
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF MATHEMATICS

A MEAN-FIELD THEORY FOR QUANTUM NEURAL NETWORKS

RYAN COHEN
SPRING 2024

A thesis
submitted in partial fulfillment

of the requirements
for baccalaureate degrees

in Mathematics
with honors in Mathematics

Reviewed and approved* by the following:

Xiantao Li
Professor of Mathematics

Thesis Supervisor

Carina Curto
Professor of Mathematics

Honors Adviser

*Signatures are on file in the Schreyer Honors College.

i

Abstract

Quantum machine learning is an emerging technology with the potential to solve many prob-
lems in data science. It works with a large quantum circuit with many parameters, so the model
and training process are quite complicated. We need to develop a mathematical description for the
training problem in the context of a large parameter space. In a previous paper on classical neural
networks, it was demonstrated that for neural networks with a growing number of parameters n,
the loss function becomes convex, and the approximation error of the network scales as O(n−1).
In this thesis, we extend those results to a quantum framework. We prove that the loss landscape
is asymptotically convex and run numerical experiments to attempt to show that the error scales as
O(n−1), but conclude that the latter requires further study.

ii

Table of Contents

List of Figures iii

1 Introduction 1
1.1 Neural networks and mean-field theory . 2
1.2 Quantum neural networks . 3

2 Asymptotic Convexity 4
2.1 The loss function and gradient flow . 5
2.2 The empirical distribution . 7
2.3 The limiting approximating function . 8

3 Numerical Results on Scaling of Network 10
3.1 Quantum neural network setup . 11
3.2 Results of simulation . 12

Bibliography 14

iii

List of Figures

1.1 A convex and non-convex function . 2
1.2 Example of a parameterized quantum circuit . 3

3.1 An ansatz with 5 qubits . 11
3.2 Loss after training compared to width of network 12
3.3 Average loss over time for network of width 4 . 13

1

Chapter 1

Introduction

2

1.1 Neural networks and mean-field theory
Neural networks have shown great promise in approximating high-dimensional functions, and

have become a prevalent tool in a number of fields. However, despite their impressive results,
neural networks are often considered a ”black-box” in that their mathematical foundations are not
completely understood. Recently, many researchers have adapted mean-field theory from physics
in order to better understand the mechanisms of deep neural networks. In essence, mean-field the-
ory is a way to study high-dimensional particle systems by averaging its behavior so that we do
not need to consider every particle individually. In the context of neural networks, we can model
the parameters as interacting particles that evolve over time, which is the equivalent of the training
of the network.

In the context of the previous results from Rotskoff and Vanden-Eijnden [1]., we consider a
real-valued function f with d-dimensional inputs approximated by our network

fn(x) =
1

n

n∑
i=1

ciφ(x, yi) (1.1)

where ci ∈ R, yi ∈ RN , and φ is some kernel. To study the training of the network, we view
our parameters as interacting particles that evolve over time, and hence we can consider fn as a
function of both the number of parameters n and time t:

fn(t, x) =
1

n

n∑
i=1

Ci(t)φ(x, Yi(t)) (1.2)

The main results of the paper states that for a given x ∈ Rd, as the number of parameters n
increases, fn will converge to a function f0 with an error rate of n−1, i.e.

fn(t) = f0(t) +O(n−1) (1.3)

Furthermore, f0 evolves on a convex landscape. This is important as it guarantees that training
the network will minimize the loss function. This is demonstrated in Figure 1.1: we can see that
moving towards in the direction of the negative gradient will always find the global minimum in a
convex function, but may cause us to become ”stuck” at a local minimum in a non-convex function.

Figure 1.1: A convex and non-convex function

3

Hence, the convexity of f0 implies that f0(t) → f as t→ ∞. In other words, as the number of
parameters tends to infinity and we continuously train the network, it will converge to the objective
function. These results give us insight into the limiting behavior of neural networks. Now, we will
attempt to extend these results to quantum neural networks.

1.2 Quantum neural networks
Quantum neural networks, as opposed to their classical counterparts, consist of a quantum

circuit with parameterized gates. We encode our data into the circuit’s qubits and measure its
output compared to our objective function. Then, similar to classical neural networks, we compute
the gradient and adjust the circuits parameters to get a more accurate output in later passes.

