social Sciences, commonly known as SPSS. This software was accessed through the Pattee and Paterno Library at The

Pennsylvania State University. All data retrieval, processing instructions, and analytic data necessary to replicate this study are included as part of this document.

Chapter 3


Results

First, I accessed the journal Drug and Alcohol Dependence through ScienceDirect. With the browse tool, I was provided access to all studies published between 2000 and 2023. Search results (n = 10.993) were filtered to determine whether they met the pre-screening inclusion criteria described in the Methods section. The first exception were those articles that did not meet the inclusion criteria of being a research article (n = 133) or referencing a specific genotype (n =10,634). Articles that met the initial inclusion criteria (n = 226) were then downloaded from Elsevier and saved to the device. After obtaining these articles in bulk, they were screened to determine whether they adhered to further exclusion criteria. Studies conducted outside of the United States (Australia, Asia, Europe, etc.) were excluded (n = 93). These excluded articles were recorded in a Microsoft Excel sheet independent of those being screened and analyzed for the project. This allowed us to reach our sample of 133 articles. Upon further review, we found articles that were downloaded but did not fit specific criteria, leading to additional exclusions. Research articles that did not specify a gene of interest, or associated gene for the behavioral outcome or health outcome of interest were excluded (n = 13). The remaining studies (n = 120)constitute the analytic sample for the thesis. These articles were thoroughly analyzed for review and information extracted from these studies was organized utilizing the spreadsheet to facilitate the analysis.

Figure 1. PRISMA Flowchart and Identification and Screening of Relevant Articles in the journal Drug and Alcohol Dependence. Studies must meet the following inclusion criteria: (1) publication year between 2000-2023, (2) all populations studied, and experiments conducted, are within the United States, and (3) the article must identify a gene or genotype of interest.

Total Articles by Publication Year

Genotype Related Publications 2000-2023

Figure 2. Trends in Genotypic Studies Published in the Journal on Drug and Alcohol Dependence. Results from utilizing the search term "*genotype*" in the journal of Drug and Alcohol Dependence meeting inclusion criteria were categorized by year of article publication.

At the beginning of the century, articles centering the intersection of drug and alcohol consumption and genetics that met the criteria outlined for this review were low. From 2000 to 2002, there was only one article per year fitting the aforementioned criteria. However, there was a slight increase from 2003 to 2006, with two research articles per year being published in the journal that fit the criteria. This was followed by a dramatic increase in 2007 to nine articles. This increase coincides with the final years of the first wave of the Prescription Opioid Epidemic. There was a slight decrease in 2008 with only six relevant articles being published,

before another increase similar to 2007 when eight relevant articles were published in 2009. Following this, there remained a consistent annual output of five to seven relevant publications from the journal until 2014, when a peak of 13 articles was reached. As seen in Figure 2, the highest number of research articles per year was published in 2014. Following this, there is a decrease in publications observed, with a consistent output of three to six relevant articles published each year, from 2015 to 2020. There was an increase in the publication of relevant articles in 2021, with the number of articles being 10. Following this, in more recent years (2022 to 2023), there was an output of 5-6 relevant articles per year being selected for publication in the journal. Since the first major increase in 2007, the number of published articles remains about four per year.

Sample Size

Historically, genetic studies have had small sample sizes. The studies that met the inclusion criteria for this review also reflected this. Only one study, an outlier, had more than 10,000 observations and this is because it included data from multiple studies. Thus, the sample size average is biased by this large value. While the range of sample sizes was from 8 to 1,936,764 individuals or subjects, the majority of the values are in the lower range of the distribution. This can be seen in Figure 3, below.

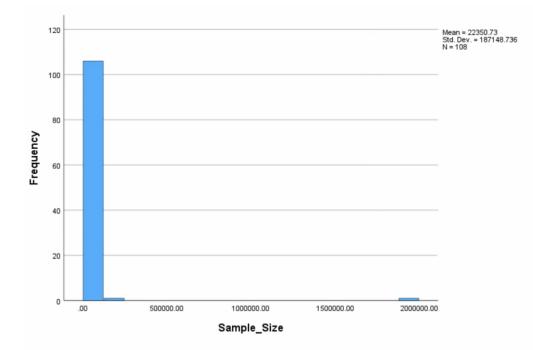


Figure 3. Histogram of the Sample Size Distribution of Studies Analyzed from the Journal on Drug and Alcohol Dependence. Sample sizes observed from articles included range from n=8 to n=1,936,764 with the majority of the sample sizes falling on the left side of the distribution.

Sample Demographics

Out of the 120 studies included in this scoping review, 14.17% concentrated on adolescent sample populations and 70.83% described their sample as adults. 78 (65%) of the total articles explicitly stated the mean age of participants or human subjects. After excluding animal model information and not accounting for vague ranges of sample age (n=52), the mean age of the samples in the reviewed articles was $34.07 (\pm 13.75)$ years. Average sample ages ranged from 9.91 years of age to 75.5 years of age. Additionally, a majority of these studies described their sample population as non-Hispanic Caucasian or those of European descent, with the remaining study populations as follows: 11.67% African American and 6.67% Hispanic or Latino/a/x. It is essential to also note that a majority of the studies involved non-diverse samples. This has been identified as a limitation of the field of biodemography, behavioral genetics, and genetics in general - mapping on to subspecialities such as behavioral genetics and substance use (as documented here). In conclusion, it seems the limitation(s) of the general field is/are applicable to studies that concentrate on substance use.

Recognition of Limitations of Analyzed Studies

A total of 116 (96.67%) of the 120 analyzed studies from the journal *Drug and Alcohol Dependence* explicitly addressed the limitations that impacted the results or conclusions drawn from their studies. This is a high percent and reveals the fact that researchers, and the journal, are cognizant of the limitations of the research. Of these reports, the majority noted five major limitations: 1) sample size or demographics was restrictive in terms of making generalizations, 2) self-report bias or response bias present, 3) confounding variables, factors, or underlying genetic or health influence, 4) misclassification or misdiagnosis due to novel or subjective diagnostic tests, and 5) data were obtained via a large database or previously collected genetic database, as opposed to a study-specific sample.

The first limitation is in line with what was discussed in the Sample Demographics section before. Self-reports are present, but they likely stem from possible recall or reporting bias which is present in any study that involves a survey or questionnaire component. The limitation on confounding covariates, also related to what data are collected or available, is worth noting as it is possible some of the associations may be underestimated/overestimated due to model

specification. The fourth limitation is possible as we have observed major developments in health technology over the past 23 years. As such, diagnoses have become better. However, this limitation is still a concern, particularly as it relates to studying populations of interest (people with a specific condition) or when issues of underdiagnoses are present. The final limitation is a staple of the field as it is common for researchers to collect data and aggregate it to make more analyses possible. Further information regarding specific study limitations and confounds is available in Table C.

Genetic Influences and Genotypes of Interest

Specific genotypes of interest or genes discussed were recorded during data collection to determine the prevalence of certain genotypes within this body of research. The 120 reports analyzed included a total of 87 unique genes, proteins, receptors, viruses, and cell types chosen as the biological marker of interest. The top 15 categories are available in Table 1, with the remaining genes, proteins, viruses, and cell types available in Appendix Table A. The percentage displayed refers to the proportion of articles focused on each genotype of interest. I must note that the frequency presented in the table is higher than the number of articles included in the review. This is due to some articles studying more than one gene or genetic marker of interest.

Gene of Interest	Frequency	Percentage
chromosome loci	32	26.67%
OPRM1 (and associated mu-		
opioid receptor and variants)	19	15.83%
Dopamine		
receptors/neurotransmitters		
(DRD2/DRD4/DAT1)	19	15.83%
HCV	16	13.33%
cytochrome P450 family		
(CYP2A6/CYP2B6)	11	9.17%
CHRNA4- CHRNA5- CHRNA6	11	9.17%
various single nucleotide		
polymorphisms (SNPs)	9	7.50%
5-HTT (serotonin transporter);		
SLC64A	6	5%
genome-wide association studies	7	6%
Taq1A SNP	5	4.17%
GABRA2	4	3.33%
alcohol dehydrogenase (ADH)		
gene cluster	4	3.33%
CD4 T-cells	3	2.50%
GABA(A)/ GABA(B)	3	2.50%
MAO-A/MAO-B	3	2.50%

Behavioral Outcomes

Studies published in the journal *Drug and Alcohol Dependence* focus on behavioral outcomes and interventions related to reward-circuitry behaviors and substance abuse disorders. Notable behavioral outcomes studied in the articles included in the analysis can be divided into the following categories: alcohol dependency and alcohol consumption (35.83%); nicotine dependency (20.0%); opioid dependency, including morphine and heroin (12.5%); general substance use disorder (10.83%); marijuana and cannabis use (11.67%); injection drug use, including methamphetamine (5.83%); cocaine use (5.83%); and other various outcomes, including toluene and oxycodone use (3.33%). In addition, a number of the studies reviewed (13.33%) primarily discussed two of the aforementioned categories, and two of the 120 reviewed articles simultaneously discussed three behavioral outcomes. Further information regarding these categories is available in Appendix Table B.

Health-related Outcomes

Furthermore, 71 (59.16%) of the articles analyzed discussed a broad range of associated health outcomes, with many of these studies examining multiple disorders and outcomes spanning different categories simultaneously. The specific breakdown from each category is as follows: 31.17% discussed psychiatric disorders (major depressive disorder, dysphoria, and mood disorders; schizophrenia and drug-induced paranoia; attention-deficit/hyperactivity disorder (ADHD); post-traumatic stress disorder (PTSD); and anxiety disorders), 16.67% mentioned social and academic problems (conduct disorder, deviance, or impulsivity; and

cognitive dysfunction and locomotor or memory impairment), 15.0% discussed viral infections (human immunodeficiency virus (HIV) and hepatitis C virus (HCV)), 5.0% mentioned chronic pain, and 5.0% discussed cirrhosis or liver disease. Less than 5.0% of the articles featured discussion of the following health outcomes: chronic stress, cancer (lung or liver), childhood maltreatment, adverse pregnancy outcomes (including neonatal abstinence syndrome), death, and insomnia. The remaining articles (40.83%) lack mention of a health outcome associated with the behavioral outcome or gene of interest. These health outcome categories and additional information regarding their associated behavioral outcomes are also available in Appendix Table B. Further, more information for each study included in this thesis is available in the Appendix Tables.

Chapter 4

Discussion

This thesis sought to explore the scholarship on genetics in the journal *Drug and Alcohol* Dependence, one of the main journals in the field. Based on the study protocol and the data analysis, conducted as part of this scoping review, it is difficult to confirm whether an association between substance abuse, genetics, behavior, and health outcomes is explicitly and actively being studied within the field. Approximately 2% of the articles or 226 articles were explicitly on this topic, but only about 1% or 120 articles were conducted in the United States. As documented, some studies focused on non-human subjects, reducing the already limited number of studies. There were major discrepancies and variations in study design, sample demographics, and genetic, behavioral, and health outcomes. Of the 120 articles deemed eligible for analysis based on the aforementioned inclusion criteria, about 59.16% mentioned related health outcomes and there was a significantly broad range of behavioral outcomes and genotypes discussed. The behavioral outcomes of interest were disproportionately studied, with an emphasis on alcohol consumption, nicotine use, and opioid misuse. However, this likely aligns with the drug overdose and morbidity trends in the United States at the time of publication. Simply said, as the dynamics of substance use change, so do the areas of interest.

Furthermore, the peaks in publication years evident in Figure 2 demonstrate the trends of research focusing on behavioral and health outcomes in the United States - with some form of genetic or genotypic focus. For example, the highest peak of articles published in 2014 aligns with reports of an increase to 10.2% of Americans of at least 12 years of age using illicit drugs, compared to percentages reported within the study period (SAMHSA, 2015). In addition, the

second highest peak of articles published in 2021 follows rising interest in the topic due to the opioid epidemic and the peak of the COVID-19 pandemic in 2020, when there was a 23% increase in alcohol abuse and 16% increase in drug abuse in the United States (Chacon et al., 2021). Lastly, the publication year of 2007 is the third highest peak in publications. According to the Centers for Disease Control and Prevention (CDC), 20% of adolescents and 90% of adults reported the use of prescription drugs in the past month in surveys conducted in 2007-2008 (Gu et al., 2010). Thus, the publication trends of articles being produced on the topic in any given year, as well as the content and study design, are representative of the public health trends regarding substance use outcomes in the nation.

The studies currently available for review examine a broad range of genotypes associated with substance abuse (see the Results section). However, the distribution of the frequency genotype occurrence in the articles clearly favored about a dozen genes. Table 1 shows the 15 most studied genes and genotypes in the journal from 2000-2023 while examining a US-based sample. This accounts for a majority of the 120 articles, suggesting a potential oversaturation of publications featuring the same genotypic foci, instead of examining novel genes within the population. Nevertheless, as mentioned before, there is variation within these studies.

The top three topics of interest reveal an interesting pattern. Studies concerning chromosome loci account for approximately one-fourth of article topics. Chromosome loci are regions on a chromosome that code for a gene, with loci on chromosomes 4, 5, 9-11, and 17 being previously linked to predisposition or susceptibility to multiple substances (Li & Burmeister, 2009). Relating to opioid misuse and the opioid epidemic, OPRM1, which codes for the mu-opioid receptor, allows opioid drugs to bind and perform their pharmacological action (Taqi et al., 2019). These receptor genes account for almost 16% of articles, the second highest frequency observed. Lastly, dopamine receptors and neurotransmitters (DRD2, DRD4, and DAT1) are the third highest in terms of study frequency. These genes are generally associated with nicotine and alcohol abuse but have also been linked to attention deficit/hyperactivity disorder (ADHD) (Blum et al., 2008). This is likely due to dopamine's association in the mesolimbic system (including the ventral tegmental area, striatum, amygdala, prefrontal cortex, and hippocampus) and its role in mediating reward and motivation (Lewis et al., 2021). These three genes, alone, account for the majority of examined genotypes of interest, with a combined frequency of 70/120. While the 120 studies consider an abundance of genes, the aforementioned distribution of genes in Table 1 implies that there are genotypes that have been neglected in the field, such as SOCS-3 and UTP20 among others, as they were examined in <1% of studies included in the review. All genes of interest observed are listed in Table A.

Although a growing topic of interest in the field, the lack of research on adolescent drug use and health and behavioral outcomes demonstrates a gap in knowledge in the literature. Only 14.17% of articles expressed an interest in studying an adolescent and teenager (<18 years of age) sample. Further, the majority of articles published in the years 2000-2023 have included study samples with the average age of 34.07 years, revealing a strong emphasis on adult behavioral and health outcomes regarding substance use. However, according to the Centers for Disease Control and Prevention (CDC), the majority of adults meeting the criteria for substance use disorder started their substance use behavior in their teen years (CDC, 2022). This underscores the need to focus on this stage of the life course. A significant proportion of available literature that can be generalized to the American population examines current adult behaviors and long-term effects of substance abuse, overlooking the potential role of adolescent development and childhood behaviors and treatment on the prevention and manifestation of substance abuse behaviors.

Another gap in knowledge is the lack of research that can be generalized and applied, specifically to racial and ethnic groups besides those described as of "European descent" or "Caucasians", ways to describe the non-Hispanic white population. African American populations have the highest percentage of rare single nucleotide polymorphisms SNPs and members of the Hispanic and Latino/a/x communities also possess admixed genomes, possessing a genetic ancestry that spans multiple regions and racial groups (Campbell & Tishkoff, 2010; Conomos et al., 2016). Despite the average sample size being moderate (relatively small), the current review was only able to identify African American and Hispanic or Latino/a/x representation in the sample groups of 11.67% and 6.67% of the articles, respectively. In the limitations of a broad majority of studies, there is a mention of intentional exclusion of "non-Caucasian groups' to prevent genetic confounds. The exclusion of these groups and lack of contextualization about the applicability of results from most studies with these groups as the focus sample generates a collection of research findings that are only generalizable to a subset of the US population.

While not thoroughly analyzed, excluded articles included more associated genetic, behavioral, and health outcomes than those fitting the criteria for analysis. It is worth noting that the articles not included in this review due to study site, location, or sample nationality did demonstrate a well-rounded collection of articles concerned with the genetic, behavioral, and health components of substance abuse worldwide. The use of "genotype" as a search term seems to have yielded many articles that focused on broad studies regarding genetic studies without explicitly providing background or mention of a specific gene or genotype, thus excluding an additional 92 articles. These excluded publications provide insight into genetic linkages to substance abuse. Nevertheless, the genetic diversity present in the United States and the behavioral and health habits and outcomes present in the American population differ from other regions of the world. So does the way society deals with such issues (e.g., treatment vs. punitive measures, access to care). Thus, it was essential to limit studies to the population of interest and specific genotypes that have been linked to these outcomes.

A limitation of this scoping review was that the quality of the study and its design were not analyzed. However, this is acknowledged in the decision to include only the peer-reviewed research articles available through the journal on Drug and Alcohol Dependence. Given these articles are published in one of the major journals in the field, it is assumed that the peerreviewed process filtered studies of lower quality or that required revisions. While the peerreviewed system has its flaws, it continues to be the gold-standard in recognizing work quality. Problematic papers would have been retracted. Additionally, this review does not include current literature about the genetic, behavior, and health components of substance abuse that were published outside of the journal on Drug and Alcohol Dependence, but this was how the thesis project was designed. Finally, the use of the search term "genotype" as the single term utilized to identify articles likely limited the search results and, thus, the articles included in the review. Alternative searches with terms like "polygenic risk score" and "genetics" yielded a similar number of initial articles (less than 3%), yielding validity to my research approach. In conclusion, the studies encompass a broad range of genotypes (SNPs, chromosome loci, dopamine transporter genes, and mu-opioid receptor genes) and their association with specific behavioral outcomes (e.g., nicotine dependency, alcohol dependency, opioid misuse). However, they do not connect these associations to the physical manifestations and health outcomes that

affect the United States population, as a vast number of these studies do not mention any health outcome. This is an area of growth for the field. Regarding study design and limitations, although average sample size is not a limitation for some of the studies, generalizations and suggestions of causal effects cannot be presented due to the prevalent exclusion of ethnic and racial groups, besides for non-Hispanic white populations (described as "European-Americans" and/or "Caucasians"). In addition, the omission of adolescents in study samples limits findings to long-term outcomes in adulthood and results do not account for the effect of childhood adversity and developmental factors. The results of this scoping review highlight a need for new studies to include more genetically diverse participants or subjects. To fully address the public health concern of substance use and its associated comorbidities in the United States, and develop new treatments and preventative interventions, it is essential that it is observed from multiple scientific perspectives and disciplines. The results presented in this project highlight numerous ways in which the field can grow to address the need for more research and to make this research more inclusive in terms of topics, focal areas, and study population.