Figure 1.2: Example of a parameterized quantum circuit

In the figure above, we can see a circuit with 3 qubits, each with a parameterized quantum gate
and CNOT gates entangling the qubits. More generally, we can represent a quantum machine learn-
ing problem as a sequence of parameterized unitary operators acting on some Hermitian operator
H which we measure the expectation of:

E(θ) = ⟨ψ0(x)|U(θ)†HU(θ)|ψ0(x)⟩ (1.4)

where ψ0(x) represents the initial state of our circuit given an input x, A† is the complex conjugate
of a matrix, and U(θ) = UL(θL) . . . U1(W1), with each Ui(θi) unitary [2]. As we can see, the
structure of such a function differs significantly from the classical case. It will take some work to
rederive the results on the evolution of such a network.

4

Chapter 2

Asymptotic Convexity

5

2.1 The loss function and gradient flow
We would like our approximating function to be in a form more similar to that in equation 1.1.

Fortunately, since H is a Hermitian matrix, we can decompose it into the form

H =
n∑

j=1

cjpjp
†
j (2.1)

where u1, . . . un are orthonormal eigenvectors and c1, . . . cn are the corresponding eigenvalues.
Denote Pj = pjp

†
j . Then, we propose a class of approximating functions as

En(x) =
1

n

n∑
j=1

cj⟨ψ0(x)|U(θ⃗j)†PjU(θ⃗j)|ψ0(x)⟩ (2.2)

Note that the n−1 term will not change the optimization of the parameters. Now, suppose that our
domain of inputs is some compact Ω ⊂ Rd. Then, we will define our loss function as

ℓ(E,En) =
1

2

∫
Ω

|E(x)− En(x)|2dx (2.3)

Expanding this, we get

1

2

∫
Ω

|E(x)|2dx− 1

n

∫
Ω

E(x)En(x)dx+
1

2n2

∫
Ω

|En(x)|2dx (2.4)

Since the first term is independent of n we can denote it CE . For the second term, we can move the
summation outside of the integral and introduce a shorthand for the integral since it only depends
on θ⃗j: ∫

Ω

E(x)En(x)dx =

∫
Ω

E(x)
n∑

j=1

cj⟨ψ0(x)|U(θ⃗j)†PjU(θ⃗j)|ψ0(x)⟩dx =

n∑
j=1

cj

∫
Ω

E(x)⟨ψ0(x)|U(θ⃗j)†PjU(θ⃗j)|ψ0(x)⟩dx =
n∑

j=1

cjF (θ⃗j)

(2.5)

where F (θ⃗j) represents the integral term. For the last term, we can do a similar process. Expanding
the sum, we get ∫

Ω

|En(x)|2dx =

∫ ∣∣∣∣∣
n∑

j=1

cj⟨ψ0(x)|U(θ⃗j)†PjU(θ⃗j)|ψ0(x)⟩

∣∣∣∣∣
2

dx =

∫
Ω

n∑
i,j=1

cicj⟨ψ0(x)|U(θ⃗j)†PjU(θ⃗j)|ψ0(x)⟩⟨ψ0(x)|U(θ⃗i)†PiU(θ⃗i)|ψ0(x)⟩dx
(2.6)

Then, we can move the summation outside the integral and condense:
n∑

i,j=1

cicj

∫
⟨ψ0(x)|U(θ⃗j)†PjU(θ⃗j)|ψ0(x)⟩⟨ψ0(x)|U(θ⃗i)†PiU(θ⃗i)|ψ0(x)⟩dx =

n∑
i,j=1

cjcjK(θ⃗i, θ⃗j)

(2.7)

6

where K(θ⃗i, θ⃗j) represents the integral as a function of two parameters. Hence, the loss function
becomes

l(E,En) = Cf −
1

n

∑
j=1

cjF (θ⃗j) +
1

2n2

n∑
i,j=1

cjcjK(θ⃗i, θ⃗j) (2.8)

and we can rescale it by a factor of n since minimizing ℓ is the same as minimizing nℓ, so we will
be trying to minimize the function

nCf −
n∑

j=1

cjF (θ⃗j) +
1

2n

n∑
i,j=1

cicjK(θ⃗i, θ⃗j) (2.9)

Now, we wish to calculate the formulas for gradient flow, a continuous analogue for gradient
descent, for optimizing both θ⃗j and cj . Notice that this will require finding the gradient of U(θ⃗j).
We know that if U is a unitary matrix, we can represent it in the form e−iH , where H is Hermitian.
Hence, we can write

U(θ⃗j) =
(
e−iθ

(1)
j V1 , . . . ,−e−iθ

(L)
j VL

)
(2.10)

with Vk Hermitian and θ(k)j ∈ R, so we can easily calculate the gradient as

∇U(θ⃗j) =
(
iV1e

−iθ
(1)
j V1 , . . . , iVLe

−iθ
(L)
j VL

)
(2.11)

We must also consider ∇U(θ⃗j)†. Since it is the complex conjugate of ∇U(θ⃗j), using the product
rule leaves us with twice the real part of ∇U(θ⃗j). Hence, we will have that

∇F (θ⃗j) = 2

∫
Ω

E(x)cj⟨ψ0|U(θ⃗j)†Pj∇U(θ⃗j)|ψ0⟩ (2.12)

and similarly

∇K(θ⃗i, θ⃗j) = 2

∫
Ω

⟨ψ0(x)|U(θ⃗j)†Pj∇U(θ⃗j)|ψ0(x)⟩⟨ψ0(x)|U(θ⃗i)†PiU(θ⃗i)|ψ0(x)⟩dx (2.13)

The case for cj is much simpler, the gradient being

−F (θ⃗j) +
1

n

N∑
i=1

CiK(θ⃗i, θ⃗j) (2.14)

Then, to model the evolution of {cj, θj}nj=1, we parameterize by time to get {Cj(t),Θj(t)}nj=1,
viewing our set as a system of interacting particles. Our gradient flows are then

Ċj = F (Θ⃗j)−
1

n

n∑
i=1

CiK(Θ⃗i, Θ⃗j)

Θ̇j = Cj∇F (Θ⃗j)−
1

n

∑
i=1

CiCj∇K(Θ⃗i, Θ⃗j)

(2.15)

7

2.2 The empirical distribution
Now, rather than studying the evolution of the parameters individually, we will look at their

empirical distribution. Let

ρn(t, c, θ) =
1

n

n∑
j=1

δ(c− Cj(t))δ(θ −Θj(t)) (2.16)

where δ is the Dirac delta defined as

δ(x) =

{
∞, x = 0

0, x ̸= 0
(2.17)

so ρn = 0 unless (c, θ) is in the set {Cj(t),Θj(t)}nj=1. One useful property of the delta function is
that for some function f we have ∫

Ω

f(x)δ(x− c)dx = f(c) (2.18)

Taking the derivative of ρn with respect to t gives

∂tρn(t, c, θ) = − 1

n

n∑
j=1

δ(c− Cj(t)∇δ(θ −Θj(t)) · Θ̇j −
1

n

n∑
j=1

∂cδ(c− Cj(t)∇δ(θ −Θj(t)) · Ċj

(2.19)
and then we can substitute in our gradient flow equations from 2.15 to get

−∇ ·

(
1

n

n∑
j=1

δ(c− Cj(t))δ(θ −Θj(t))

(
1

n
c∇F (θ)− 1

n

∑
i=1

cCi∇K(Θi, θ)

))
−

∂c

(
1

n

n∑
j=1

δ(c− Cj(t))δ(θ −Θj(t))

(
1

n
F (θ)− 1

n

n∑
i=1

CiK(Θi, θ))

)) (2.20)

and notice that the equation for ρn appears twice in this, so we can simplify to

−∇ ·

(
ρn

(
c∇F (θ)− 1

n

∑
i=1

cCi∇K(Θi, θ)

))
− ∂c

(
ρn

(
F (θ)− 1

n

n∑
i=1

CiK(Θi, θ))

))
(2.21)

Then, using property 2.18, we can insert an integral with two delta functions inside to rewrite the
first summation as

1

n

n∑
i=1

cCi∇K(Θi, θ) =
1

n

n∑
i=1

∫∫
cc′∇K(θ, θ′)δ(c′−Ci)δ(θ

′−Θi)dθ
′dc′ =

∫∫
cc′∇K(θ, θ′)ρ′ndθ

′dc′

(2.22)
and similarly,

1

n

n∑
i=1

CiK(Θi, θ)) =

∫∫
c′K(θ, θ′)ρ′ndθ

′dc′ (2.23)

8

so the equation becomes

−∇ ·
(
ρnc∇F (θ)−

∫∫
cc′∇K(θ, θ′)ρ′nρndθ

′dc′
)
− ∂c

(
ρnF (θ)−

∫∫
c′K(θ, θ′)ρ′nρndθ

′dc′
)

(2.24)
and then, taking the limit as n→ ∞ with ρ0 as the limit of our empirical distribution, we get

∂tρ0 = ∇·
(
−ρ0c∇F (θ) +

∫∫
cc′∇K(θ, θ′)ρ′0ρ0dθ

′dc′
)
+∂c

(
−ρ0F (θ) +

∫∫
c′K(θ, θ′)ρ′0ρ0dθ

′dc′
)
dθ′dc′

(2.25)
as the time derivative of the limit of the empirical distribution.