ID	Publication	Article Title & Author(s)	# of	Gene_1	Gene_2	Gene_3	Gene_4	Gene_5	Gene_6
	Year		Genes						
		Early clinical manifestations of							
1		cannabis dependence in a		A NUZENU					
	2001	community sample.	1	ANKFN1					
	2001	Rosenburg, MF., Anthony, JC.	1	gene					
		Treating hepatitis C in							
2		methadone maintenance							
	2002	patients: an interim analysis.	1	UCV					
	2002	Sylvestre, DL Effects of heroin and its	1	HCV					
		metabolites on schedule-							
		controlled responding and							
		thermal nociception in rhesus							
3		monkeys: sensitivity to antagonism by quadazocine,							
		naltrindole and ß-							
		funaltrexamine.							
		Negus, S. S., Brandt, M. R.,		mu opioid					
	2003	Gatch, M. B., & Mello, N. K.	1	receptors					
	2003	A genome-wide search for	1	receptors					
		quantitative trait loci influencing							
		substance dependence							
		vulnerability in adolescence.							
4		Stallings, M. C., Corley, R. P.,		locus on					
		Hewitt, J. K., Krauter, K. S.,		chromoso	locus on	locus on	locus on	locus on	
		Lessem, J. M., Mikulich, S. K.,		me 3q24-	chromosome	chromosome	chromosome	chromosome	
	2003	& Crowley, T. J	5	25	9p34	11p15	20q11	20p11	
		A comparison of HCV antibody	-	-	- <u>1</u>	r	- 1	·r	
5		testing in drug-free and							
-	2004	methadone maintenance	1	HCV					

Appendix A: Article Identification and Genes of Interest

			1	1				1
		treatment programs in the United						
		States.						
		Strauss, S. M., Astone, J. M.,						
		Des Jarlais, D., & Hagan, H.						
		The utility of indirect predictors						
6		of hepatitis C viremia.						
0		Sylvestre, D. L., & Clements, B.						
	2004	J.	1	HCV				
		Genetic influences on quantity						
		of alcohol consumed by						
		adolescents and young adults.						
7		Hopfer, C. J., Timberlake, D.,						
		Haberstick, B., Lessem, J. M.,						
		Ehringer, M. A., Smolen, A., &		DRD2 &	5-HTT;			
	2005	Hewitt, J. K.	3	DRD4	SLC64A	Taq1A SNP		
			-	DRDR A1				
				allele				
		DRD2 genotypes and substance		(A1A1/A1				
		use in adolescent children of		A2				
8		alcoholics.		genotypes				
		Conner, B. T., Noble, E. P.,) or the				
		Berman, S. M., Ozkaragoz, T.,		A1 allele				
		Ritchie, T., Antolin, T., &		(A2A2				
	2005	Sheen, C.	1	genotype)				
	2000	Risk factors for cocaine-induced	1	dopamine				
		paranoia in cocaine-dependent		transporte				
		sibling pairs.		r,				
9		Kalayasiri, R., Kranzler, H. R.,		dopamine				
		Weiss, R., Brady, K.,		β-				
		Gueorguieva, R., Panhuysen, C.,		p hydroxyla				
1	2006	& Malison, R. T.	1	se				
	2000	Association of a D2S2944 allele	1	50				
1		with depression specifically						
		among those with substance						
10		abuse or antisocial personality.						
10								
		Langbehn, D. R., Philibert, R.,		D2S2944				
	2006	Caspers, K. M., Yucuis, R., & Cadoret, R. J.	1					
	2000	Cauoret, K. J.	1	allele				

		Oral dalta 0						
		Oral delta-9-						
		tetrahydrocannabinol suppresses						
11		cannabis withdrawal symptoms.						
		Budney, A. J., Vandrey, R. G.,						
		Hughes, J. R., Moore, B. A., &						
	2007	Bahrenburg, B.	1	CNR1				
		Deriving phenotypes for						
		molecular genetic studies of						
		substance use disorders: A						
12		family study approach.						
		Faraone, S. V., Adamson, J. J.,						
		Wilens, T. E., Monuteaux, M.						
	2007	C., & Biederman, J.	1	CDH13				
		Test of association between						
		TaqIA A1 allele and alcohol use						
		disorder phenotypes in a sample						
		of adolescent patients with						
13		serious substance and behavioral						
15		problems.						
		Sakai, J. T., Hopfer, C. J.,						
		Hartman, C., Haberstick, B. C.,						
		Smolen, A., Corley, R. P., &		Taq1A A1				
	2007	Crowley, T. J.	1	allele				
		Evidence for specificity of						
		transmission of alcohol and						
14		nicotine dependence in an						
		offspring of twins design.						
		Volk, H. E., Scherrer, J. F.,						
		Bucholz, K. K., Todorov, A.,						
	2007	Heath, A. C., Jacob, T., & True,		and the second s				
	2007	W. R.	2	CYP1A1	GSTT1			
15		Test of association between						
13		TaqIA A1 allele and alcohol use		Taq1A A1				
	2007	disorder phenotypes in a sample	1	allele				
	2007	disorder phenotypes in a sample	1	allele		L		

			1					
		of adolescent patients with						
		serious substance and behavioral						
		problem.						
		Sakai, J. T., Hopfer, C. J.,						
		Hartman, C., Haberstick, B. C.,						
		Smolen, A., Corley, R. P., &						
		Crowley, T. J.						
		A genome-wide scan for loci						
		influencing adolescent cannabis						
		dependence symptoms:						
		Evidence for linkage on						
16		chromosomes 3 and 9.						
		Hopfer, C. J., Lessem, J. M.,						
		Hartman, C. A., Stallings, M. C.,		locus on	locus on			
		Cherny, S. S., Corley, R. P., &		chromoso	chromosome			
	2007	Crowley, T. J.	2	me 3q21	9q34			
		The role of conduct disorder in						
		explaining the comorbidity						
		between alcohol and illicit drug						
17		dependence in adolescence.						
		Button, T. M., Rhee, S. H.,						
		Hewitt, J. K., Young, S. E.,						
	2007	Corley, R. P., & Stallings, M. C.	3	ADH1B	CYP2A6	CHRNA5		
		Using mathematical modeling						
		and control to develop structured						
18		treatment interruption strategies						
10		for HIV infection.						
		Rosenberg, E. S., Davidian, M.,		CD4 T-				
	2007	& Banks, H. T.	1	cells				
		Evaluation of OPRM1 variants						
		in heroin dependence by family-						
		based association testing and						
19		meta-analysis.						
17		Glatt, S. J., Bousman, C., Wang,						
		R. S., Murthy, K. K., Rana, B.						
		K., Lasky-Su, J. A., &		OPRM1				
	2007	Tsuang, M. T.	1	variants				

		Familial transmission of derived							
, I		phenotypes for molecular							
.		genetic studies of substance use							
20		disorders.		D1 and					
		Faraone, S. V., Adamson, J. J.,		D2					
		Wilens, T. E., Monuteaux, M.		(dopamine					
	2008	C., & Biederman, J.	1) receptors					
		Genetic variation in the		•					
, I		serotonin pathway and smoking							
, I		cessation with nicotine							
, I		replacement therapy: New data							
21		from the Patch in Practice trial							
21		and pooled analyses.							
, I		David, S. P., Johnstone, E. C.,							
, I		Murphy, M. F., Aveyard, P.,							
, I		Guo, B., Lerman, C., & Munafò,		TPH1	SLC6A4 5-	HTR1A C-			
	2008	M. R.	3	A779C	HTTLPR	1019G			
, I		Racial and ethnic changes in							
, I		heroin injection in the United							
22		States: Implications for the							
, I		HIV/AIDS epidemic.							
	2008	Broz, D., & Ouellet, L. J.	1	HCV					
		Genomewide linkage survey of							
		nicotine dependence phenotypes.							
23		Sullivan, P. F., Kuo, P. H.,		chr7					
, I		Webb, B. T., Neale, M. C.,		(D7S2252	1 10				
	2000	Vittum, J., Furberg, H., &	2	to	chr18				
	2008	Kendler, K. S.	2	D7S691)	(D18S6)				
		Association of candidate genes							
		with antisocial drug dependence in adolescents.							
24									
24		Corley, R. P., Zeiger, J. S., Crowley, T. Ebringer, M. A							
		Crowley, T., Ehringer, M. A., Hewitt, J. K., Hopfer, C. J., &							
	2008	Krauter, K.	5	CHRNA2	CNR1	CYP2B6	HTR7	GRIA1	
	2000		5	chromoso	chromosome	chromosome	chromosome	chromosome	chromosome
25	2008		6	me 1	10	10	2	13	14

• •					I	ſ	
1 I		Linkage scan for quantitative					
		traits identifies new regions of					
		interest for substance					
		dependence in the Collaborative					
		Study on the Genetics of					
		Alcoholism (COGA) sample.					
		Agrawal, A., Hinrichs, A. L.,					
		Dunn, G., Bertelsen, S., Dick, D.					
		M., Saccone, S. F., & Bierut,					
1		L. J.					
1		Genetic correlates of morphine					
1		withdrawal in 14 inbred mouse					
26		strains		µ-opioid			
		Metten, P., Crabbe, J. C., &		receptor			
	2009	Belknap, J. K.	1	genes			
		Perceived peer delinquency and					
1		the genetic predisposition for					
1		substance dependence					
27		vulnerability.					
		Button, T. M., Stallings, M. C.,					
1		Rhee, S. H., Corley, R. P.,					
	2009	Boardman, J. D., & Hewitt, J. K.	1	GABRA2			
		Morphine-induced physiological					
1		and behavioral responses in mice					
		lacking G protein-coupled					
28		receptor kinase 6.					
28		Raehal, K. M., Schmid, C. L.,					
1		Medvedev, I. O., Gainetdinov,		GPCR			
1		R. R., Premont, R. T., & Bohn,		protein			
	2009	L. M. (1	kinase 6			
i — T		Health-related quality of life in					
1		methadone maintenance patients					
29		with untreated hepatitis \hat{C} virus					
29		infection.					
1		Batki, S. L., Canfield, K. M.,					
	2009	Smyth, E., & Ploutz-Snyder, R.	1	HCV			
30		Daily ratings measures of					
30	2009	alcohol craving during an	1	OPRM1			

				1			
		inpatient stay define subtypes of					
		alcohol addiction that predict					
		subsequent risk for resumption					
		of drinking.					
		Oslin, D. W., Cary, M.,					
		Slaymaker, V., Colleran, C., &					
		Blow, F. C.					
		The association between					
		cannabinoid receptor 1 gene					
		(CNR1) and cannabis					
		dependence symptoms in					
31		adolescents and young adults.					
		Hartman, C. A., Hopfer, C. J.,		cannabino			
		Haberstick, B., Rhee, S. H.,		id receptor			
		Crowley, T. J., Corley, R. P.,		1 gene			
	2009	& Ehringer, M. A.	1	(CNR1)			
		Acute responses to nicotine and					
		smoking: Implications for					
32		prevention and treatment of					
		smoking in lower SES women.					
	2009	Perkins, K. A.	2	DRD2	DRD4		
		An interaction between DAT1					
		and having an alcoholic father					
		predicts serious alcohol					
33		problems in a sample of males.					
		Vaske, J., Beaver, K. M.,					
		Wright, J. P., Boisvert, D., &					
	2009	Schnupp, R.	1	DAT1			
		EEG spectral phenotypes:					
		Heritability and association with					
		marijuana and alcohol					
24		dependence in an American					
34		Indian community study.					
		Ehlers, C. L., Phillips, E., Gizer,					
		I. R., Gilder, D. A., &					
	2010	Wilhelmsen, K. C.	1	N/A			
25		Randomized, double-blind,		Val158Me			
35	2010	placebo-controlled trial of	1	t			

				1					
		modafinil for the treatment of		polymorp					
		methamphetamine dependence.		hism in					
		Heinzerling, K. G., Swanson, A.		the					
		N., Kim, S., Cederblom, L.,		catechol-					
		Moe, A., Ling, W., & Shoptaw,		O-					
		S.		methyltra					
				nsferase					
				gene					
		Abuse liability of oxycodone as							
		a function of pain and drug use							
36		history.							
50		Comer, S. D., Sullivan, M. A.,							
		Vosburg, S. K., Kowalczyk, W.							
	2010	J., & Houser, J.	1	CYP2D6					
		Alcohol impairs interferon							
		signaling and enhances full cycle							
		hepatitis C virus JFH-1 infection							
37		of human hepatocytes.			IFN				
		Ye, L., Wang, S., Wang, X.,			regulatory				
		Zhou, Y., Li, J., Persidsky, Y., &			factors (IRF-	STAT-1 and			
	2010	Ho, W.	4	HCV	5 and IRF-7)	STAT-2	SOCS-3		
		Test of association between							
		GABRA2 (SNP rs279871) and							
		adolescent conduct/alcohol use							
		disorders utilizing a sample of							
		clinic referred youth with serious							
20		substance and conduct problems,							
38		controls and available first-							
		degree relatives.							
		Sakai, J. T., Stallings, M. C.,							
		Crowley, T. J., Gelhorn, H. L.,		GABRA2					
		McQueen, M. B., & Ehringer,		(SNP					
	2010	M. A.	1	rs279871)					
		Linkage scan of alcohol	-	chromoso	chromosome				
		dependence in the UCSF Family		me 4q	4p that				
39		Alcoholism Study.		containing	contains a				
57		Gizer, I. R., Ehlers, C. L.,		the	GABAA				
	2011	Vieten, C., Seaton-Smith, K. L.,	2	alcohol	receptor				
	2011	victori, C., Seaton Shintin, K. L.,	-	uncontor	receptor	L		1	

40 Genetic moderators and psychiatric mediators of the link between sexual abuse and al cohol dependence. Copeland, W. E., Magnusson, A., Göransson, M., & Heilig, M. 3 CRHR1 MAO-A 2011 A. 2011 A. 3 Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult to blacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., 2011 GABRA2 41 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninficted injection drug users. Bootram, B., Hershow, R. C., 2011 I 42 Chronic hepatitis C virus infection and prese of impulsivity, substance use problems. Bootram, B., Hershow, R. C., 2011 HCV 43 Maximus, L. C., Hersnud, S. L., & Christ, C. C., Hersnud, S. L., & Chronic, C., Hersnud, S. L., Stoitenberg, S. F., Lehman, M. K., Christ, C. C., Hersnud, S. L., & Christ, C. C., Hersnud, S. L., & Chronic, C., Hersnud, S. L., & Chronic, C., Hersnud, S. L., & Chronic, S. J., & C., Hersnud, S. L., & Chronic, C., Herend, S. L., & Chronic, C., Hersnud, S. L.				1	1 1 1	1		1	1
40 Genetic moderators and psychiatric mediators of the link between sexual abuse and alcohol dependence. Copeland, W. E., Magnusson, Å., Göransson, M., & Heilig, M. Stategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., 2011 GABRA2 41 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 HCV infection 43 Associations among types of inpulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersud, S. L., NRXN1 NRXN1 NRXN3					dehydroge				
40 Genetic moderators and psychiatric mediators of the link between sexual abuse and alcohol dependence. Copeland, W. E., Magnusson, A., Göransson, M., & Heilig, M. A. 3 CRHR1 MAO-A OPRM1 2011 A. 3 CRHR1 MAO-A OPRM1 41 Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. GABRA2 41 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. I 42 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehman, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 43 Optimes, S. F., Lehman, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2			Wilhelmsen, K. C.			cluster			
Image: close					(ADH)				
Image: close					gene				
40 Genetic moderators and psychiatric mediators of the link between sexual abuse and alcohol dependence. Copeland, W. E., Magnusson, Å., Göransson, M., & Heilig, M. A. 3 CRHR1 MAO-A OPRM1 2011 A. 3 CRHR1 MAO-A OPRM1 41 Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., 2011 I GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Eoodram, B., Hershow, R. C., Boodram, B., Hershow, R. C., HCV HCV 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stollenberg, S. F., Lehman, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2									
40 psychiatric mediators of the link between sexual abuse and alcohol dependence. Copeland, W. E., Magnusson, A., Göransson, M., & Heilig, M. 3 CRHR1 MAO-A OPRM1 2011 A. Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & GABRA2 A 41 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Chersud, S. L., NRXN1 NRXN2 NRXN3			Genetic moderators and						
40 between sexual abuse and alcohol dependence. Copeland, W. E., Magnusson, Å., Göranson, M., & Heilig, M. 3 CRHR1 MAO-A OPRM1 2011 A. 3 CRHR1 MAO-A OPRM1 41 Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young abult to bacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., Boiley, J. A., Hill, K. G., Meacham, M. C., Young, S. E., Boodram, B., Hershow, R. C., HCV GABRA2 42 Chronic hepatitis C virus infection dincreases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., HCV HCV 43 Associations among types of impulsivity, substance use problems. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN1									
40 alcohol dependence. Copeland, W. E., Magnusson, Å., Göransson, M., & Heilig, M. 3 CRHR1 MAO-A OPRM1 2011 A. 3 CRHR1 MAO-A OPRM1 41 Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. NAO-A OPRM1 41 disorder, and co-occurring problems. GABRA2 NAO-A OPRM1 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodrum, B, Hershow, R. C., 2011 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodrum, B, Hershow, R. C., 2011 HCV 43 Associations among types of impulsivity, substance use problems. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3									
2011 A. 3 CRHR1 MAO-A OPRM1 2011 A. 3 CRHR1 MAO-A OPRM1 41 Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., 2011 Kenter Strategies for characterizing complex problems. 2011 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 GABRA2 42 Coller, S. J., & Ouellet, L. J. 1 43 Associations among types of impulsivity, substance use problems. Stoltenberg, S. F., Lehman, M. K., Christ, C. C., Hersrud, S. L., NRXN1 43 polymorphisms. Stoltenberg, S. F., Lehman, M. K., Christ, C. C., Hersrud, S. L., NRXN1	40								
2011 Å., Göransson, M., & Heilig, M. 3 CRHR1 MAO-A OPRM1 2011 Å. Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. NAO-A OPRM1 41 Understand Construction of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Nao-A OPRM1 2011 & Hawkins, J. D. 1 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. HCV 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2	-10								
2011 A. 3 CRHR1 MAO-A OPRM1 a Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., 2011 A. IIII, K. G., Meacham, M. C., Young, S. E., 2011 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 I GABRA2 43 Associations among types of impulsivity, substance use problems, B. Hershow, S. L., K., Christ, C. C., Hersmud, S. L., NRXN1 NRXN2 NRXN3									
41 Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. I 2011 & Hawkins, J. D. I 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 HCV infection 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersmud, S. L., NRXN1 NRXN2		2011	•	2	CDUD 1				
41 complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. I 2011 & Hawkins, J. D. I GABRA2 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 43 NRXN3 NRXN3		2011		3	CKHKI	MAO-A	OPRMI		
41 environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Meacham, M. C., Young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., & HCV & Meacham, M. K., Christ, C. C., Hersrud, S. L., & NRXN1 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., & NRXN1 NRXN1									
41 specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Meacham, M. C., Young, S. E., & Meacham, M. C., Young, S. E., & Hawkins, J. D. 1 GABRA2 2011 & Hawkins, J. D. 1 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV infection 43 Associations among types of impulsivity, substance use problems. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Herrud, S. L., NRXN1 NRXN1 NRXN3									
41 predictors of young adult tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. 1 2011 & Hawkins, J. D. 1 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stotlenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3									
41 tobacco dependence, alcohol use disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. 1 GABRA2 2011 & Hawkins, J. D. 1 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3									
42 disorder, and co-occurring problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., 2011 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 HCV cotler, S. J., & Ouellet, L. J. 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2									
2011 problems. Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. 1 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 HCV Image: Constraint of the particular of the particu	41		tobacco dependence, alcohol use						
Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. 1 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 HV-uninfected injection column column col			disorder, and co-occurring						
Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. 1 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 HV-uninfected injection column column col			problems.						
2011 Meacham, M. C., Young, S. E., & Hawkins, J. D. 1 GABRA2 42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., 2011 Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3			Bailey, J. A., Hill, K. G.,						
2011& Hawkins, J. D.1GABRA242Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J.HCV infection43Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L.,NRXN1NRXN2NRXN3									
42 Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., HCV 2011 Cotler, S. J., & Ouellet, L. J. 1 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 43 NRXN1 NRXN3		2011		1	GABRA2				
42 infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV infection 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 43 NRXN3 NRXN3 NRXN3		-011		-	0.121012				
42 infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV infection 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 43 NRXN3 NRXN3 NRXN3			Chronic hepatitis C virus						
42 load in a prospective cohort of young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., HCV 2011 Cotler, S. J., & Ouellet, L. J. 1 43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. NRXN1 43 NRXN1 NRXN2									
42 young, HIV-uninfected injection drug users. Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. HCV 2011 Cotler, S. J., & Ouellet, L. J. 1 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 43 NRXN3 NRXN3									
drug users. Boodram, B., Hershow, R. C., HCV 2011 Cotler, S. J., & Ouellet, L. J. 1 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Associations among types, S. F., Lehmann, M., K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2	42								
2011 Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. 1 infection Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3 NRXN3 NRXN3									
2011 Cotler, S. J., & Ouellet, L. J. 1 infection Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3 NRXN3 NRXN3	1				UCV				
43 Associations among types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2	1	2011		1					
43 impulsivity, substance use problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3		2011		1	infection				
43 problems and Neurexin-3 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3									
43 polymorphisms. Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3	1								
Stoltenberg, S. F., Lehmann, M.NRXN1NRXN2K., Christ, C. C., Hersrud, S. L.,NRXN1NRXN3	1		1						
K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3	43		polymorphisms.						
K., Christ, C. C., Hersrud, S. L., NRXN1 NRXN2 NRXN3			Stoltenberg, S. F., Lehmann, M.						
					NRXN1	NRXN2	NRXN3		
2011 (1741) (1741)		2011	& Davies, G. E.	3	(2p16.3)	(11q13)	(14q31)		