2.3 The limiting approximating function
With the time derivative of the limit of the empirical distribution, we can begin to study the

evolution of a network considered to have ”infinite” width mentioned in equation 1.3. In the case
of our quantum neural network, we can define this network as

E0(t, x) =

∫∫
c⟨ψ0(x)|U(θ⃗)†PU(θ⃗)|ψ0(x)⟩ρ0(t, θ, c)⟩dθdc (2.26)

since integrating against the limit of the empirical distribution will evaluate the network at its
parameters. Now, we wish to rewrite our equation for ∂tρ0 in terms of E0 in in order to study the
time derivative ofE0. Firstly, we will expand the terms F andK to get the rather messy expression

∇ ·
(
− c∇

∫
E(x)⟨ψ0(x)|U(θ†PU(θ)|ψ0(x)⟩dxρ0+∫

cc′∇
∫
⟨ψ0(x)|U(θ)†PU(θ)|ψ0(x)⟩⟨ψ0(x)|U(θ′)†PiU(θ

′)|ψ0(x)⟩ρ0ρ′0dxdθ′dc′
)
+

∂c

(
−
∫
E(x)⟨ψ0(x)|U(θ⃗)†PU(θ⃗)|ψ0(x)⟩dxρ0+∫

c′
∫
ψ0(x)|U(θ)†PU(θ)|ψ0(x)⟩⟨ψ0(x)|U(θ′)†PiU(θ

′)|ψ0(x)⟩ρ0ρ′0dxdθ′dc′
)

(2.27)

Then, we can move the terms depending on θ and c outside the innermost integral since they do
not depend on θ′ or c′ and rewrite in terms of E0 to get

∇ ·
(
− c∇

∫
E(x)⟨ψ0(x)|U(θ)†PU(θ)|ψ0(x)⟩dxρ0 +

∫
c∇θ⟨ψ0(x)|U(θ)†PU(θ)|ψ0(x)⟩E0(x)dxρ0

)
+

∂c

(
−
∫
E(x)⟨ψ0(x)|U(θ⃗)†PU(θ⃗)|ψ0(x)⟩dxρ0 +

∫
⟨ψ0(x)|U(θ)†PU(θ)|ψ0(x)⟩E0(x)dxρ0

)
(2.28)

Then, applying the gradient to the term ⟨ψ0(x)|U(θ)†PU(θ)|ψ0(x)⟩ we can rearrange and factor to
get

∂tρ0 = ∇ ·
(
c

∫
⟨ψ0|U(θ)†P∇U(θ)|ψ0⟩(E0(t, x)− E(x))dxρ0

)
+ ∂c

(∫
⟨ψ0|U(θ)†PU(θ)|ψ0⟩dxρ0

)
(2.29)

9

With ∂tρ0 in terms of E0, we begin to study ∂tE0. Using 2.26, we have that

∂tE0 =

∫∫
c⟨ψ0(x)|U(θ⃗)†PU(θ⃗)|ψ0(x)⟩∂tρ0(t, θ, c)dθdc (2.30)

and substituting in 2.29 we have∫∫
c⟨ψ0(x)|U(θ⃗)†PU(θ⃗)|ψ0(x)⟩∇ ·

(
c

∫
⟨ψ0|U(θ)†P∇U(θ)|ψ0⟩(E0(t, x)− E(x))dxρ0

)
dθdc+∫∫

c⟨ψ0(x)|U(θ⃗)†PU(θ⃗)|ψ0(x)⟩∂c
(∫

⟨ψ0|U(θ)†PU(θ)|ψ0⟩dxρ0
)
dθdc

(2.31)
To simplify, we can integrate both terms by parts. In each term, change the order of integration so
that x is being integrated after θ and c. However, we have to add in a new variable x′ since the first
x in each term is not being integrated. Combining these, the equation becomes∫∫ (