44		Nicotine dependence and comorbid psychiatric disorders: Examination of specific genetic variants in the CHRNA5-A3-B4		CHRNA5 -A3-B4				
	2012	nicotinic receptor genes. Chen, L. S., Xian, H., Grucza, R. A., Saccone, N. L., Wang, J. C., Johnson, E. O., & Bierut, L. J.	1	nicotinic receptor genes				
45	2012	ANAPC1 and SLCO3A1 are associated with nicotine dependence: Meta-analysis of genome-wide association studies. Wang, K. S., Liu, X., Zhang, Q., & Zeng, M.	2	ANAPC1	SLCO3A1			
46	2012	Association between CHRNA5 genetic variation at rs16969968 and brain reactivity to smoking images in nicotine dependent women. Janes, A. C., Smoller, J. W., David, S. P., Frederick, B. D.,	2	CHRNA5	SLCOSAT			
	2012	Haddad, S., Basu, A., & Kaufman, M. J.	1	(rs169699 68)				
47		Different genes influence toluene- and ethanol-induced locomotor impairment in C. elegans. Davies, A. G., Friedberg, R. I., Gupta, H., Chan, C. L., Shelton,						
48	2012	K. L., & Bettinger, J. C Does the "gateway" sequence increase prediction of cannabis use disorder development beyond deviant socialization? Implications for prevention	4	slo-1 MAOA	rab-3	unc-64	unc-79	
	2012	practice and policy.	1	gene				

	1		r	r		1	1	ı
		Tarter, R. E., Kirisci, L.,						
		Mezzich, A., Ridenour, T.,						
		Fishbein, D., Horner, M., &						
		Vanyukov, M. (2012).						
		Childhood adversity, serotonin						
		transporter (5-HTTLPR)						
		genotype, and risk for cigarette						
49		smoking and nicotine		serotonin				
49		dependence in alcohol dependent		transporte				
		adults.		r (5-				
		Mingione, C. J., Heffner, J. L.,		HTTLPR)				
	2012	Blom, T. J., & Anthenelli, R. M.	1	genotype				
		GABRA2 and KIBRA						
		genotypes predict early relapse						
50		to substance use.						
		Bauer, L. O., Covault, J., &						
	2012	Gelernter, J.	3	GABRA2	KIBRA	BDNF		
		Interactive effects of chronic						
		cigarette smoking and age on						
51		hippocampal volumes.						
		Durazzo, T. C., Meyerhoff, D. J.,						
	2013	& Nixon, S. J.	2	GABA	glutamate			
		Examining the association of						
		NRXN3 SNPs with borderline						
		personality disorder phenotypes						
		in heroin dependent cases and						
52		socio-economically						
		disadvantaged controls.						
		Panagopoulos, V. N., Trull, T. J.,						
		Glowinski, A. L., Lynskey, M.						
		T., Heath, A. C., Agrawal, A.,		NRXN3				
	2013	& Nelson, E. C.	1	SNPs				
		NKAIN1–SERINC2 is a						
53		functional, replicable and						
		genome-wide significant risk						
	2013	gene region specific for alcohol	3	SERINC2	KIAA0040	IPO11		

		dependence in subjects of							
		European descent.							
		Zuo, L., Wang, K., Zhang, X.							
		Y., Krystal, J. H., Li, C. S. R.,							
		Zhang, F., & Luo, X.							
		Serotonin transporter and							
		receptor genes significantly							
		impact nicotine dependence							
		through genetic interactions in							
54		both European American and							
		African American smokers.							
		Yang, Z., Seneviratne, C., Wang,			5-HT(3AB)	5-HT(3AB)			
		S., Ma, J. Z., Payne, T. J., Wang,			subunit	subunit			
	2013	J., & Li, M. D.	3	SLC6A4	HTR3A	HTR3B			
		Abuse liability and reinforcing							
		efficacy of oral tramadol in							
55		humans.							
55		Babalonis, S., Lofwall, M. R.,							
		Nuzzo, P. A., Siegel, A. J., &		mu-opioid					
	2013	Walsh, S. L.	1	receptor					
		Accentuating effects of nicotine							
		on ethanol response in mice with							
		high genetic predisposition to							
56		ethanol-induced locomotor							
		stimulation.							
	2012	Gubner, N. R., McKinnon, C. S.,		C1 C	C1 4				
	2013	Reed, C., & Phillips, T. J.	2	Chrna6	Chrna4				
		Case–control association							
		analysis of polymorphisms in the							
		delta-opioid receptor, OPRD1,							
57		with cocaine and opioid addicted							
57		populations.		dalta					
		Crist, R. C., Ambrose-Lanci, L.		delta-					
		M., Vaswani, M., Clarke, T. K.,		opioid					
	2013	Zeng, A., Yuan, C., &	2	receptor, OPRD1	rs678849				
	2013	Berrettini, W. H.	2	UPKDI	180/0049				

		G						
		Genome-wide survival analysis						
		of age at onset of alcohol						
		dependence in extended high-						
58		risk COGA families.						
50		Kapoor, M., Wang, J. C.,		rs2168784				
		Wetherill, L., Le, N., Bertelsen,		on				
		S., Hinrichs, A. L., & Goate,		chromoso				
	2014	A.	3	me 3	ARL15 gene	UTP20 gene		
		History of cigarette smoking in						
		cognitively-normal elders is						
		associated with elevated						
		cerebrospinal fluid biomarkers						
59		of oxidative stress.						
57		Durazzo, T. C., Mattsson, N.,						
		Weiner, M. W., Korecka, M.,						
		Trojanowski, J. Q., Shaw, L. M.,						
		& Alzheimer's Disease						
	2014	Neuroimaging Initiative	1	APOE4				
		Ethnic and genetic factors in						
		methadone pharmacokinetics: A		rs2032582				
60		population pharmacokinetic		and				
00		study.		rs3745274				
		Bart, G., Lenz, S., Straka, R. J.,		variants of				
	2014	& Brundage, R. C.	1	CYP2B6				
		DSM-5 cannabis use disorder: A						
		phenotypic and genomic						
		perspective.						
61		Agrawal, A., Lynskey, M. T.,						
		Bucholz, K. K., Kapoor, M.,						
		Almasy, L., Dick, D. M., &						
	2014	Bierut, L. J.	3	C17orf58	BPTF	PPM1D		
1		Nicotine dependence as a						
		moderator of genetic influences						
62		on smoking						
02		cessation treatment outcome.						
		Leventhal, A. M., Lee, W.,		DBH				
	2014	Bergen, A. W., Swan, G. E.,	1	SNPs				

		T 11 D F L C 9					
		Tyndale, R. F., Lerman, C., &					
		Conti, D. V.					
		Monoamine polygenic liability					
		in health and cocaine					
		dependence: Imaging genetics					
		study of aversive processing and					
63		associations with depression					
0.5		symptomatology.					
		Moeller, S. J., Parvaz, M. A.,		5-			
		Shumay, E., Wu, S., Beebe-		HTTLPR			
		Wang, N., Konova, A. B., &		(SLC6A4			
	2014	Goldstein, R. Z.	2	promoter)	MAOA		
		Randomized clinical trial of					
		disulfiram for cocaine					
		dependence or abuse during		SNP			
64		buprenorphine treatment.		inhibiting			
04		Schottenfeld, R. S., Chawarski,		dopamine			
		M. C., Cubells, J. F., George, T.		β-			
		P., Lappalainen, J., & Kosten, T.		hydroxyla			
	2014	R.	1	se (DβH).			
		Who benefits from additional					
		drug counseling among					
		prescription opioid-dependent					
		patients receiving					
65		buprenorphine-naloxone and					
05		standard medical management?					
		Weiss, R. D., Griffin, M. L.,					
		Potter, J. S., Dodd, D. R.,		mu-opioid			
		Dreifuss, J. A., Connery, H. S.,		receptor			
	2014	& Carroll, K. M.	1	(OPRM1)			
		DRD4 and susceptibility to peer					
66		influence on alcohol use from					
		adolescence to adulthood.					
	2014	Mrug, S., & Windle, M.	1	DRD4			
		The effects of chronic alcohol					
67		self-administration on serotonin-		serotonin-			
0.		1A receptor binding in		1A			
	2014	nonhuman primates.	1	receptor			

			1	1		1	1	
		Hillmer, A. T., Wooten, D. W.,						
		Tudorascu, D. L., Barnhart, T.						
		E., Ahlers, E. O., Resch, L. M.,						
		& Christian, B. T.						
		The impact of lifetime drug use						
		on hepatitis C treatment						
		outcomes in insured members of						
68		an integrated health care plan.						
		Russell, M., Pauly, M. P.,						
		Moore, C. D., Chia, C., Dorrell,						
	2014	J. M., Cunanan, R. J., & Witt, G.	1	HCV				
		Subjective response to alcohol						
		and associated craving in heavy						
69		drinkers vs. alcohol dependents:						
09		An examination of Koob's						
		allostatic model in humans.		OPRMI				
	2014	Bujarski, S., & Ray, L. A.	1	Asp40				
		Interplay of genetic risk						
		(CHRNA5) and environmental						
		risk (partner smoking) on						
70		cigarette smoking reduction.						
		Chen, L. S., Baker, T. B., Piper,						
		M. E., Smith, S. S., Gu, C.,						
	2014	Grucza, R. A., & Bierut, L. J.	1	CHRNA5				
		Hepatitis C virus infection and						
		pain sensitivity in patients on						
		methadone or buprenorphine						
		maintenance therapy for opioid						
71		use disorders.						
		Tsui, J. I., Lira, M. C., Cheng, D.						
		M., Winter, M. R., Alford, D. P.,						
		Liebschutz, J. M., & Samet, J.						
	2015	H.	1	HCV				
		Buspirone treatment of cannabis						
_		dependence: A randomized,						
72		placebo-controlled trial.		5-HT1A				
		McRae-Clark, A. L., Baker, N.		receptor				
	2015	L., Gray, K. M., Killeen, T. K.,	1	genotype				

		Wagner, A. M., Brady, K. T.,							
		& Norton, J.							
		Crystal methamphetamine use							
		and HIV medical outcomes							
		among HIV-infected men who							
73		have sex with men accessing							
		support services in New York.							
		Feldman, M. B., Thomas, J. A.,		CD4 cell					
	2015	Alexy, E. R., & Irvine, M. K.	1	count					
		Using behavioral economics to							
		predict opioid use during							
74		prescription opioid dependence							
/ 4		treatment.		DRD2/A					
		Worley, M. J., Shoptaw, S. J.,		NKK1					
	2015	Bickel, W. K., & Ling, W.	1	Taq IA					
		Variations in opioid receptor							
		genes in neonatal abstinence							
75		syndrome. Wachman, E. M.,							
		Hayes, M. J., Sherva, R., Brown, M. S., Davis, J. M., Farrer, L.		PNOC	OPRK1				
	2015	A., & Nielsen, D. A.	2	rs732636	rs702764	OPRM1	COMT	OPRD1	
	2013	Involvement of delta opioid	2	13752050	13702704		COMI	OIRDI	
		receptors in alcohol withdrawal-							
		induced mechanical allodynia in							
76		male C57BL/6 mice.		delta					
		Alongkronrusmee, D., Chiang,		opioid					
	2016	T., & van Rijn, R. M.	1	receptors					
		Differences in IV alcohol-							
		induced dopamine release in the							
		ventral							
		striatum of social drinkers and							
77		nontreatment-seeking alcoholics.							
		Yoder, K. K., Albrecht, D. S.,							
		Dzemidzic, M., Normandin, M.							
		D., Federici, L. M., Graves, T.,		OPRM1					
	2016	& Kareken, D. A.	1	A118G					

		Polygenic risk scores for						
		cigarettes smoked per day do not						
		generalize to a Native American						
78		population.						
		Otto, J. M., Gizer, I. R., Bizon,			CYP2A6	CHRNB3		
		C., Wilhelmsen, K. C., & Ehlers,		nAChR	and	and		
ļ!	2016	C. L.	3	genes	CYP2B6	CHRNA6		
		The effects of alcohol on						
		spontaneous clearance of acute						
		hepatitis C virus infection in						
79		females versus males.						
		Tsui, J. I., Mirzazadeh, A.,						
		Hahn, J. A., Maher, L., Bruneau,						
	2016	J., Grebely, J., & Page, K.	2	HCV	IFNL4			
		A randomized factorial trial of						
		disulfiram and contingency						
		management to enhance						
80		cognitive behavioral therapy for						
80		cocaine dependence.						
		Carroll, K. M., Nich, C., Petry,						
		N. M., Eagan, D. A., Shi, J. M.,						
	2016	& Ball, S. A.	1	rs1611115				
		Alcohol use and hepatitis C virus						
		treatment outcomes among						
		patients receiving direct antiviral						
81		agents.						
		Tsui, J. I., Williams, E. C.,						
		Green, P. K., Berry, K., Su, F.,						
	2016	& Ioannou, G. N.	1	HCV				
		Phenotypic and familial						
		associations between childhood						
		maltreatment and cannabis						
0.0		initiation and problems in young						
82		adult European-American and						
		African-American women.						
1 '		Grant, J. D., Agrawal, A.,						
1 1	2017	Werner, K. B., McCutcheon, V.	1	CHRNA2				

		V. Nelsen E.C. Medder, D.					
		V., Nelson, E. C., Madden, P.					
		A., & Sartor, C. E.					
		Environmental risks outweigh		Taq1 A1			
		dopaminergic genetic risks for		allele of			
		alcohol use and abuse from		the			
83		adolescence through early		dopamine			
		adulthood.		D2			
		Coley, R. L., Sims, J., &		receptor			
	2017	Carrano, J.	1	gene			
		Structural deficits in salience					
		network regions are associated					
		with increased impulsivity and					
84		compulsivity in alcohol		(not a			
		dependence.		gene)			
		Grodin, E. N., Cortes, C. R.,		VENs			
	2017	Spagnolo, P. A., & Momenan, R.	1	neurons			
		Cost-effectiveness of hepatitis C					
		screening and treatment linkage					
		intervention in US methadone					
		maintenance treatment					
85		programs.					
		Schackman, B. R., Gutkind, S.,					
		Morgan, J. R., Leff, J. A.,					
		Behrends, C. N., Delucchi, K.					
	2018	L., & Linas, B. P.	1	HCV			
		Is the Fagerström test for					
		nicotine dependence invariant		nicotinic			
		across secular trends in		acetylchol			
		smoking? A question for cross-		ine			
0.6		birth cohort analysis of nicotine		receptor			
86		dependence.		gene			
		Glasheen, C., Johnson, E. O.,		[CHRNA			
		Saccone, N. L., Lutz, S. M.,		5] variant			
		Baker, T. B., McNeil, D. W.,		rs1696996			
	2018	& Hancock, D. B.	1	8			
	-	The interplay between					
87		externalizing disorders		genome-			
<u> </u>	2018	polygenic risk scores and	~	wide			
	2018	polygenic risk scores and	~	wide			

	[1			1	
		contextual factors on the		associatio			
		development of marijuana use		n studies			
		disorders.					
		Rabinowitz, J. A., Musci, R. J.,					
		Milam, A. J., Benke, K., Uhl, G.					
		R., Sisto, D. Y., & Maher, B.					
		S.					
		Nicotine metabolite ratio					
		predicts smoking topography:					
88		The Pennsylvania T Adult					
00		Smoking Study.					
		Chen, A., Krebs, N. M., Zhu, J.,					
	2018	& Muscat, J. E.	1	CYP2A6			
		'Hep C's like the common					
		cold' understanding barriers					
		along the HCV care continuum					
20		among young people who inject					
89		drugs.					
		Skeer, M. R., Ladin, K., Wilkins,					
		L. E., Landy, D. M., & Stopka,					
	2018	T. J.	1	HCV			
		Dating violence victimization					
		and substance use: The role of a					
00		serotonin transporter gene					
90		polymorphism (5 HTTLPR).					
		Yohros, A., Ford, J., &		5			
	2018	Hinojosa, M. S.	1	HTTLPR			
		Neuroimaging findings from an					
		experimental pharmacology trial					
		of naltrexone in heavy drinkers					
01		of East Asian descent.					
91		Lim, A. C., Ghahremani, D. G.,					
		Grodin, E. N., Green, R.,					
		Bujarski, S., Hartwell, E. E.,					
	2019	& Ray, L. A.	1	OPRM1			
		Age of initiation and transition		mu opioid			
92		times to tobacco dependence:		receptor			
	2019	Early onset T and rapid escalated	1	genes			

	1		<u> </u>	1					1
		use increase risk for dependence							
		severity.							
		Huggett, S. B., Keyes, M.,							
		Iacono, W. G., McGue, M.,							
		Corley, R. P., Hewitt, J. K., &							
		Stallings, M. C.							
		Relationship between skin							
		melanin index and nicotine							
		pharmacokinetics in African							
93		American smokers.							
,,		Liakoni, E., Helen, G. S.,							
		Dempsey, D. A., Jacob III, P.,							
		Tyndale, R. F., & Benowitz, N.							
	2019	L.	1	CYP2A6					
		The etiology of DSM-5 alcohol							
		use disorder: Evidence of shared							
		and non-shared additive genetic							
94		effects.							
94		Palmer, R. H., Brick, L. A.,							
		Chou, Y. L., Agrawal, A.,							
		McGeary, J. E., Heath, A. C.,							
	2019	& Knopik, V. S.	3	h2SNP	rGSNP	ADH1B			
		Associations between drug use							
		patterns and viral load							
		suppression among T HIV-							
95		positive individuals who use							
95		support services in New York							
		City.							
		Feldman, M. B., Kepler, K. L.,		CD4 cell					
	2019	Irvine, M. K., & Thomas, J. A.	1	count					
		Genome-wide association							
		analysis of opioid use disorder:							
1		A novel approach using clinical							
06		data.							
96		Song, W., Kossowsky, J.,							
1		Torous, J., Chen, C. Y., Huang,							
		H., Mukamal, K. J., & Wright,							
	2020	А.	6	KCNC1	KCNG2	CNIH3	OPRM1	RGMA	SLC30A9

		Later a los (constant in the second						
		Independent association of						
		tobacco use with opioid use						
~-		disorder in patients of European						
97		ancestry with chronic non-cancer						
		pain.						
		Cheatle, M. D., Falcone, M.,						
	2020	Dhingra, L., & Lerman, C.	1	OPRM1				
		Stability in effects of different						
		smoking-related polygenic risk						
98		scores over T age and smoking						
		phenotypes.				DRD2/ANK		
	2020	Deutsch, A. R., & Selya, A. S.	3	CHRNA5	CYP2A6	K1		
		A prospective study of the						
		association between rate of						
		nicotine metabolism and alcohol						
		use in tobacco users in the						
99		United States.						
		Roberts, W., Marotta, P. L.,						
		Verplaetse, T. L., Peltier, M. R.,						
		Burke, C., Ramchandani, V. A.,						
	2020	& McKee, S. A.	1	CYP2A6				
		Perceived social support in						
		patients with chronic pain with						
		and without opioid use disorder						
100		and role of medication for opioid						
100		use disorder.						
		Benville, J. R., Compton, P.,		delta				
		Giordano, N. A., & Cheatle, M.		opioid				
	2021	D.	1	receptors				
		Effect of HIV, antiretrovirals,						
		and genetics on methadone						
		pharmacokinetics: Results from						
101		the methadone antiretroviral						
		pharmacokinetics study.						
		Bart, G., Yen, H., Hodges, J. S.,						
	2021	& Brundage, R. C.	3	CYP2B6	ABCB1	NR1I3		
102		Ancestry may confound genetic						
102	2021	machine learning: Candidate-	1	OPRM1				

						1		1
		gene prediction of opioid use						
		disorder as an example.						
		Hatoum, A. S., Wendt, F. R.,						
		Galimberti, M., Polimanti, R.,						
		Neale, B., Kranzler, H. R., &						
		Agrawal, A.						
		Cannabis use in college: Genetic						
		predispositions, peers, and						
		activity participation.						
103		Thomas, N. S., Salvatore, J. E.,						
		Gillespie, N. A., Aliev, F.,						
		Ksinan, A. J., Dick, D. M., &						
	2021	Spit for Science Working Group.	1	CADM2				
		Hnrnph1 is a novel regulator of						
		alcohol reward.						
104		Fultz, E. K., Coelho, M. A.,						
104		Lieberman, D., Jimenez-Chavez,						
		C. L., Bryant, C. D., &						
	2021	Szumlinski, K. K.	1	Hnrnph1				
		Nicotine metabolite ratio:						
		Comparison of the three urinary						
		versions to the plasma version						
		and nicotine clearance in three						
105		clinical studies.						
		Giratallah, H. K., Chenoweth,						
		M. J., Addo, N., Ahluwalia, J.						
		S., Cox, L. S., Lerman, C., &						
	2021	Tyndale, R. F.	3	CYP2A6	UGT2B10	UGT2B17		
		Racial disparities in intensity of						
		smoke exposure and nicotine						
		intake among low-dependence						
106		smokers.						
		Ho, J. T., Tyndale, R. F., Baker,						
		T. B., Amos, C. I., Chiu, A.,						
	2021	Smock, N., & Chen, L. S.	1	UGT2B10				
		A randomized, double-blind,						
107		placebo-controlled trial of						
	2021	ondansetron for the treatment of	2	HTR3A	HTR3B			

			ł						1
		cocaine use disorder with post							
		hoc pharmacogenetic analysis							
		Blevins, D., Seneviratne, C.,							
		Wang, X. Q., Johnson, B. A., &							
		Ait-Daoud, N							
		Age and gender-specific							
		hepatitis C continuum of care							
		and predictors of direct acting							
		antiviral treatment among							
108		persons who inject drugs in							
		Seattle, Washington.							
		orcorran, M. A., Tsui, J. I., Scott,							
		J. D., Dombrowski, J. C., &							
	2021	Glick, S. N.	1	HCV					
		Analysis of genetic and clinical							
		factors associated with							
		buprenorphine response.							
109		Crist, R. C., Vickers-Smith, R.,							
		Kember, R. L., Rentsch, C. T.,							
		Xu, H., Edelman, E. J., &		SLC25A3					
	2021	Kranzler, H. R.	6	7	NNT/FGF10	FAM20C	CRISPLD2	LINC01947	ADAMTSL2
		Effects of genetic risk for							
		alcohol dependence and onset of							
		regular drinking on the							
		progression to alcohol							
110		dependence: A polygenic risk							
		score approach.		genome-					
		Yeung, E. W., Spychala, K. M.,		wide					
		Miller, A. P., Otto, J. M., Deak,		associatio					
	2022	J. D., Kim, H., & Gizer, I. R.	~	n studies					
		Relationship between depressive							
		symptoms and adherence to							
		direct-acting antivirals:							
111		Implications for Hepatitis C							
		treatment among people who							
		inject drugs on medications for							
	2022	opioid use disorder.	1	HCV					
L		opioia abe alberael.	-		1	1	1	1	

							I
		Pericot-Valverde, I., Heo, M.,					
		Niu, J., Rennert, L., Norton, B.					
		L., Akiyama, M. J., & Litwin,					
		А. Н.					
		Alcohol consumption upon					
		direct-acting antiviral therapy for					
		hepatitis C among persons with					
		human immunodeficiency virus					
112		in the United States.					
		Chen, P. H., Yenokyan, K., Fojo,					
		A. T., Hutton, H. E., Lesko, C.					
		R., McCaul, M. E., &					
	2022	Chander, G.	1	HCV			
		Alcohol use and alcohol use					
		disorder differ in their genetic					
		relationships					
		with PTSD: A genomic					
		structural equation modeling					
113		approach.					
115		Bountress, K. E., Brick, L. A.,					
		Sheerin, C., Grotzinger, A.,					
		Bustamante, D., Hawn, S. E.,					
		& Psychiatric Genomics					
		Consortium Posttraumatic Stress					
	2022	Disorder Working Group.	1	SNPs			
		Associations between cognition					
		and polygenic liability to					
		substance involvement in middle					
		childhood: Results from the					
114		ABCD study.					
		Paul, S. E., Hatoum, A. S.,		genome-			
		Barch, D. M., Thompson, W. K.,		wide			
		Agrawal, A., Bogdan, R., &		associatio			
	2022	Johnson, E. C.	~	n study			
		Genetic predisposition to major		genome-			
115		depressive disorder differentially		wide			
115		impacts alcohol consumption		associatio			
	2023	and high-risk drinking situations	~	n studies			

					1	1	,
		in men and women with alcohol					
		use disorder.					
		Kapoor, M., Wang, J. C.,					
		Wetherill, L., Le, N., Bertelsen,					
		S., Hinrichs, A. L., & Goate,					
		A.					
		Polygenic risk score for					
		problematic alcohol use predicts					
		heavy drinking and alcohol use					
		disorder symptoms in young					
		adulthood after accounting for					
116		adolescent alcohol use and					
		parental alcohol use disorder.		genome-			
		Wang, F. L., Hicks, B. M., Zhou,		wide			
		H., Kranzler, H. R., Gelernter, J.,		associatio			
	2023	& Zucker, R. A.	~	n studies			
	2023	The Alcohol Use Disorder and		II studies			
		Associated Disabilities Interview					
		Schedule-5 (AUDADIS-5):					
		Reliability of substance use and					
		psychiatric					
117		disorder modules in a general					
		population sample.					
		Grant, B. F., Goldstein, R. B.,					
		Smith, S. M., Jung, J., Zhang,					
		H., Chou, S. P., & Hasin, D.					
	2023	S.	1	ADH1B			
		Associations of polygenic risk					
		scores for smoking heaviness					
		and lifetime cannabis use with					
		tobacco and cannabis co-use					
		trajectories among cannabis use					
118		with tobacco and cannabis co-					
		use trajectories among.					
		Rabinowitz, J. A., Reboussin, B.		genome-			
		A., Sosnowski, D. W., Sally, I.,		wide			
		Kuo, C., Strickland, J. C., &		associatio			
	2023	Uhl, G.	~	n study			
L	2025	0111, 0.	l	n study	1	I	

119	2023	BDNF rs6265 Met carriers with alcohol use disorder show greater age-related decline of N- acetylaspartate in left dorsolateral prefrontal cortex. Durazzo, T. C., McNerney, M. W., Hansen, A. M., Gu, M., Sacchet, M. D., & Padula, C. B.	1	BDNF rs6265 Met			
120	2023	The relationship between alcohol- and sleep-related traits: Results from polygenic risk score and Mendelian randomization analyses. Chakravorty, S., Kember, R. L., Mazzotti, D. R., Dashti, H. S., Toikumo, S., Gehrman, P. R., & Kranzler, H. R.	~	genome- wide associatio n studies			

Appendix B: Behavioral and Health Outcomes

ID	# of Behavioral Outcomes	Behavioral Outcome_1	Behavioral Outcome_2	Behavioral Outcome_3	Health Outcome? (Y/N)	Health Outcome(s)
1	1	cannabis dependence			No	N/A
2	1	methadone			Yes	hepatitis C infection
3	1	heroin use			Yes	chronic pain
4	1	substance dependence vulnerability	No		No	N/A
		intranasal consumption	methadone (opioid			
5	2	of cocaine	treatment)		Yes	cirrhosis, liver disease
6	1	general substance abuse			Yes	hepatitis C infection
7	1	alcohol use			Yes	chronic stress
8	1	substance use			Yes	personality disorder
9	1	cocaine dependency			Yes	paranoia
10	1	substance abuse			Yes	antisocial personality disorder
11	1	cannabis withdrawal			Yes	anxiety; aggression; irritability; depression
12	1	general substance abuse			No	ADHD, panic disorder, major depressive disorder, bipolar disorder
13	1	alcohol use disorder			Yes	conduct disorder
14	2	alcohol dependence	nicotine dependence		Yes	major depressive disorder; panic attack, and generalized anxiety disorder
15	1	alcohol use			Yes	severe conduct disorder
16	1	cannabis dependence			No	N/A
17	2	illicit drug dependence	alcohol dependence		Yes	conduct disorder
18	1	drug resistance			Yes	HIV
19	1	heroin dependence			No	N/A
20	1	general substance abuse			Yes	ADHD
21	1	nicotine smoking cessation			No	N/A

22	1	heroin injection			Yes	HIV/AIDS diagnosis
		nicotine dependence				
23	1	phenotypes			No	N/A
24	1	substance use disorder			Yes	conduct disorder
25	3	cannabis dependence	alcohol dependence	illicit drug use	No	N/A
26	1	morphine withdrawal			No	N/A
27	1	general substance abuse			No	N/A
28	1	morphine use			Yes	locomotor activity
29	1	methadone			Yes	hepatitis C infection
30	1	alcohol craving			No	N/A
31	1	cannabis dependence			No	N/A
		smoking/ tobacco				
32	1	dependence			No	N/A
33	1	alcoholism			Yes	N/A
34	1	marijuana dependence			Yes	antisocial personality disorder; conduct disorder
		methamphetamine				
35	1	dependence			Yes	ADHD and depression
36	1	oxycodone use			No	N/A
37	1	alcohol abuse			Yes	liver disease;
38	1	alcohol use disorder			Yes	antisocial personality disorder, conduct disorder
39	1	alcohol dependence			No	depression; anxiety disorder
40	1	alcohol dependence			Yes	anxiety disorder, PTSD, eating disorders
41	2	tobacco dependence	alcohol use disorder		Yes	HIV sexual risk; conduct disorder
42	1	injection drug use			Yes	cirrhosis, end-stage liver disease and liver cancer cases
43	3	alcohol abuse	general substance abuse	regular tobacco use	Yes	impulsivity
	1	niootino deneradente			Var	major depressive disorder, posttraumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), conduct disorder, and antisocial
44	1	nicotine dependence			Yes	personality disorder (ASPD)

					cancer (lung cancer deaths); comorbidities = major depression, anxiety, ADHD,
45	1	nicotine dependence		Yes	PTSD, schizophrenia
46	1	nicotine dependence		Yes	tobacco-related deaths
47	2	toluene abuse	alcohol abuse	Yes	locomotor impairment
48	2	development of cannabis use disorder		Yes	deviance/ problem behavior syndrome; depression; social anxiety disorder
49	2	risk for cigarette smoking/nicotine dependence	alcohol dependence	Yes	childhood adversity/ maltreatment
50	1	substance use relapse		No	N/A
51	1	chronic cigarette smoking		Yes	memory impairment
52	1	heroin dependency		Yes	borderline personality disorder
53	1	alcohol dependence		No	N/A
54	1	nicotine dependence		Yes	psychiatric disorders
55	2	opioid abuse	tramadol use (to mimic opioid abuse)	No	N/A
56	2	nicotine consumption	alcoholism	No	N/A
57	2	cocaine abuse	nicotine dependence	No	N/A
58	1	alcohol dependence		No	N/A
59	1	cigarette smoking		No	N/A
60	1	methadone		No	N/A
61	1	cannabis use disorder		No	N/A
62	1	nicotine dependence		No	N/A
63	1	cocaine dependence		Yes	major depressive disorder
64	1	cocaine dependence		No	N/A
65		opioid dependence		Yes	chronic pain
66	1	alcohol use		No	N/A
67	1	chronic alcohol self- administration		No	N/A
68	1	general substance abuse		Yes	hepatitis C infection
69	1	alcohol dependency	heavy drinking	No	N/A

70 1 71 1 72 1 73 1 74 1	1 1 1 1	cigarette smoking reduction opioid use disorders cannabis dependence crystal		No Yes	N/A hepatitis C infection; chronic
72 1 73 1	1 1 1	cannabis dependence		Ves	hepatitis C infection; chronic
72 1 73 1	1 1 1	cannabis dependence		Ves	
73 1	1			105	pain
	1	crystal		Yes	anxiety disorders
	1				
74 1		methamphetamine use		Yes	HIV
/ - 1	1	opioid dependence		Yes	chronic pain
75 1	1	opioid abuse/exposure		Yes	neonatal abstinence syndrome
76 1	1	alcohol withdrawal		Yes	allodynia
		social alcohol			
77 1	1	consumption		No	N/A
78 1	1	cigarette smoking		No	N/A
79 1	1	alcohol use		Yes	hepatitis C infection, HIV
80 2	2	cocaine dependence	disulfiram use	Yes	cognitive dysfunction
81 1	1	alcoholism		Yes	liver cancer, cirrhosis, hepatitis C viral infection
82 1	1	cannabis initiation		No	N/A
83 1	1	alcohol abuse		Yes	chronic stress
0.5 1	1			105	increased impulsivity and
84 1	1	alcohol dependence		Yes	compulsivity
85 1	1	methadone		Yes	hepatitis C infection
86 1	1	nicotine dependence		No	N/A
87 1	1	marijuana use disorders		Yes	conduct disorder; ADHD
88		nicotine dependence		No	N/A
89 1	1	Abuse of injected drugs		Yes	hepatitis-C viral infection
	2	alcohol use	marijuana use	No	N/A
91 1	1	alcohol consumption		No	N/A
92 1	1	tobacco dependence		No	N/A
93 1	1	nicotine use		No	N/A
94 1	1	alcohol use disorder	<u> </u>	No	N/A N/A
95 1	1	general substance abuse		Yes	HIV
96 1	1	opioid use disorder		No	N/A
90 1	1	opioid use disorders		Yes	chronic pain; anxiety

98	1	smoking phenotypes		No	N/A
99	2	alcohol use	tobacco use	Yes	physical withdrawal, social problems, issues with school/at work
100	1	opioid use disorder		Yes	chronic pain
101	1	opioid use disorder		Yes	HIV infection
102	1	opioid use disorder		No	N/A
103	1	cannabis use		Yes	academic function and cognition
104	1	alcohol reward response		Yes	dysphoria
105	1	nicotine use		No	N/A
106	1	nicotine intake		No	N/A
107	1	cocaine use disorder (CUD)		No	N/A
108	1	drug injection (heroin, methamphetamine)		Yes	HIV
109	2	opioid use disorder	buprenorphine treatment exposure	Yes	major depressive disorder
110	1	alcohol dependence		No	N/A
111	1	opioid use disorder		Yes	hepatitis C infection; major depressive disorder
112	1	alcohol consumption		Yes	HIV
113	1	alcohol use disorder	alcohol consumption	Yes	PTSD
114	1	alcohol abuse		Yes	N/A
115	1	alcohol use disorder		Yes	major depressive disorder
116	1	alcohol use disorder		Yes	childhood maltreatment
117	1	alcohol use disorder		Yes	mood; anxiety; PTSD
118	2	chronic tobacco use	cannabis use	No	N/A
119	1	alcohol use disorder		No	N/A
120	1	alcohol use disorder		Yes	insomnia

ID	Sample Age	Sample	Study	Limitation_1	Limitation_2	Limitation_3	Limitation_4
		Size	Limitations? (Y/N)				
	mean age =			study's estimates are based upon retrospective recall of the age of onset of individual clinical features, and are subject to errors of recall and	lack of generalizability: replications in other samples are needed to clarify whether similar results will		
1	18.2 32-66 years	n = 3481	Yes	accuracy in reporting the study's lack of a comparison group and its small sample size limit firm statistical comparisons, and larger-scale study is	be seen elsewhere		
2	(average 50)	50	Yes	warranted			
3	N/A	N/A	Yes	heroin and morphine have different time courses, and the potential contribution of pharmacokinetic factors to measures of in vivo apparent efficacy have not been examined	calculations of in vivo apparent efficacy were based on agonist dose- effect curves determined after treatment with only one dose of the irreversible antagonist	solubility of morphine precluded assessment of higher morphine doses that might have produced greater effects	
4	adolescent (13-19), (12- 25)	500 (250 sibling pairs); community- based	Yes	power to detect QTL in low effect sizes is limited	not all subjects have experience with substance abuse or polysubstance abuse.	sample for study is selected for problem substance abuse and conduct disorder - unable to generalize to broader populations.	approach used is more specific to identifying the QTL underlying general risk factors that can be shared among multiple risk factors as opposed to the

Appendix C: Study Limitations and Sample Demographics

		1					OTI that influence
		samples:					QTL that influence
		3676					responses or susceptibility
							to certain drugs.
					data reflects the		
					provision of HCV		
					related services by		
					drug treatment units		
				Although respondents	as reported by an		
		256		were asked to complete	administration or		
		treatment		worksheets eliciting	medical staff	Possibility that non-	
		units (avg.		information about HCV	member, not by	participating units	
		163 patients,		antibody testing, some	interviewing	differ drastically from	
5	adults	SD =167)	Yes	did not do so	patients	those interviewed	
					screening		
					program is referral-		
					based rather than	patients may	
					population based,	be older than and	
					potentially skewing	differ ethnically from	
					the testing results	other	
					toward patients	substance using	
					with a higher	populations with HCV	
					medical acuity and	and may have	
	average age =			results were from a	altering the	had lengthier viral	
6	48 years	500	Yes	single testing session	demographics	exposure	
0	40 years	500	105	single testing session	due to the small	exposure	
				the model-fitting results	effect size of single		
				provide broad estimates	genetic		
	adolescents,			of the relative influence	polymorphisms, it is		
	mean age at			of genetic and	likely that this study		
	beginning of			environmental factors	has inadequate		
	study = $16.14/$			as indicated by the	statistical power to		
				confidence intervals	reject the null		
	mean age at end of study =			around the point	hypothesis of no		
7	22.45	n = 12,136	Yes	estimates	association		
/	adolescent	n = 12,130	108	estimates			
				41.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	data used only came		
0	(mean age = 16.2 mean)	10	Vee	this is a preliminary	from Caucasian and	am all a am al a d'a	
8	16.2 years)	48	Yes	study	Hispanic boys	small sample size	

	adults, mean			the heritability of CIP is likely to be less than the heritability of alcohol	ample was not an epidemiologic one, and thus, sampling biases certainly have the potential to	study is limited by the largely retrospective nature of our structured assessment instrument and our inability to infer causal associations between	
	age = 38.5			dependence, or less	influence our	traits/variables of	limitations of sample size
9	years	n = 273	Yes	than 0.50	findings	interest	and study design
				sample was 94.1%	substantial refusal rate for genetic data	lack of ability to stratify or control in detail for possible confounding by ethnic	lack of statistical power for resolving additive versus dominant allele associations or a distinction between depression risk specific to alcoholism instead of other
10	adult adoptees	n =247	Yes	Caucasian	collection	subgroups	associated conditions.
	adults, mean =			small sample size of	possible that participants used small amounts of cannabis during the abstinence conditions that went	it is unknown how these findings generalize to treatment	
11	32.5 years	n = 8	Yes	mostly males	undetected	seekers	
12	mean age = 42.3 years	n = 1879	Yes	probands were clinically referred, so results may not generalize to population	secondary analysis of several data sets, each of which had been collected to test other primary hypotheses		
12	42.3 years	11 - 10/9	108	samples	V 1		
				patients with AUD and	most analyses were completed with alcohol use disorders and not		
				controls were	with alcohol		
13	ages 13-19	n = 239	Yes	adolescents	dependence alone		

				inability to fully			
				determine the direction			
				of the causal			
				relationship between	did not explore the	findings indicate that	
				comorbid AD and ND	interaction of child	both genetic and	
	12 to 26 years			as well as between	psychopathology,	environmental	
	(mean 20.1 ±	732 twin		these dependencies and	age, and gender on	influences contribute	
14	4.0 years)	pairs	Yes	child psychopathology	risk for AD	to risk for AD and ND	
	•			Patients were	Most analyses were		
		418 (239		adolescents, and	completed with	Lacked power to	
		with		research shows that the	alcohol use	detect a more modest	
	13–19-year-	substance		peak onset of alcohol	disorders and not	association between	
	old	abuse		dependence is now 18	with alcohol	the A1 allele and	
15	(adolescents)	problems)	Yes	years of age	dependence alone	alcohol use disorders	
	(ability to detect small			
				effect sizes commonly			
	adolescent	648 (324		found in psychiatric			
	(13-19), (12-	sibling		disorders is limited in			
16	25)	pairs)	Yes	linkage analysis			
	- /	1			study included		
					nicotine and		
					cannabis		
				sample of adult	experimenters		
				Caucasians and	instead of restricting		
				findings may not	the analyses to those		
				generalize to other	with more		
17	age 24-37	9577	Yes	ethnic groups	substantial exposure		
				limited to only HIV			
18	N/A	N/A	Yes	dynamic models			
					lack of genotypic		
				alcohol reward	differences in		
				phenotype of Hnrnph1	alcohol-induced		
				mutants is unrelated to	locomotion may		
				changes in sensitivity to	reflect procedural		
				any of alcohol's effects	differences related		
	adults,			on motor behavior or	to the duration of		
19	(PND56-70)	N/A	Yes	alcohol metabolism	locomotor testing		
17	(11000-10)	11/11	100		iocomotor testing		

1							
					this is a secondary		
1					analysis of several		
				probands were	data sets, each of		
				clinically referred,	which had been		
				therefore results may	collected to test		
	mean age =			not generalize to	other primary		
20	14.0 year	n = 2,743	Yes	population samples	hypotheses		
					possibility that		
					serotonergic		
					pharmacotherapies		
					such as SSRIs or		
					buspirone, which		
					have not		
1					demonstrated		
					efficacy for smoking		
				prospect of potentially	cessation may be		
				tailoring NRT based on	efficacious for		
				serotonergic genotypes	subgroups defined		
	mean age =			appears unlikely to	by genetic variants		
21	46.7 years	n = 393	Yes	materialize	in the 5-HT pathway		
					the extent to which		
					TEDS covers		
					admissions data is		
					affected by		
					differences in State		
					systems of licensure,		
					certification,		
					accreditation, and		
					disbursement of		
					public funds and the		
				routine efforts to	data set may		
				improve TEDS may	underrepresent		
				account for some	persons receiving		
	mean age =			historical variation in	treatment in private		
22	33.3 years	n = 2252	Yes	the data.	programs		
	adults, mean						
	age = 41.9			no built-in replication	sample was	variance components	
23	years	n = 1,289	Yes	sample	ascertained on the	linkage analyses	
	33.3 years adults, mean age = 41.9			the data.	programs sample was	1	

					basis of alcohol	required assumptions	
						of trait normality	
		(462			dependence	of trait normality	
		(462 -		lack of power to cleanly			
		controls =		identify any SNPs with			
		231, cases =		genome-wide			
24	adolescence	231)	Yes	significance			
				significant overlap			
				between the high-risk			
				families that			Relatively small proportion
		1214		contributed to the			of African American
		Caucasians,		linkage signal for	Overlap of linkage		families which did not
		150 African		alcohol dependence and	findings is likely	Community-based	allow for sufficient power
	range 17-91	Americans		the families for illicit	due to the high	sample was	to conduct linage analyses
	years (mean	for linkage		drug dependence	comorbidity in the	ascertained from	independently in these
25	age = 40.6)	analysis	Yes	criteria	sample	various sources	samples.
26	N/A	N/A	No		•		•
	1011	1.011	110	the cross-sectional			
				nature of this sample	only considered the		
				makes it difficult to	role of PPD as a	use of substance	
				evaluate the possible	moderator and DV	dependence without	
	mean age =			causal relationship	as the phenotypic	consideration of	
27	14.52	n = 1,377	Yes	between PPD and DV	outcome	substance use	
28	N/A	N/A	No		outcome		
20	IN/A	IN/A	NO	relatively small sample			
				size of 100 participants;			
				recruitment fact that			
				recruitment took place			
				at only one large	inclusion of only		
				Central New York	those patients with		
				MMT clinic; may limit	some form of		
				our ability to generalize	Medicaid or other		
	mean age $= 43$			the findings to patients	insurance coverage		
29	years	n = 100	Yes	in other regions	for HCV treatment		
					subjects taking an		
	older adults,			limited in scope to	antidepressant were		
	mean age =			individuals 50 years of	allowed in the study,		
30	61.6 years	n = 95	Yes	age and older	but there was no		

							1
					association with		
					being on an		
					antidepressant and		
					class assignment nor		
					was the class		
					assignment		
					associated with		
					staying on an		
					antidepressant		
		332 (75%			•		
		Caucasian,		numerous factors that			
		15%		can influence	significant portion		
		Hispanic,		association study	of the sample is		
		and 10%		results, including	comprised of youth		
	young adults	Other/Biraci		sampling, linkage	with polysubstance	sample is not	
	(184-18.8	al ethnicity);		disequilibrium patterns,	dependence and	representative of the	
31	mean age)	64% male	Yes	and effect size	conduct problems	general population	
51	incun uge)	0170 Indie	105	most findings are from	conduct problems	general population	
				post-hoc analysis of a			
32	young adult	N = 169	Yes	small sample			
52	young addit	11 - 109	105	the genetic			the current study cannot
				polymorphism data	the analyses did not	the alcoholic father	address the molecular
				were collected from	examine potential	measure was not based	mechanisms that underlie
				only a subsample of	interactive effects	on a clinical diagnosis	the relationship between
	18-26, mean =			respondents in the Add	between	of alcohol abuse or	DAT1 and serious alcohol
33	21.91	n = 15,197	Yes	Health study	polymorphisms	dependence	problems.
55	21.71	11 - 13,197	105			dependence	problems.
				the findings may not	only retrospective and cross-sectional		
				the findings may not			
				generalize to other Native Americans or	data on MJ, ALC		
					and other drug use		
24	mean age $=$		V	represent all Indians	disorders were		
34	28.0	n = 626	Yes	within this population	assessed		
				powered to detect at			
				least a moderate effect			
				for modafinil $(d = 0.50)$			
				in the overall sample			
				assuming that a			
35	mean age 39.1	n = 71	Yes	medication lacking at			

1				least a moderate sized			
1				effect in the overall			
1				sample would lack			
				clinical significance			
		9 (5 men, 4					
		women; 5					
		White, 1		data must be viewed			
		Black, 1		with caution, however,			
		Hispanic, 1		because of the small			
	adults (mean	Asian, 1		sample sizes in each			
36	age = 28)	Indian)	Yes	group			
				underlying mechanisms			
1				responsible for the			
1				alcohol effect on HCV			
				replication are still not			
37			Yes	determined			
		n=1582					
		(Patient					
		siblings (n =					
1		245),					
1		parents of					
		patients (n =					
		355),					
		adolescent					
1		controls $(n =$					
		185),					
		siblings of					
		controls ($n =$					
		163) and					
		parents of		Only tested a single	Family-based		
	13-18 years	controls (n =		SNP in the GABRA2	analyses had only		
38	old	263)	Yes	gene	66% power		
			2.00		likely that additional		
					genetic loci that		
				the present study was	exhibited only a		
	adults, mean			designed to detect loci	small effect on		
39	age = 49.9	n = 1,647	Yes	with moderate effects	alcohol dependence		
57	u ₅ 0 = +7.7	n = 1,0+7	100	with moderate criects	arconor dependence	l	

						[1
					in the UCSF sample		
					were missed		
					study relied upon		
					retrospective		
					assessment of abuse		
				recruited from urban	status, alcohol		
	adults, mean			clinics, inability to	behaviors, and		
40	age = 46.98	n = 131	Yes	make generalizations	psychiatric problems		
					relied on self-reports		
					of substance use		
					disorders, crime,		
				measures of adolescent	and HIV sexual risk		
				family environment	behavior that may	SUD assessed with a	
				were averaged across	be susceptible to	widely-used,	
				late childhood and	social desirability	standardized	
41	adults (age 24)	n = 808	Yes	adolescence	bias	questionnaire	
						misclassification of	
						chronic infection is	
						possible (though not	
						likely, given the	
		cross-				stringent criteria used	
		sectional		temporal relationship		for classification	
		analysis =		between risk behaviors	socially desirable	including the	
		113;		and HCV chronicity	responding	requirement of	
		longitudinal		cannot be firmly	regarding injection	detectable viral load	
	adults (18-35	analysis =		established for the	behaviors is	for at least two study	
42	years of age)	72	Yes	cross-sectional analysis	probable	visits)	
	-					definitions for	
	Age ranged					substance use	
	from 18 to 67					problems/alcohol	
	(Mean =			more detailed		abuse were subjective:	
	22.49, SD =			examination of	p-values were not	not a diagnosis.	
	6.12; 81.6%			phenotypes of addiction	corrected; sample	moreso a criteria or	
	were age 24 or			and genetic variation	sizes were relatively	metric of problematic	
43	younger	n = 439	Yes	across NRXN3	small	substance use	
				NIH grants P01	NIDA grants		
		2032		CA089392;	R01DA026911 and		
44	ages 25–44	subjects of	Yes	KL2RR023249 and	K08DA030398		

		European		K08DA030398 by			
		descent		NIH/NCRR			
		792 from		NII/NCKK			
		COGA,					
		1667					
		Caucasian					
		individuals					
		from FSCD		no SNP reached the			
		and			only had two		
15	1.1.	COGEND	X 7	genome-wide	samples for the		
45	adults	sample	Yes	significance level	meta-analysis		
		24 (14 A			limited to women		womens hormonal status
16	1.1.	allele/10	37	relatively small sample	(does this genotype	3 non-Caucasian	not taken into
46	adults	G/G allele)	Yes	size	occur in men)	smokers	consideration
					some specificity		
					must exist because		
					unc-79 mutations do		
					not alter sensitivity		
				one possibility is that	to the volatile		
				loss of function of unc-	anesthetic isoflurane		
				79 is causing a non-	under the same		
				specific effect that	conditions where		
				alters responses to all of	changes in		
		37/1		these CNS depressant	halothane sensitivity		
47	N/A	N/A	Yes	drugs	are observed		
						model tested was	
				sample confined to		confined to affiliation	
				boys (girls demonstrate	C 1 (with deviant peers as a	
		1 1.		greater willingness for	confined to	mediator of	
	adolescence	baseline =		cooperative behavior	evaluating the role	transmissible risk	
	(10-12 with	500 boys;		and are more socially	of transmissible	during childhood and a	outcome variable in this
40	study ending at	follow-up =	37	responsive than boys	SUD risk in	predictor of cannabis	study was circumscribed to
48	age 22)	254	Yes	are)	socialization	use disorder	cannabis disorder
		056		Aim of post hoc	data were not		
		256; men		analysis did not align	collected on other	sample size was	
	1.1.	(n=149),		with the primary aim of	childhood factors	relatively small for the	
10	adults (mean	women	37	the original	that are associated	analysis of genetic	
49	age of 45.6)	(n=107);	Yes	investigations from	with increased risk	influences	

		Caucasian		which the participants	of both ACEs and		
		(n=205)		which the participants were drawn			
<u> </u>		(11=203)		were drawn	cigarette smoking		
					focus on patients		
					who had		
					psychosocial issues		
					so significant as to		
					bring them to live in		
					a dormitory-like		
	adults, 20-56	n=146; 49%			substance abuse		
50	yrs	female	Yes	small sample size	treatment facility		
				automated hippocampal			
				subfield segmentation		Results may have also	
				was based on a		been influenced by	
				probabilistic atlas		factors not assessed in	
				derived from sub-		this study, such as	
	adults, mean			millimeter, ultra-high-		subclinical biomedical	
51	age = 45	n = 82	Yes	resolution MRI at 3 T	small sample size	conditions	
					threshold used for a		
					positive screen is	lack of ability to	
	cases (avg			investigation was not	low in comparison	generalize from study	
	36.4 years);			designed to	to the 5 out of 9	sample of opioid	
	controls (avg	1439 cases;		comprehensively	symptoms required	dependent cases and	
52	34.6 years)	507 controls	Yes	examine BPD liability	by DSM-IV	neighborhood controls	
	· · · ·	(1409				~	
		European-			causal variant within		
		Americans			the NKAIN1-		
		with alcohol			SERINC2 region		
		dependence;		Not all neuropsychiatric	may not be identical		
		1518		and neurological	to the risk markers		
		European-		disorders were	implicated in the		
	Adults, Mean	American		exhaustively examined	study (needs further		
53	age = 34.6	controls)	Yes	in the present study	sequencing)		
- 55	uge - 51.0	1366 (402	100	in the present study	sequencing/		
		African					
		American,					
		671					
		European-					
54	adults	Americans)	Yes	NIDA grant DA012844			
54	auuns	Americans)	105	MDA grain DA012044	1	l	

					[
				No genotyping		
	healthy adults			conducted. However, it		
	age 18-50			is a strong assumption		
	(prescription			that tramadol is o-		
	opioid abusers			demethylated to M1		
	who were not			through the same		
	physically	14 (9 met		pathway as opioids		
55	dependent)	criteria)	Yes	such as oxycodone.		
	•	·		Data shown in Figure 2		
				suggests additive	Possibility that the	
				locomotor depressant	tendency for	
				effects, but it was not	increased sedation	
				detected significantly.	during this time	
				This could be attributed	period is due to	
				to a floor effect, with	effects of an active	
				significantly lower	metabolite of	
	adult (PND			activity levels difficult	nicotine such as	
56	60+)	24 mice	Yes	to detect.	cotinine	
	/	EA control				
		individuals				
		(n=656;				
		male=50.8%				
) and AA				
		control				
		individuals			additional work	
		(n=503;			using ancestry	
		male=			informative markers	
		38.0%), AA			is needed to	
		control		possibility that	determine whether	
	adults (mean	group 2		associations in the AA	rs678849 is relevant	
	ages from 36.1	(n=875;		population are due to	for different ethnic	
57	to 51.0)	(n=875, male=41%)	Yes	population stratification	groups	
57	adults, mean	maie- 11 /0)	100	population straineation	Broups	
	age = 22.5			lack of ability to		
58	vear	n = 1788	Yes	replicate		
50	ycai	n – 1700	100	Topheate	Detailed smoking	
	mean age =			participants were	information was	
59	75.5 years	n = 111	Yes	predominately well-	available for 50% of	
39	75.5 years	11 – 111	108	predominatery well-	available for 50% of	

							1
				educated elder	the participants with		
				Caucasians	a history of smoking		
					used limited		
					pharmacodynamic		
					data such as ongoing		
					drug use or SCL-90		
					scores but did not		
				did not have a large	perform		
				prospectively assessed	pharmacokinetic-		
				population that would	pharmacodynamic		
				allow us to detect	(pk-pd) studies		
	adults, mean			possible methadone	using opiate related		
60	age = 40.2	n = 206	Yes	autoinduction	measures		
00	uge :012	. 1 00		the present sample was	11104054105		
				ascertained from three			
				family studies of			
				substance use disorders	while we were able		
				for the express purpose	to include a measure		
				of identifying genetic	of cannabis		
				variants for alcoholism,	withdrawal in the		
				nicotine and cocaine	analysis, the		
	mean age =			dependence and related	symptoms and		
61	38.1	n = 3053	Yes	psychopathology	diagnostic scheme		
01	50.1	11 - 3033	105	psychopathology	significance		
					correction for	lacking a sufficient	
					multiple correlated	sample to detect three-	
					tests is less	way interactions	
				analysis limited to those	conservative than a	between genes,	
	adult, mean			who identify as non-	standard Bonferroni	nicotine dependence,	
62	'	n = 793	Yes	Hispanic/White		and treatment	
02	age = 46.8	11 = 795	108	*	adjustment	and treatment	
				sample size was			
				relatively small for a			
				genetics study that	effects should be		
	1.1.			partitioned the groups	replicated with	6 1 .:	
	adults, mean	110	37	by two genotypes and	samples that include	concern of population	
63	age = 42.4	n = 119	Yes	diagnosis	more women	stratification	

						a great number of	
						potential subjects did	
				conducted with opioid		not want treatment	
				dependent participants		with disulfiram and	
	age 18-45,			receiving		did not complete the	
	mean age =			buprenorphine	stringent eligibility	evaluation for study	
64	31.3	n = 177	Yes	maintenance treatment	criteria	entry	
					cannot conclude that	2	
					the association		
					between good		
					counseling		
				individuals who	attendance among		
				attended more than	heroin users and		
		n = 360;		60% of treatment	successful outcome		
		(90.6%)		sessions, particularly if	implies that		
		white		they were assigned to	attending counseling		
	adults (mean	(41.9%)		SMM + ODC, were a	leads to a good		
65	age 32.5 years)	female	Yes	self-selected group	outcome		
05	age 52.5 years)	Temate	105	self-reports of friend's	outcome		
				alcohol use tend to be			
		n = 340;		confounded by their			
		,					
	mean ages 17	59% female;	37	own levels of alcohol	11 1 .		
66	and 33	98% White	Yes	use	small sample size		
				potential confound of			
-		14 rhesus	**	pre-natal alcohol			
67	N/A	monkeys	Yes	exposure			
				ascertainment of drug			
				use poses fewer			
				problems concerning			
				memory than			
	adults, (<			retrospective			
	50 years			ascertainment, but this			
	_			advantage is offset by	only studied patients		
	(45.1%), ≥			the problems involved	who had already		
	50 years			in long-term studies of	been treated to		
68	(54.9%))	259	Yes	rare chronic diseases	reduce denial		
	21-29 years of			cannot definitively	alcohol dependency	Moderate does of	
69	age	91	Yes	assert that heavy	group did drink	alcohol and the	

	1						1
				drinkers did not meet	significantly more	assessment along the	
				criteria for alcohol	than the HD group	ascending limb only	
				dependence as			
				diagnostic interviews			
				were not conducted in			
				the HD sample			
				<u> </u>		targeted approach by	
						choosing to examine	
						the hypothesized	
						interaction between	
					smoking reports in	CHRNA5 and partner	
					the ALSPAC	smoking in two	
					sample were not	complementary	
					confirmed by	samples without	
				Subjects were only of	biochemical		
70	. 1 14	1050	V	Subjects were only of		exploring other	
70	adults	n=1856	Yes	European descent	confirmation	possible interactions	
				did not adjust for			
				duration of infection			
				with HCV as most			
				patients were unaware			
				of the timing of	control group		
				exposure/infection	included individuals		
				since patients are	who spontaneously		
	adults, median			typically asymptomatic	cleared their		
71	age = 45 years	n = 106	Yes	with acute infection	infection $(n = 23)$		
						sample size	
				significant attrition	long excretion half-	insufficient to detect	
				during the course of the	life of cannabis in	clinically significant	
72	N/A	n = 792	Yes	twelve-week study	urine	differences	
						individuals had to	
				inability to generalize;		have at least one viral	
				HIV-infected		load or CD4 count	
				individuals in the		reported in the	
				analysis included only		Registry within the 3	
				those who received		months prior to	
				services funded through		completing a	
	adults, mean			a Ryan White Part A	no causality: data	substance use	
73	age = 35.2	n = 2896	Yes	federal grant to the New	are cross-sectional		
13	age – 55.2	11 – 2090	105	rederar grant to the New	are cross-sectional	assessment	

				X711 1.1 .		
				York eligible		
				metropolitan area		
74	adults	353	Yes	secondary analysis of a clinical trial for prescription opioid addiction, in which hypotheses not included in the original protocol were examined	drug-related spending and income variables in this study, including the consideration that key variables were captured with the ASI-Lite	assumption that self- reported drug spending was primarily allocated to prescription opioids, when the observed item refers generally to "drugs" without specifying drug type
75	full-term newborns and their mothers	86 pairs	Yes	Drug exposures are determined by maternal interviews and urine toxicology results	Results based on a relatively small sample	98% of subjects were White (non-Hispanic)
76	N/A	N/A	No		•	
77	mean age = 33.9	n = 45	Yes	relatively small sample size	cannot distinguish between a predisposing difference in VST DA function and long-term effects of chronic drinking, a problem common to all neuroimaging studies of addiction	
				target sample size was	limited power to detect effects across all p-value	
78	adults (age 22)	n = 775	Yes	small	thresholds	
	adults (28.5	411 persons (30.4% were women, 87.2% were		cohorts of those with HCV were combined to	limited number of participants who had	unable to assess whether there is a specific threshold or dose effect of alcohol on spontaneous
79	years)	white)	Yes	provide data	data on alcohol use	clearance

					Those who dropped		
	18+ years of				out of treatment		
	age (and			Majority of participants	yielded complete		
	meeting DSM-			not completing the full	data from 88% of		
80	IV criteria)	99	Yes	course of treatment	the sample		
						AUDIT-C scores were	
						not drawn	
						immediately at the	
						time of HCV treatment	
						initiation immediately	
						at the time of HCV	
						treatment initiation, so	
					relies on AUDIT-C	it may not be an	
					screening data to	accurate reflection of	sample is largely male,
	adults, mostly				categorize alcohol	the levels while	white, older adults,
81	older adults	17487	Yes	missing SVR data	use	drinking	veterans
					although the		
					majority of the		
					sample was		
					ascertained in the		
				smaller sample of AA	peak years for		
				twins may have limited	cannabis initiation	findings may not	
				power to detect	and early-to-peak	generalize to other	
				racial/ethnic differences	years for problem	populations, other	
				between EAs and AAs,	onset, not all	definitions of	
				and to examine specific	participants had	maltreatment, or more	
		1,786		factors that might	passed through the	severe cannabis	
	adolescents,	participants		contribute to	age of risk for the	outcomes (e.g.,	
82	age 15	(14.6% AA)	Yes	racial/ethnic differences	cannabis outcomes	cannabis use disorder).	
	<u> </u>			researchers only had	future work		
				access to only a half	examining the joint		
				dozen dopamine-related	and interactive		
				genetic polymorphisms	effects of additional		
				and it is clear that many	polymorphisms is		
				additional genes	needed prior to		
				influence alcohol use	concluding that		
	adolescence,			behaviors in complex	dopamine genes do		
83	mean age $= 15$	n = 12, 437	Yes	ways	not interact with the		
05	mean age – 15	$n = 12, \pm 57$	103	ways	not interact with the	1	

						T	
					environmental		
					measures examined		
					in the current study		
						Impulsivity is a multi-	
				Cannot determine	ALC group was	faceted construct, they	
				causality, cross-	more heterogeneous	only used one measure	
84	ages 21-60	109	Yes	sectional design	than the HC group	of self report	
					actual negotiated		
					HCV medication		
					costs are unknown,		
					a low-cost scenario		
					using prices for		
				clinical trial was	current direct-acting		
				conducted during the	antivirals from the		
				era of interferon-	Federal Supply		
				containing treatment	Schedule was		
				regimens, which could	included in		
	adults, mean			have adversely affected	sensitivity analysis		
85	age = 48	n = 489	Yes	linkage rate	ranges		
				U		variation associated	
						with birth cohort could	
				some study samples had	different eligibility	be due to the	
	adults, mean			small coverage over	criteria for the	participants' age at	
86	age = 49.9	n = 9865	Yes	some birth cohorts	included studies	assessment	
	Ŭ				those of African		
					ancestry tend to		
					have greater genetic		
					diversity, increasing		
					the likelihood that		
					genetic markers that		
					play a role in the		
				CD and ADHD PRS	etiology of		
				were largely derived	substance use		
		N=1,050;		from cohorts that	among individuals		
		44.2% male;		included a limited	of African descent		
		all African		number of African	may not be observed		
87	N/A	American	Yes	Americans	or may be in low		
8/	IN/A	American	res	Americans	or may be in low		

					1: 1		
					linkage		
					disequilibrium		
					Participants may not		
					have used the device		
					on all cigarettes		
					smoked and the		
					puffing behaviors		
				use of the topography	might have differed		
				device may alter	between cigarettes		
	adult (mean	352 cigarette		smoking puffing	used and not used		
88	37.6)	smokers	Yes	behaviors	with the device		
					Diversity in age and		
				Aimed to include those	gender, but not in		
				between the ages of 15-	race/ethnicity. Most		
	young adults			30 but was unable to	participants		
	(22-30 years of			recruit any participants	identified as non-	Interviews were only	
89	age)	24	Yes	under the age of 22.	Hispanic white	conducted in English	
						Add Health has been	
						used to examine prior	
						longitudinal outcomes	
				study explores ADV	data on physical	of ADV, so more work	
				victimization, it does	violence only is too	in other datasets is	
	adolescents,	90,000		not examine more	small for reliable	needed at this time in	
90	(age 11-18)	students	Yes	severe types of ADV	analysis	this area of research	
	mean age =			limited to primarily	relatively small		
91	30.17	N=41	Yes	Caucasian samples	sample size		
				differences in the in	analytical approach		
				vivo apparent efficacies	used in the present		
				of heroin and morphine	study to estimate tau		
				are very small relative	values has		
				to the wide range of	acknowledged		
				efficacies displayed by	limitations that have		
				currently available mu	been discussed in		
92	N/A	N/A	Yes	receptor ligands	detail		
	adults, (mean	44 Black					
93	age 33.2 years)	participants	Yes				

			ſ				1
		27 0 f			power to detect		
		2596		inability to model	modest SNP-		
	adults, (mean	unrelated		dominance and epistatic	heritability estimates		
	age=38.58	individuals		effects from genome	and genetic		
94	years)	(44% male)	Yes	wide loci	correlations		
				HIV-positive			
				individuals in the			
				analysis included only			
				those who received			
	<30			services funded through			use of different time
	(11.5%)	7,897; male		a RWPA federal grant			frames for observing DU
	30–49	(61%), non-		to the New York			patterns (6-24 months) and
	(45.8%)	Hispanic		eligible metropolitan	no causality due to	drug use data was self-	viral load suppression (12
95	50+ (42.7%)	black (57%)	Yes	area	cross-sectional data	reported	months)
						could not study non-	
					patient billing data	European-Americans,	
					was used to create	whose genetic	
					phenotypes and	diversity tends to be	
					researchers did not	highest, and the mean	
					use natural language	age of the cohort	
					processing of	suggests that we	
					clinical notes to	cannot necessarily	
	mean age =			all subjects were of	identify our case	generalize to younger	
96	56.4	n = 1039	Yes	European ancestry	cohort	population	
						smoking status was	
						based on patient	
					excluded patients	response to interview	
				only patients who	with a history of	questions and not	
	mean age =			sought formal treatment	SUD other than	verified by a	
97	49.8 years	n = 798	Yes	for OUD were included	nicotine	biomarker.	
		n = 7228					
		(European			current PRS was		
		63.66%,		analysis is based on	based on a GWAS		
	adolescents	African		results from a 2010	with a European	there is potentially	
	(mean age	20.60%,		study. replications are	ancestry-only	limited statistical	
	15.55) and	Hispanic		needed, using GWAS	sample, and results	power in the	
	adults (mean	10.60%,		results from newer	may not apply to	intermediate and	
98	age 22.42)	East Asian	Yes	studies	majority or	surrounding ages	

		5 510()			1 .1 .1	Г Г Г	
		5.51%);			exclusively non-		
		45.89%			European samples		
		male,					
		54.11%					
		female					
					Possible that		
				Possible that PATH	unmeasured traits		
				survey was focused	may have		
				primarily on tobacco	confounded the		
				use and the alcohol use	association between		
	adult tobacco			outcomes lacked detail	NMR and alcohol		
99	users	19,237	Yes	in comparison.	use outcomes		
				-		objective indicators of	
						social support,	
						including social	
					data were cross-	networks or family	
					sectional thus a	relations, were not	
					causal relationship	examined to validate	
				patients of non-	between chronic	the patient's	
				Caucasian races and	pain or MOUD	perception, which	
				ethnicities were	treatment and	leaves the findings	
	adults, mean			excluded from the study	perceived support	subject to patient	
100	age 35.4	n = 201	Yes	sample	cannot be ascribed	subjectivity	
100				p **	targeted specific		
					genetic variants		
				confounding by HCV	rather than		
				status as participants	conducting larger		
				with HIV had a	microarray studies		
				significantly higher rate	of multiple variants,		
				of HCV antibody	so our ability to		
				positivity and an	identify haplotypes		
				independent effect of	or novel variants		
				HCV on methadone	associated with		
					methadone		
				pharmacokinetics			
101			Vee	requires further	pharmacokinetics is		
101	mean age $= 39$	n = 325	Yes	elucidation	limited		
102		N =1000,	*7	genetic "inputs" that are	candidate variants		
102	N/A	stratified	Yes	used by these tests	have not borne out		

		· . 1			• • • •	ſ	
		into equal		typically comprise of	in unbiased genome-		
		groups of n		"candidate gene	wide association		
		=250 cases		variants" that are scored	studies (GWASs)		
		and controls		using pattern			
		each of		recognition software,			
		European		powered with "artificial			
		and African		intelligence"			
		ancestry		frameworks			
						analyses only include	
						participants who had 3	
					modest evidence of	consecutive	
		n = 1155			gene-environment	observations for	
		(EA (n =			correlation (rGE)	cannabis use, which	
	young adults,	750) and			between the PRS	may have impacted the	
	mean age =	AA(n =			and community	representativeness of	AA sample was
103	18.96	405))	Yes	sample size was modest	activities	the sample	predominantly female
104	N/A	N/A	No				
10.		1011	110	caution should be used			
				when utilizing urinary			
		n = 554,		NMRF/F in populations			
		African		known to have faster or			
	adults, mean	ancestry - n		more variable rates of			
105	age = 46.4	=418	Yes	3HC glucuronidation			
105	uge – +0.+	- +10	105	lack of ability to			
				generalize; all data was			
				collected from			
				participants who had			study did not measure
				volunteered to be		did not examine the	levels of carcinogen
				enrolled in a smoking		potential effects of co-	exposure through
		n = 786		cessation trial in the	inclusion criteria	occurring marijuana	biomarkers such as NNAL,
	adults, (mean	n = 780 (n=270)		Saint Louis	included smoking 5		NNK, and polycyclic
		(n=270) Black, n =				use on exposure,	
100	age = 46.7	· ·	Vac	metropolitan area and	or more cigarettes	intake, or intensity	aromatic hydrocarbons
106	years)	516 White) 108 adult	Yes	were motivated to quit	per day	measures	(PAHs)
				medication compliance	most has a set of the		
	1 1/	men and		= lack of data	post-hoc analysis of		
	young adult	non-		supporting riboflavin	only 15 participants		
107	(18+ years of	pregnant	X 7	use, but subjective	with rs1176712:GG	study arms not	
107	age)	women	Yes	participant report	genotype	stratified by genotype	

				varified by pill court			,
				verified by pill count may not be entirely			
				accurate	:		
					information on		
					completion of		
					fibrosis staging was		
					not obtained, and all		
					information on prior		
				Patients were	testing, diagnosis,		
				categorized as having	and treatment was	in 2015 we did not ask	
				HCV based on HCV	based on self-report	participants directly	
				antibody results, and	and not	about being cured of	
				HCV RNA testing was	substantiated by	HCV, but rather about	
100	adults, mean	~~~		not performed as part of	review of medical	completing treatment	
108	age = 50.1	533	Yes	this study	records	for HCV	
					heterogeneity from		
				sample in this GWAS	the VA medical	lack of information	
				was smaller than ideally	system limited the	regarding drug use	predominately male
				used, so the ability to	variety of	(route of	sample, limited to
		1616 EA		detect variants was	phenotypes	administration, type of	European American (EA)
109	adulthood	Veterans	Yes	limited.	included.	opioid, etc.)	patients
				current findings were			
				based on secondary			
				data analyses, and thus,			
				are constrained by the	current study only		
	adulthood,			retrospective and cross-	included individuals		
	mean age =	n = 1501		sectional design of the	with European		
110	49.2 years	participants	Yes	original study	ancestry.		
				diagnosis of MDD was			
				determined using the			
				ACASI, a computer			
				interface that asks	participants	did not adjust p-values	
				questions and records	recruited from urban	for multiple tests due	
				patients' answers; no	settings; difficulty	to the nature of the	
				structured clinical	generalizing to the	present secondary	
111	mean age 51.2	n = 150	Yes	interview	population	analyses	
	adults, median			reliance on self-	CNICS protocol for		
112	age = 54	738	Yes	reported alcohol and	assessing PRO		

					a :		
				other substance use	every four-to-six		
				measures, where	month at the time of		
				underreporting was	a clinical visit		
				possible and could have			
				attenuated the			
				magnitude of change in			
				alcohol use present in			
				our data			
					our prior work		
					showed that the		
					negative genetic		
					correlation between	More research in	
				our analyses were	PTSD-alcohol use	diverse samples is	
	64% of studies			performed in a sample	observed in	essential to understand	
	only included			of European Ancestry	European Ancestry	the link between	
	adults; others			individuals and our	samples may be a	PTSD and alcohol	
	included those			results may not	positive correlation		
						phenotypes and	
112	as young as 8	1.026.764	V	generalize to other	in African Ancestry	advancing precision	
113	+	1,936,764	Yes	populations	samples	medicine efforts	
					analyses confined to		
					individuals in the		
		11,875		PRS were derived from	ABCD sample who		
		(47.85%		GWAS studies with	were of European		
		girls;		relatively small sample	genetic ancestry, to		
	children,	74.13%		sizes, particularly for	avoid potential		
114	(mean = 9.91)	White)	Yes	cannabis use disorder	biases		
				study sample was	MDD-PRS used in		
				relatively small,	the study was not	association findings	
	adults, mean			limiting the possibility	based on sex-	reported here were	
	age = 41.9			of discovering	specific GWAS	acquired in a sample	
115	years	n = 418	Yes	associations	results	of European ancestry	
	early						
	adolescence						
	(mean =						
	13.53);			sample was			
	mid/late	N = 665;		overrepresented by	accounted for a		
	adolescence	N = 005, European		individuals who had	small proportion of		
116		descent	Yes		variance		
116	(mean =	uescent	1.68	parent(s) with AUD	variance		

	18.12); young						
	adulthood						
	(mean = 24.4)						
	(incui – 2 1. 1)				the present sample		
					had relatively few		
				Minority persons (i.e.,	cases of some		
				Hispanic, Black, Asian)	disorders, and		
				were given higher	hence, prevalence		
				probabilities of	was too low to		
				selection than	report on the	study did not examine	
	adults (aged			nonminority household	reliability of some	individual items or	multiple additional factors
117	25-64)	n = 1006	Yes	members	disorders	criteria	may affect reliability
11/	25-04)	n – 1000	103	memoers	uisolucis	Although we selected	
						discovery results from	
					Empirical research	GWAS that we believe	
					indicates that a	most closely match the	
					single liability	phenotypes under	
				although we lower and	distribution may	study, is it likely that	
				although we leveraged the largest GWAS	best explain	individuals in the	
				discovery results on	substance use	GWAS evidenced	
				lifetime cannabis use		comorbid substance	
					initiation, frequency	use behaviors and that	
		N=428		and cigarettes per day, these GWAS do not	of use, and substance use		
						the discovery results	
		participants;		perfectly align with the	disorder	do not reflect specific	
	ages 14-26,	50.9% male; African		phenotypes of past year cannabis and tobacco	development,	genetic risk for cannabis or tobacco	
110	data collected		Vac		further supporting		
118	at age 21 46±12 years of	Americans	Yes	use	our approach. there was no normal	use. did not include any	
	46 ± 12 years of age, min = 25,	n=95,			control reference	other SNPs which may	
119	age, $\min = 23$, $\max = 71$	<i>,</i>	Yes	nrimarily mala comple		impact results	
119	max = /1	veterans	105	primarily male sample	group Results are not	impact results	
				DDS are under newsred			
				PRS are under-powered	representative of the		
	Maan ana - 46			to serve as clinically	general population because of selection		
120	Mean age $= 46$	m = 202.004	Vac	useful predictors for			
120	years	n = 202,004	Yes	these traits	biases		

BIBLIOGRAPHY

- Agrawal, A., Hinrichs, A. L., Dunn, G., Bertelsen, S., Dick, D. M., Saccone, S. F., ... & Bierut, L. J. (2008). Linkage scan for quantitative traits identifies new regions of interest for substance dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample. *Drug* and alcohol dependence, 93(1-2), 12-20.
- Agrawal, A., Lynskey, M. T., Bucholz, K. K., Kapoor, M., Almasy, L., Dick, D. M., ... & Bierut, L. J. (2014). DSM-5 cannabis use disorder: a phenotypic and genomic perspective. *Drug and alcohol dependence*, 134, 362-369.
- Alexandre, L. B. (2011). The case for considering quality of life in addiction research and clinical practice. *Addiction Science & Clinical Practice*, 6(1), 44-55. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188817/</u>
- Alongkronrusmee, D., Chiang, T., & van Rijn, R. M. (2016). Involvement of delta opioid receptors in alcohol withdrawal-induced mechanical allodynia in male C57BL/6 mice. *Drug and alcohol dependence*, 167, 190-198.
- Babalonis, S., Lofwall, M. R., Nuzzo, P. A., Siegel, A. J., & Walsh, S. L. (2013). Abuse liability and reinforcing efficacy of oral tramadol in humans. *Drug and alcohol dependence*, 129(1-2), 116-124.
- Bailey, J. A., Hill, K. G., Meacham, M. C., Young, S. E., & Hawkins, J. D. (2011). Strategies for characterizing complex phenotypes and environments: General and specific family environmental predictors of young adult tobacco dependence, alcohol use disorder, and cooccurring problems. *Drug and alcohol dependence*, 118(2-3), 444-451.
- Bart, G., Lenz, S., Straka, R. J., & Brundage, R. C. (2014). Ethnic and genetic factors in methadone pharmacokinetics: a population pharmacokinetic study. *Drug and alcohol dependence*, 145, 185-193.
- Bart, G., Yen, H., Hodges, J. S., & Brundage, R. C. (2021). Effect of HIV, antiretrovirals, and genetics on methadone pharmacokinetics: Results from the methadone antiretroviral pharmacokinetics study. *Drug and alcohol dependence*, 227, 109025.
- Batki, S. L., Canfield, K. M., Smyth, E., & Ploutz-Snyder, R. (2009). Health-related quality of life in methadone maintenance patients with untreated hepatitis C virus infection. *Drug and Alcohol Dependence*, 101(3), 176-182.
- Bauer, L. O., Covault, J., & Gelernter, J. (2012). GABRA2 and KIBRA genotypes predict early relapse to substance use. *Drug and alcohol dependence*, *123*(1-3), 154-159.
- Benville, J. R., Compton, P., Giordano, N. A., & Cheatle, M. D. (2021). Perceived social support in patients with chronic pain with and without opioid use disorder and role of medication for opioid use disorder. *Drug and alcohol dependence*, *221*, 108619.
- Blevins, D., Seneviratne, C., Wang, X. Q., Johnson, B. A., & Ait-Daoud, N. (2021). A randomized, double-blind, placebo-controlled trial of ondansetron for the treatment of cocaine use disorder with post hoc pharmacogenetic analysis. *Drug and alcohol dependence*, 228, 109074.

- Blum, K., Chen, A. L., Braverman, E. R., Comings, D. E., & Chen, T. J. (2008). Attention-deficithyperactivity disorder and reward deficiency syndrome. *Neuropsychiatric Disorder Treatment*, 4(5), 893-918. doi://10.2147/ndt.s2627
- Boodram, B., Hershow, R. C., Cotler, S. J., & Ouellet, L. J. (2011). Chronic hepatitis C virus infection and increases in viral load in a prospective cohort of young, HIV-uninfected injection drug users. *Drug and alcohol dependence*, *119*(3), 166-171.
- Bountress, K. E., Brick, L. A., Sheerin, C., Grotzinger, A., Bustamante, D., Hawn, S. E., ... & Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group. (2022).
 Alcohol use and alcohol use disorder differ in their genetic relationships with PTSD: A genomic structural equation modelling approach. *Drug and alcohol dependence*, 234, 109430.
- Broz, D., & Ouellet, L. J. (2008). Racial and ethnic changes in heroin injection in the United States: implications for the HIV/AIDS epidemic. *Drug and alcohol dependence*, 94(1-3), 221-233.
- Budney, A. J., Vandrey, R. G., Hughes, J. R., Moore, B. A., & Bahrenburg, B. (2007). Oral delta-9tetrahydrocannabinol suppresses cannabis withdrawal symptoms. *Drug and alcohol dependence*, 86(1), 22-29.
- Bujarski, S., & Ray, L. A. (2014). Subjective response to alcohol and associated craving in heavy drinkers vs. alcohol dependents: an examination of Koob's allostatic model in humans. *Drug and alcohol dependence*, *140*, 161-167.
- Button, T. M., Rhee, S. H., Hewitt, J. K., Young, S. E., Corley, R. P., & Stallings, M. C. (2007). The role of conduct disorder in explaining the comorbidity between alcohol and illicit drug dependence in adolescence. *Drug and alcohol dependence*, *87*(1), 46-53.
- Button, T. M., Stallings, M. C., Rhee, S. H., Corley, R. P., Boardman, J. D., & Hewitt, J. K. (2009). Perceived peer delinquency and the genetic predisposition for substance dependence vulnerability. *Drug and Alcohol Dependence*, 100(1-2), 1-8.
- Campbell, M. C., & Tishkoff, S. A. (2010). African Genetic Diversity: Implications for human demographic history, modern human origins, and complex disease mapping. *Annual Review of Genomics and Human Genetics*, *9*(1), 403-433. doi://10.1146/annurev.genom.9.081307.164258
- Carroll, K. M., Nich, C., Petry, N. M., Eagan, D. A., Shi, J. M., & Ball, S. A. (2016). A randomized factorial trial of disulfiram and contingency management to enhance cognitive behavioral therapy for cocaine dependence. *Drug and alcohol dependence*, *160*, 135-142.
- Chacon, N. C., Walia, N., Allen, A., Sciancalepore, A., Tiong, J., Quick, R., Mada, S., Diaz, M. A., & Rodriguez, I. (2021). Substance use during COVID-19 pandemic: Impact on the underserved communities. *Discoveries Journals*, 9(4), e141. doi://10.15190/d.2021.20
- Chakravorty, S., Kember, R. L., Mazzotti, D. R., Dashti, H. S., Toikumo, S., Gehrman, P. R., & Kranzler, H. R. (2023). The relationship between alcohol-and sleep-related traits: Results from polygenic risk score and Mendelian randomization analyses. *Drug and Alcohol Dependence*, 251, 110912.
- Cheatle, M. D., Falcone, M., Dhingra, L., & Lerman, C. (2020). Independent association of tobacco use with opioid use disorder in patients of European ancestry with chronic non-cancer pain. *Drug and alcohol dependence*, 209, 107901
- Chen, A., Krebs, N. M., Zhu, J., & Muscat, J. E. (2018). Nicotine metabolite ratio predicts smoking topography: the Pennsylvania Adult Smoking Study. *Drug and alcohol dependence*, *190*, 89-93.
- Chen, L. S., Baker, T. B., Piper, M. E., Smith, S. S., Gu, C., Grucza, R. A., ... & Bierut, L. J. (2014). Interplay of genetic risk (CHRNA5) and environmental risk (partner smoking) on cigarette smoking reduction. *Drug and alcohol dependence*, 143, 36-43.

- Chen, L. S., Xian, H., Grucza, R. A., Saccone, N. L., Wang, J. C., Johnson, E. O., ... & Bierut, L. J. (2012). Nicotine dependence and comorbid psychiatric disorders: examination of specific genetic variants in the CHRNA5-A3-B4 nicotinic receptor genes. *Drug and alcohol dependence*, *123*, S42-S51.
- Chen, P. H., Yenokyan, K., Fojo, A. T., Hutton, H. E., Lesko, C. R., McCaul, M. E., ... & Chander, G. (2022). Alcohol consumption upon direct-acting antiviral therapy for hepatitis C among persons with human immunodeficiency virus in the United States. *Drug and alcohol dependence*, 241, 109673.
- Coley, R. L., Sims, J., & Carrano, J. (2017). Environmental risks outweigh dopaminergic genetic risks for alcohol use and abuse from adolescence through early adulthood. *Drug and alcohol dependence*, *175*, 106-118.
- Comer, S. D., Sullivan, M. A., Vosburg, S. K., Kowalczyk, W. J., & Houser, J. (2010). Abuse liability of oxycodone as a function of pain and drug use history. *Drug and alcohol dependence*, *109*(1-3), 130-138.
- Conner, B. T., Noble, E. P., Berman, S. M., Ozkaragoz, T., Ritchie, T., Antolin, T., & Sheen, C. (2005). DRD2 genotypes and substance use in adolescent children of alcoholics. *Drug and Alcohol Dependence*, 79(3), 379-387.
- Connor, J. P., Stjepanović, D., Foll, B. L., Hoch, E., Budney, A. J., & Hall, W. D. (2021). Cannabis use and cannabis use disorder. *Nature*, 6(16). https://www.nature.com/articles/s41572-021-00247-4
- Conomos, M. P., Laurie, C. A., Stilp, A. M., Gogarten, S. M., & McHugh, C.P. (2016). Genetic diversity and association studies in US Hispanic/ Latino populations: Applications in the Hispanic Community Health Study/ Study of Latinos. *American Journal of Human Genetics*, 98(1), 165-184
- Copeland, W. E., Magnusson, Å., Göransson, M., & Heilig, M. A. (2011). Genetic moderators and psychiatric mediators of the link between sexual abuse and alcohol dependence. *Drug and alcohol dependence*, *115*(3), 183-189.
- Corley, R. P., Zeiger, J. S., Crowley, T., Ehringer, M. A., Hewitt, J. K., Hopfer, C. J., ... & Krauter, K. (2008). Association of candidate genes with antisocial drug dependence in adolescents. *Drug and alcohol dependence*, 96(1-2), 90-98.
- Corcorran, M. A., Tsui, J. I., Scott, J. D., Dombrowski, J. C., & Glick, S. N. (2021). Age and genderspecific hepatitis C continuum of care and predictors of direct acting antiviral treatment among persons who inject drugs in Seattle, Washington. *Drug and alcohol dependence*, 220, 108525.
- Crist, R. C., Ambrose-Lanci, L. M., Vaswani, M., Clarke, T. K., Zeng, A., Yuan, C., ... & Berrettini, W. H. (2013). Case–control association analysis of polymorphisms in the delta-opioid receptor, OPRD1, with cocaine and opioid addicted populations. *Drug and alcohol dependence*, 127(1-3), 122-128.
- Crist, R. C., Vickers-Smith, R., Kember, R. L., Rentsch, C. T., Xu, H., Edelman, E. J., ... & Kranzler, H. R. (2021). Analysis of genetic and clinical factors associated with buprenorphine response. *Drug and alcohol dependence*, 227, 109013.
- David, G., Gabor, O., & Francesca, D. (2005). The genetics of addictions: Uncovering the genes. *Nature Reviews Genetics*, 6(1), 521-532.
- David, S. P., Johnstone, E. C., Murphy, M. F., Aveyard, P., Guo, B., Lerman, C., & Munafò, M. R. (2008). Genetic variation in the serotonin pathway and smoking cessation with nicotine

replacement therapy: new data from the Patch in Practice trial and pooled analyses. *Drug and alcohol dependence*, 98(1-2), 77-85.

- Davies, A. G., Friedberg, R. I., Gupta, H., Chan, C. L., Shelton, K. L., & Bettinger, J. C. (2012). Different genes influence toluene-and ethanol-induced locomotor impairment in C. elegans. *Drug and alcohol dependence*, 122(1-2), 47-54.
- Deutsch, A. R., & Selya, A. S. (2020). Stability in effects of different smoking-related polygenic risk scores over age and smoking phenotypes. *Drug and alcohol dependence*, *214*, 108154.
- Drinking too much alcohol can harm your health. Learn the facts / CDC. (2024). Centers for Disease Control and Prevention. Retrieved February 29, 2024, from https://www.cdc.gov/alcohol/fact-sheets/alcohol-use.htm
- *Drug Abuse Statistics*. (2023). NCDAS: Substance Abuse and Addiction Statistics. Retrieved February 29, 2024, from <u>https://drugabusestastistics.org/</u>
- Ducci, F., & Goldman, D. (2012). The genetic basis of addictive disorders. *Psychiatric Clinics of North America*, 35(2), 495-519. doi://-10.1016/j.psc.2012.03.010
- Durazzo, T. C., Mattsson, N., Weiner, M. W., Korecka, M., Trojanowski, J. Q., Shaw, L. M., & Alzheimer's Disease Neuroimaging Initiative. (2014). History of cigarette smoking in cognitively-normal elders is associated with elevated cerebrospinal fluid biomarkers of oxidative stress. *Drug and alcohol dependence*, 142, 262-268.
- Durazzo, T. C., McNerney, M. W., Hansen, A. M., Gu, M., Sacchet, M. D., & Padula, C. B. (2023). BDNF rs6265 Met carriers with alcohol use disorder show greater age-related decline of Nacetylaspartate in left dorsolateral prefrontal cortex. *Drug and Alcohol Dependence*, 248, 109901.
- Durazzo, T. C., Meyerhoff, D. J., & Nixon, S. J. (2013). Interactive effects of chronic cigarette smoking and age on hippocampal volumes. *Drug and alcohol dependence*, *133*(2), 704-711.
- Ehlers, C. L., Phillips, E., Gizer, I. R., Gilder, D. A., & Wilhelmsen, K. C. (2010). EEG spectral phenotypes: Heritability and association with marijuana and alcohol dependence in an American Indian community study. *Drug and alcohol dependence*, 106(2-3), 101-110.
- Faraone, S. V., Adamson, J. J., Wilens, T. E., Monuteaux, M. C., & Biederman, J. (2007). Deriving phenotypes for molecular genetic studies of substance use disorders: A family study approach. *Drug and alcohol dependence*, 88(2-3), 244-250.
- Faraone, S. V., Adamson, J. J., Wilens, T. E., Monuteaux, M. C., & Biederman, J. (2008). Familial transmission of derived phenotypes for molecular genetic studies of substance use disorders. *Drug and alcohol dependence*, 92(1-3), 100-107.
- Feldman, M. B., Kepler, K. L., Irvine, M. K., & Thomas, J. A. (2019). Associations between drug use patterns and viral load suppression among HIV-positive individuals who use support services in New York City. *Drug and Alcohol Dependence*, 197, 15-21.
- Feldman, M. B., Thomas, J. A., Alexy, E. R., & Irvine, M. K. (2015). Crystal methamphetamine use and HIV medical outcomes among HIV-infected men who have sex with men accessing support services in New York. *Drug and alcohol dependence*, 147, 266-271
- Fultz, E. K., Coelho, M. A., Lieberman, D., Jimenez-Chavez, C. L., Bryant, C. D., & Szumlinski, K. K. (2021). Hnrnph1 is a novel regulator of alcohol reward. *Drug and alcohol dependence*, 220, 108518.
- Giratallah, H. K., Chenoweth, M. J., Addo, N., Ahluwalia, J. S., Cox, L. S., Lerman, C., ... & Tyndale, R. F. (2021). Nicotine metabolite ratio: Comparison of the three urinary versions to the plasma

version and nicotine clearance in three clinical studies. *Drug and alcohol dependence*, 223, 108708.

- Gizer, I. R., Ehlers, C. L., Vieten, C., Seaton-Smith, K. L., Feiler, H. S., Lee, J. V., ... & Wilhelmsen, K. C. (2011). Linkage scan of alcohol dependence in the UCSF Family Alcoholism Study. *Drug and alcohol dependence*, 113(2-3), 125-132.
- Glasheen, C., Johnson, E. O., Saccone, N. L., Lutz, S. M., Baker, T. B., McNeil, D. W., ... & Hancock, D. B. (2018). Is the Fagerström test for nicotine dependence invariant across secular trends in smoking? A question for cross-birth cohort analysis of nicotine dependence. *Drug and alcohol dependence*, 185, 127-132.
- Glatt, S. J., Bousman, C., Wang, R. S., Murthy, K. K., Rana, B. K., Lasky-Su, J. A., ... & Tsuang, M. T. (2007). Evaluation of OPRM1 variants in heroin dependence by family-based association testing and meta-analysis. *Drug and alcohol dependence*, 90(2-3), 159-165.
- Grant, B. F., Goldstein, R. B., Smith, S. M., Jung, J., Zhang, H., Chou, S. P., ... & Hasin, D. S. (2015). The Alcohol Use Disorder and Associated Disabilities Interview Schedule-5 (AUDADIS-5): reliability of substance use and psychiatric disorder modules in a general population sample. *Drug and alcohol dependence*, 148, 27-33.
- Grant, J. D., Agrawal, A., Werner, K. B., McCutcheon, V. V., Nelson, E. C., Madden, P. A., ... & Sartor, C. E. (2017). Phenotypic and familial associations between childhood maltreatment and cannabis initiation and problems in young adult European-American and African-American women. *Drug* and alcohol dependence, 179, 146-152.
- Grodin, E. N., Cortes, C. R., Spagnolo, P. A., & Momenan, R. (2017). Structural deficits in salience network regions are associated with increased impulsivity and compulsivity in alcohol dependence. *Drug and alcohol dependence*, *179*, 100-108.
- Gu, Q., Dillon, C. F., & Burt, V. L. (2010). Products Data Briefs Number 42 September 2010. Centers for Disease Control and Prevention. Retrieved March 15, 2024, from https://www.cdc.gov/nchs/products/databriefs/db42.htm
- Gubner, N. R., McKinnon, C. S., Reed, C., & Phillips, T. J. (2013). Accentuating effects of nicotine on ethanol response in mice with high genetic predisposition to ethanol-induced locomotor stimulation. *Drug and alcohol dependence*, *127*(1-3), 108-114.
- Hatoum, A. S., Wendt, F. R., Galimberti, M., Polimanti, R., Neale, B., Kranzler, H. R., ... & Agrawal, A. (2021). Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example. *Drug and alcohol dependence*, 229, 109115.
- Hartman, C. A., Hopfer, C. J., Haberstick, B., Rhee, S. H., Crowley, T. J., Corley, R. P., ... & Ehringer, M. A. (2009). The association between cannabinoid receptor 1 gene (CNR1) and cannabis dependence symptoms in adolescents and young adults. *Drug and alcohol dependence*, 104(1-2), 11-16.
- Heinzerling, K. G., Swanson, A. N., Kim, S., Cederblom, L., Moe, A., Ling, W., & Shoptaw, S. (2010). Randomized, double-blind, placebo-controlled trial of modafinil for the treatment of methamphetamine dependence. *Drug and alcohol dependence*, 109(1-3), 20-29.
- *High Risk Substance Use in Youth | Adolescent and School Health | CDC.* (2022). Centers for Disease Control and Prevention. Retrieved March 15, 2024, from https://www.cdc.gov/healthyyouth/substance-use/index.htm
- Hillmer, A. T., Wooten, D. W., Tudorascu, D. L., Barnhart, T. E., Ahlers, E. O., Resch, L. M., ... & Christian, B. T. (2014). The effects of chronic alcohol self-administration on serotonin-1A receptor binding in nonhuman primates. *Drug and alcohol dependence*, 144, 119-126.

- Ho, J. T., Tyndale, R. F., Baker, T. B., Amos, C. I., Chiu, A., Smock, N., ... & Chen, L. S. (2021). Racial disparities in intensity of smoke exposure and nicotine intake among low-dependence smokers. *Drug and alcohol dependence*, 221, 108641.
- Hopfer, C. J., Timberlake, D., Haberstick, B., Lessem, J. M., Ehringer, M. A., Smolen, A., & Hewitt, J. K. (2005). Genetic influences on quantity of alcohol consumed by adolescents and young adults. *Drug and alcohol dependence*, 78(2), 187-193.
- Hopfer, C. J., Lessem, J. M., Hartman, C. A., Stallings, M. C., Cherny, S. S., Corley, R. P., ... & Crowley, T. J. (2007). A genome-wide scan for loci influencing adolescent cannabis dependence symptoms: evidence for linkage on chromosomes 3 and 9. *Drug and alcohol dependence*, 89(1), 34-41.
- Huggett, S. B., Keyes, M., Iacono, W. G., McGue, M., Corley, R. P., Hewitt, J. K., & Stallings, M. C. (2019). Age of initiation and transition times to tobacco dependence: early onset and rapid escalated use increase risk for dependence severity. *Drug and alcohol dependence*, 202, 104-110.
- Janes, A. C., Smoller, J. W., David, S. P., Frederick, B. D., Haddad, S., Basu, A., ... & Kaufman, M. J. (2012). Association between CHRNA5 genetic variation at rs16969968 and brain reactivity to smoking images in nicotine dependent women. *Drug and alcohol dependence*, 120(1-3), 7-13.
- Kalayasiri, R., Kranzler, H. R., Weiss, R., Brady, K., Gueorguieva, R., Panhuysen, C., ... & Malison, R. T. (2006). Risk factors for cocaine-induced paranoia in cocaine-dependent sibling pairs. *Drug* and alcohol dependence, 84(1), 77-84.
- Kapoor, M., Wang, J. C., Wetherill, L., Le, N., Bertelsen, S., Hinrichs, A. L., ... & Goate, A. (2014). Genome-wide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families. *Drug and alcohol dependence*, 142, 56-62.
- Karpyak, V. M., Coombes, B. J., Geske, J. R., Pazdernik, V. M., Schneekloth, T., Kolla, B. P., ... & Biernacka, J. M. (2023). Genetic predisposition to major depressive disorder differentially impacts alcohol consumption and high-risk drinking situations in men and women with alcohol use disorder. *Drug and alcohol dependence*, 243, 109753.
- Langbehn, D. R., Philibert, R., Caspers, K. M., Yucuis, R., & Cadoret, R. J. (2006). Association of a D2S2944 allele with depression specifically among those with substance abuse or antisocial personality. *Drug and alcohol dependence*, *83*(1), 33-41.
- Leventhal, A. M., Lee, W., Bergen, A. W., Swan, G. E., Tyndale, R. F., Lerman, C., & Conti, D. V. (2014). Nicotine dependence as a moderator of genetic influences on smoking cessation treatment outcome. *Drug and alcohol dependence*, *138*, 109-117.
- Lewis, R. G., Florio, E., Punzo, D., & Borrelli, E. (2021). The brain's reward system in health and disease. *Advances in Experimental Medicine and Biology*, *1344*(1), 57-59. doi://10.1007/978-3-030-81147-1_4
- Li, H., Yang, Y., Hong, W. *et al.* Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. *Sig Transduct Target Ther* 5, 1 (2020). https://doi.org/10.1038/s41392-019-0089-y
- Li, M. D., & Burmeister, M. (2009). New insights into the genetics of addiction. *Nature Reviews Genetics*, *10*(4), 225-231. doi://10.1038/nrg2536
- Liakoni, E., Helen, G. S., Dempsey, D. A., Jacob III, P., Tyndale, R. F., & Benowitz, N. L. (2019). Relationship between skin melanin index and nicotine pharmacokinetics in African American smokers. *Drug and alcohol dependence*, 204, 107474.

- Lim, A. C., Ghahremani, D. G., Grodin, E. N., Green, R., Bujarski, S., Hartwell, E. E., ... & Ray, L. A. (2019). Neuroimaging findings from an experimental pharmacology trial of naltrexone in heavy drinkers of East Asian descent. *Drug and alcohol dependence*, 200, 181-190.
- McRae-Clark, A. L., Baker, N. L., Gray, K. M., Killeen, T. K., Wagner, A. M., Brady, K. T., ... & Norton, J. (2015). Buspirone treatment of cannabis dependence: A randomized, placebocontrolled trial. *Drug and alcohol dependence*, 156, 29-37.
- Metten, P., Crabbe, J. C., & Belknap, J. K. (2009). Genetic correlates of morphine withdrawal in 14 inbred mouse strains. *Drug and alcohol dependence*, *99*(1-3), 123-131.
- Mingione, C. J., Heffner, J. L., Blom, T. J., & Anthenelli, R. M. (2012). Childhood adversity, serotonin transporter (5-HTTLPR) genotype, and risk for cigarette smoking and nicotine dependence in alcohol dependent adults. *Drug and alcohol dependence*, *123*(1-3), 201-206.
- Moeller, S. J., Parvaz, M. A., Shumay, E., Wu, S., Beebe-Wang, N., Konova, A. B., ... & Goldstein, R. Z. (2014). Monoamine polygenic liability in health and cocaine dependence: imaging genetics study of aversive processing and associations with depression symptomatology. *Drug and alcohol dependence*, 140, 17-24.
- Mrug, S., & Windle, M. (2014). DRD4 and susceptibility to peer influence on alcohol use from adolescence to adulthood. *Drug and alcohol dependence*, *145*, 168-173.
- National Institute on Alcohol Abuse and Alcoholism (NIAAA). (2013). National Institute on Alcohol Abuse and Alcoholism (NIAAA). Retrieved February 29, 2024, from https://www.niaaa.nih.gov/strategic-plan/introduction
- Negus, S. S., Brandt, M. R., Gatch, M. B., & Mello, N. K. (2003). Effects of heroin and its metabolites on schedule-controlled responding and thermal nociception in rhesus monkeys: sensitivity to antagonism by quadazocine, naltrindole and β-funaltrexamine. *Drug and alcohol dependence*, 70(1), 17-27.
- Oslin, D. W., Cary, M., Slaymaker, V., Colleran, C., & Blow, F. C. (2009). Daily ratings measures of alcohol craving during an inpatient stay define subtypes of alcohol addiction that predict subsequent risk for resumption of drinking. *Drug and alcohol dependence*, *103*(3), 131-136.
- Otto, J. M., Gizer, I. R., Bizon, C., Wilhelmsen, K. C., & Ehlers, C. L. (2016). Polygenic risk scores for cigarettes smoked per day do not generalize to a Native American population. *Drug and alcohol dependence*, *167*, 95-102.
- Palmer, R. H., Brick, L. A., Chou, Y. L., Agrawal, A., McGeary, J. E., Heath, A. C., ... & Knopik, V. S. (2019). The etiology of DSM-5 alcohol use disorder: evidence of shared and non-shared additive genetic effects. *Drug and alcohol dependence*, 201, 147-154.
- Panagopoulos, V. N., Trull, T. J., Glowinski, A. L., Lynskey, M. T., Heath, A. C., Agrawal, A., ... & Nelson, E. C. (2013). Examining the association of NRXN3 SNPs with borderline personality disorder phenotypes in heroin dependent cases and socio-economically disadvantaged controls. *Drug and alcohol dependence*, 128(3), 187-193.
- Paul, S. E., Hatoum, A. S., Barch, D. M., Thompson, W. K., Agrawal, A., Bogdan, R., & Johnson, E. C. (2022). Associations between cognition and polygenic liability to substance involvement in middle childhood: results from the ABCD study. *Drug and alcohol dependence*, 232, 109277.
- Pericot-Valverde, I., Heo, M., Niu, J., Rennert, L., Norton, B. L., Akiyama, M. J., ... & Litwin, A. H. (2022). Relationship between depressive symptoms and adherence to direct-acting antivirals: Implications for Hepatitis C treatment among people who inject drugs on medications for opioid use disorder. *Drug and alcohol dependence*, 234, 109403.

- Perkins, K. A. (2009). Acute responses to nicotine and smoking: implications for prevention and treatment of smoking in lower SES women. *Drug and alcohol dependence*, *104*, S79-S86.
- Rabinowitz, J. A., Musci, R. J., Milam, A. J., Benke, K., Uhl, G. R., Sisto, D. Y., ... & Maher, B. S. (2018). The interplay between externalizing disorders polygenic risk scores and contextual factors on the development of marijuana use disorders. *Drug and alcohol dependence*, 191, 365-373.
- Rabinowitz, J. A., Reboussin, B. A., Sosnowski, D. W., Sally, I., Kuo, C., Strickland, J. C., ... & Uhl, G. (2023). Associations of polygenic risk scores for smoking heaviness and lifetime cannabis use with tobacco and cannabis co-use trajectories among African Americans. *Drug and alcohol dependence*, 250, 110895.
- Raehal, K. M., Schmid, C. L., Medvedev, I. O., Gainetdinov, R. R., Premont, R. T., & Bohn, L. M. (2009). Morphine-induced physiological and behavioral responses in mice lacking G proteincoupled receptor kinase 6. *Drug and alcohol dependence*, 104(3), 187-196.
- Roberts, W., Marotta, P. L., Verplaetse, T. L., Peltier, M. R., Burke, C., Ramchandani, V. A., & McKee, S. A. (2020). A prospective study of the association between rate of nicotine metabolism and alcohol use in tobacco users in the United States. *Drug and alcohol dependence*, *216*, 108210
- Rosenberg, M. F., & Anthony, J. C. (2001). Early clinical manifestations of cannabis dependence in a community sample. *Drug and Alcohol Dependence*, *64*(2), 123-131.
- Rosenberg, E. S., Davidian, M., & Banks, H. T. (2007). Using mathematical modeling and control to develop structured treatment interruption strategies for HIV infection. *Drug and alcohol dependence*, 88, S41-S51.
- Russell, M., Pauly, M. P., Moore, C. D., Chia, C., Dorrell, J. M., Cunanan, R. J., & Witt, G. (2014). The impact of lifetime drug use on hepatitis C treatment outcomes in insured members of an integrated health care plan. *Drug and alcohol dependence*, *134*, 222-227.
- Sakai, J. T., Hopfer, C. J., Hartman, C., Haberstick, B. C., Smolen, A., Corley, R. P., ... & Crowley, T. J. (2007). Test of association between TaqIA A1 allele and alcohol use disorder phenotypes in a sample of adolescent patients with serious substance and behavioral problems. *Drug and alcohol dependence*, 88(2-3), 130-137.
- Sakai, J. T., Stallings, M. C., Crowley, T. J., Gelhorn, H. L., McQueen, M. B., & Ehringer, M. A. (2010). Test of association between GABRA2 (SNP rs279871) and adolescent conduct/alcohol use disorders utilizing a sample of clinic referred youth with serious substance and conduct problems, controls and available first degree relatives. *Drug and alcohol dependence*, 106(2-3), 199-203.
- SAMHSA. (2015, September). *Behavioral Health Trends in the United States: Results from the* 2014 National Survey on Drug Use and Health. SAMHSA. Retrieved March 15, 2024, from https://www.samhsa.gov/data/sites/default/files/NSDUH-FRR1-2014/NSDUH-FRR1-2014.pdf
- Schackman, B. R., Gutkind, S., Morgan, J. R., Leff, J. A., Behrends, C. N., Delucchi, K. L., ... & Linas, B. P. (2018). Cost-effectiveness of hepatitis C screening and treatment linkage intervention in US methadone maintenance treatment programs. *Drug and alcohol dependence*, *185*, 411-420.
- Schottenfeld, R. S., Chawarski, M. C., Cubells, J. F., George, T. P., Lappalainen, J., & Kosten, T. R. (2014). Randomized clinical trial of disulfiram for cocaine dependence or abuse during buprenorphine treatment. *Drug and alcohol dependence*, 136, 36-42.
- Skeer, M. R., Ladin, K., Wilkins, L. E., Landy, D. M., & Stopka, T. J. (2018). 'Hep C's like the common cold': understanding barriers along the HCV care continuum among young people who inject drugs. *Drug and alcohol dependence*, 190, 246-254.

- Song, W., Kossowsky, J., Torous, J., Chen, C. Y., Huang, H., Mukamal, K. J., ... & Wright, A. (2020). Genome-wide association analysis of opioid use disorder: A novel approach using clinical data. *Drug and alcohol dependence*, 217, 108276.
- Stallings, M. C., Corley, R. P., Hewitt, J. K., Krauter, K. S., Lessem, J. M., Mikulich, S. K., ... & Crowley, T. J. (2003). A genome-wide search for quantitative trait loci influencing substance dependence vulnerability in adolescence. *Drug and alcohol dependence*, 70(3), 295-307.
- Stoltenberg, S. F., Lehmann, M. K., Christ, C. C., Hersrud, S. L., & Davies, G. E. (2011). Associations among types of impulsivity, substance use problems and neurexin-3 polymorphisms. *Drug and alcohol dependence*, 119(3), e31-e38.
- Strauss, S. M., Astone, J. M., Des Jarlais, D., & Hagan, H. (2004). A comparison of HCV antibody testing in drug-free and methadone maintenance treatment programs in the United States. *Drug and Alcohol Dependence*, *73*(3), 227-236.
- Substance Use and Co-Occurring Mental Disorders National Institute of Mental Health (NIMH). (2023). National Institute of Mental Health. Retrieved February 29, 2024, from https://www.nimh.nih.gov/health/topics/substance-use-and-mental-health
- Sullivan, P. F., Kuo, P. H., Webb, B. T., Neale, M. C., Vittum, J., Furberg, H., ... & Kendler, K. S. (2008). Genomewide linkage survey of nicotine dependence phenotypes. *Drug and alcohol dependence*, 93(3), 210-216.
- Sylvestre, D. L. (2002). Treating hepatitis C in methadone maintenance patients: an interim analysis. *Drug and alcohol dependence*, 67(2), 117-123.
- Sylvestre, D. L., & Clements, B. J. (2004). The utility of indirect predictors of hepatitis C viremia. *Drug* and alcohol dependence, 74(1), 15-19.
- Tarter, R. E., Kirisci, L., Mezzich, A., Ridenour, T., Fishbein, D., Horner, M., ... & Vanyukov, M. (2012). Does the "gateway" sequence increase prediction of cannabis use disorder development beyond deviant socialization? Implications for prevention practice and policy. *Drug and Alcohol Dependence*, 123, S72-S78.
- Taqi, M. M., Faisal, M., & Zaman, H. (2019). OPRM1 A118G polymorphisms and its role in opioid addiction: Implication on severity and treatment approaches. *Pharmacogenomics and Personalized Medicine*, 12(1), 362-368. doi:// 10.2147/PGPM.S198654
- Thomas, N. S., Salvatore, J. E., Gillespie, N. A., Aliev, F., Ksinan, A. J., Dick, D. M., & Spit for Science Working Group. (2021). Cannabis use in college: Genetic predispositions, peers, and activity participation. *Drug and alcohol dependence*, *219*, 108489.
- *Tobacco*. (2023, July 31). World Health Organization (WHO). Retrieved February 29, 2024, from https://www.who.int/news-room/fact-sheets/detail/tobacco
- Tsui, J. I., Lira, M. C., Cheng, D. M., Winter, M. R., Alford, D. P., Liebschutz, J. M., ... & Samet, J. H. (2015). Hepatitis C virus infection and pain sensitivity in patients on methadone or buprenorphine maintenance therapy for opioid use disorders. *Drug and alcohol dependence*, 153, 286-292.
- Tsui, J. I., Mirzazadeh, A., Hahn, J. A., Maher, L., Bruneau, J., Grebely, J., ... & Page, K. (2016). The effects of alcohol on spontaneous clearance of acute hepatitis C virus infection in females versus males. *Drug and alcohol dependence*, *169*, 156-162.
- Tsui, J. I., Williams, E. C., Green, P. K., Berry, K., Su, F., & Ioannou, G. N. (2016). Alcohol use and hepatitis C virus treatment outcomes among patients receiving direct antiviral agents. *Drug and alcohol dependence*, 169, 101-109.
- Understanding the Opioid Overdose Epidemic / Opioids / CDC. (2023). Centers for Disease

Control and Prevention. Retrieved March 15, 2024, from https://www.cdc.gov/opioids/basics/epidemic.html

- Vaske, J., Beaver, K. M., Wright, J. P., Boisvert, D., & Schnupp, R. (2009). An interaction between DAT1 and having an alcoholic father predicts serious alcohol problems in a sample of males. *Drug and alcohol dependence*, 104(1-2), 17-22.
- Volk, H. E., Scherrer, J. F., Bucholz, K. K., Todorov, A., Heath, A. C., Jacob, T., & True, W. R. (2007). Evidence for specificity of transmission of alcohol and nicotine dependence in an offspring of twins design. *Drug and Alcohol Dependence*, 87(2-3), 225-232.
- Wachman, E. M., Hayes, M. J., Sherva, R., Brown, M. S., Davis, J. M., Farrer, L. A., & Nielsen, D. A. (2015). Variations in opioid receptor genes in neonatal abstinence syndrome. *Drug and alcohol dependence*, 155, 253-259.
- Wang, F. L., Hicks, B. M., Zhou, H., Kranzler, H. R., Gelernter, J., & Zucker, R. A. (2023). Polygenic risk score for problematic alcohol use predicts heavy drinking and alcohol use disorder symptoms in young adulthood after accounting for adolescent alcohol use and parental alcohol use disorder. *Drug and Alcohol Dependence*, 248, 109909.
- Wang, K. S., Liu, X., Zhang, Q., & Zeng, M. (2012). ANAPC1 and SLCO3A1 are associated with nicotine dependence: meta-analysis of genome-wide association studies. *Drug and alcohol dependence*, 124(3), 325-332.
- Weiss, R. D., Griffin, M. L., Potter, J. S., Dodd, D. R., Dreifuss, J. A., Connery, H. S., & Carroll, K. M. (2014). Who benefits from additional drug counseling among prescription opioid-dependent patients receiving buprenorphine–naloxone and standard medical management?. *Drug and alcohol dependence*, 140, 118-122.
- Widysanto, A., Combest, F. E., Dhakal, A., & Saadabadi, A. (2018). Nicotine addiction. *StatPearls*. https://pubmed.ncbi.nlm.nih.gov/29763090/
- Worley, M. J., Shoptaw, S. J., Bickel, W. K., & Ling, W. (2015). Using behavioral economics to predict opioid use during prescription opioid dependence treatment. *Drug and alcohol dependence*, 148, 62-68.
- Yang, Z., Seneviratne, C., Wang, S., Ma, J. Z., Payne, T. J., Wang, J., & Li, M. D. (2013). Serotonin transporter and receptor genes significantly impact nicotine dependence through genetic interactions in both European American and African American smokers. *Drug and alcohol dependence*, 129(3), 217-225.
- Ye, L., Wang, S., Wang, X., Zhou, Y., Li, J., Persidsky, Y., & Ho, W. (2010). Alcohol impairs interferon signaling and enhances full cycle hepatitis C virus JFH-1 infection of human hepatocytes. *Drug and alcohol dependence*, *112*(1-2), 107-116.
- Yeung, E. W., Spychala, K. M., Miller, A. P., Otto, J. M., Deak, J. D., Kim, H., ... & Gizer, I. R. (2022). Effects of genetic risk for alcohol dependence and onset of regular drinking on the progression to alcohol dependence: A polygenic risk score approach. *Drug and alcohol dependence*, 230, 109117.
- Yoder, K. K., Albrecht, D. S., Dzemidzic, M., Normandin, M. D., Federici, L. M., Graves, T., ... & Kareken, D. A. (2016). Differences in IV alcohol-induced dopamine release in the ventral striatum of social drinkers and nontreatment-seeking alcoholics. *Drug and alcohol dependence*, *160*, 163-169.
- Yohros, A., Ford, J., & Hinojosa, M. S. (2018). Dating violence victimization and substance use: The role of a serotonin transporter gene polymorphism (5HTTLPR). *Drug and alcohol dependence*, 189, 178-186.

Zuo, L., Wang, K., Zhang, X. Y., Krystal, J. H., Li, C. S. R., Zhang, F., ... & Luo, X. (2013). NKAIN1– SERINC2 is a functional, replicable and genome-wide significant risk gene region specific for alcohol dependence in subjects of European descent. *Drug and alcohol dependence*, 129(3), 254-264.

ACADEMIC VITAE **DE'JAH COATES**

EDUCATION

The Pennsylvania State University, University Park, PA Anticipated Bachelor of Science in Biobehavioral Health

Prince George's Community College (PGCC), Largo, MD Associate Degree in General Studies with High Honors

HONORS

Penn State Homecoming Guide State Forward Award Recipient, 2023 Penn State Erickson Grant Recipient, 2023 Penn State Schreyer's Honors College Scholar, 2022 - Present Penn State Millennium Scholars Program Scholarship Recipient, 2020 - Present

EXPERIENCE

Pennsylvania State University, University Park, PA

Morbidity, Mortality and Demography Lab, Honor's Research Assistant

• Completed a scoping review of the literature on genetics/genotypes and their influence in substance use, health behaviors and health from the journal Drug and Alcohol Dependence, one of the major outlets in the discipline. Applied the PRISMA methodology and analyzed studies to produce a comprehensive analysis of the knowledge produced between 2000 and 2023.

Behavioral Neurogenetics Laboratory, Undergraduate Research Assistant

Reviewed previous lab studies and results relating to the role of chronic variable social stress on adolescent mice and morphine dependency in adulthood, using methods of gene expression measurement and electrophysiology. Applied findings to develop a design for replication of these experiments using mild physical stressors and examine opioid sensitization in laboratory mice.

National Institute on Drug Abuse, Baltimore, MD

Recruitment and Training to Unlock Research Potential in Science, Aponte Lab Research Intern

• Analyzed results of electrophysiological techniques using MATLAB and ImageJ/Fiji to determine neuronal activity via calcium imaging in high-fat-diet in mice to study the role of feeding regulation hormones, CCK, Ghrelin, and neuropeptide Y in binge-eating disorders.

University of Minnesota - Twin Cities, Minneapolis, MN

Life Science Summer Undergraduate Research Program (LSSURP), Gomez-Pastor Lab Research Intern

• Executed successful mutagenesis and transfection experiments on Q111 HD mouse striatal cell cultures to examine the role of alpha-synuclein and CK2a' protein kinase in Huntington's disease (HD). Presented on the overexpression of a-syn and the inverse effects on the expression of many synaptic genes in HD models.

PRESENTATIONS

"Underlying mechanisms of diet-induced obesity in mice". National Institutes of Health Intramural Research Program Summer Poster Day, Bethesda, MD, August 2022.

96

May 2020

August 2020 - May 2024

June 2022 - August 2022

December 2021 - Present

May 2021 - August 2021

"Alpha-synuclein abundance affects synaptic dysregulation in Huntington's Disease." University of Minnesota Summer Undergraduate Research Symposium, Minneapolis MN, August 2021.

PUBLICATIONS

Yu, D., Zarate, N., White, A. *et al.*, including **D. Coates**. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in Huntington's disease. *Acta Neuropathol Commun* 10, 89 (2022). <u>https://doi.org/10.1186/s40478-022-01397-6</u>

COMMUNITY INVOLVEMENT

- Pennsylvania State University National Pan-Hellenic Council President, April 2023 April 2024
- Penn State Health Promotion & Wellness Intern Health Equity Team Lead, Health Works, April 2023 April 2024
- Delta Sigma Theta Sorority, Inc., Epsilon Gamma Chapter Recording Secretary, December 2022 April 2024
- Millennium Scholars Program Mentor Mentor, August 2022 April 2024
- Diversity and Inclusion Student Association (DISA) in the College of Health and Human Development Vice President, April 2022 April 2023
- Penn State Student Black Caucus University Park Undergraduate Association (UPUA) Representative, March 2022 - March 2023