− c2⟨ψ0(x)|U(θ)†P∇U(θ)|ψ0(x)⟩⟨ψ0(x
′)|U(θ)†P∇U(θ)|ψ0(x

′)⟩−

⟨ψ0(x)|U(θ)†P∇U(θ)|ψ0(x)⟩⟨ψ0(x
′)|U(θ)†P∇U(θ)|ψ0(x

′)⟩
)
ρ0(E0(t, x

′)− E(x)′)dθdcdx′

(2.32)
Then, let

M(ρ, x, x′) =∫∫ (
c2⟨ψ0(x)|U(θ)†P∇U(θ)|ψ0(x)⟩⟨ψ0(x

′)|U(θ)†P∇U(θ)|ψ0(x
′)⟩+

⟨ψ0(x)|U(θ)†P∇U(θ)|ψ0(x)⟩⟨ψ0(x
′)|U(θ)†P∇U(θ)|ψ0(x

′)⟩
)
ρ0dθdc

(2.33)

so we end up with

∂tE0(t, x) = −
∫
M(ρ, x, x′)(E0(t, x

′)− E(x′))dx′ (2.34)

as the equation for the time derivative of E0. Note that for vectors, the general quadratic form is
xTAx and its derivative is 2Ax. If we consider E0 as an infinite dimensional vector, then 2.34
shows that it must have a quadratic form, where M is the linear operator A and it is integrated
over x′. Hence, the limiting approximating function is quadratic and thus evolves on a convex
landscape.

10

Chapter 3

Numerical Results on Scaling of Network

11

3.1 Quantum neural network setup
In the original paper by Rotskoff and Vanden-Eijnden, they derived equation 1.3 showing that

the empirical loss of the network scales at O(n−1) and verified the results computationally [1].
While the formal derivation of this is rather technical, we can still attempt to reproduce their re-
sults numerically on a quantum on a quantum simulator.

We will be approximating the spherical 3-spin model on the 4 dimensional hypersphere in R5

defined as

f(x) =
1

d

5∑
p,q,r=1

ap,q,rxpxqxr (3.1)

where {ap,q,r}5p,q,r=1 are randomly generated from a standard Gaussian distribution and each x lies
on the surface of the 4-sphere. Specifically, our points will be of the form

√
5(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ), 0, 0) (3.2)

where θ ∈ [0, π] is drawn uniformly and φ ∈ [0, 2π] is fixed. This function has a large number of
local minima so it will be difficult to optimize our loss function.

To create the quantum neural network, we must first designate a feature map and an ansatz. A
feature map is a function used to encode data into a qubit. One commonly used method is to scale
each vector element into [−π, π] and encode them as the amplitude of angles [3] as

ψd
n = cos(xdn)|0⟩+ sin(xdn)|1⟩ (3.3)

Then, we have to choose an ansatz, which contains the parameters that we optimize over. Choosing
an ansatz is a difficult problem that is often highly dependent on the specifics of our target function,
but for our purposes we only wish to see how the loss function scales with the width of the network.
We will borrow an ansatz conventionally used for estimating the ground state energy of hydrogen
atoms, which consists of an alternating series ofRZ andRY gates followed by several CNOT gates
[4]. An example circuit with 5 qubits is depicted below:

Figure 3.1: An ansatz with 5 qubits

12

Before our data passes through the quantum network, we will first pass it through one linear
layer of a classical neural network to adjust the width. Then, the output of the classical layer will
be encoded by the feature map. We will use the Adam optimization algorithm and the MSE loss
function.

3.2 Results of simulation
We trained n = 1, 2, . . . 10 layers for one realization of the target function, each for 200 itera-

tions. The loss at the end of training is shown below:

Figure 3.2: Loss after training compared to width of network

As we can see, there is no apparent pattern between layers and average loss at the end of
training. There are a few reasons this could be the case. The most obvious reason is due to not
dedicating enough computational resources. In classical neural networks, a network of width n
involves calculations with n×n matrices. In the quantum case, since a quantum state is calculated
through the tensor product of qubit states, an n qubit network will involve calculations with 2n×2n

matrices. Thus, the training of the network takes significantly more time and resources. In the
original paper, the network was trained with up to 256 layers for over one million iterations. In
contrast, we only trained for up to 10 layers for 200 iterations. It is possible that the O(n−1)
pattern only becomes apparent over for sufficiently trained networks. Below, we have the training
for n = 4:

13

Figure 3.3: Average loss over time for network of width 4

We can see that the loss does not plateau at any point; it is likely that we still could have re-
duced the loss further with more iterations. The final loss may have become too dependent on the
initial weights, rather than the width of the network. Further studies should be made into this, with
more computing time and power.

The other possibility is that theO(n−1) loss scaling simply does not hold in the case of quantum
neural networks. Due to their fundamental differences in structure, it is possible that a similar result
is impossible to derive, and the relationship between network width and loss is more complicated.
For instance, it is known that randomly initialized parameters run into the issue of the gradient
becoming exponentially small in the number of qubits [2]. However, the original derivation of this
was beyond the scope of this paper, and thus requires further study.

14

Bibliography

[1] Grant Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural net-
works: An interacting particle system approach. Communications on Pure and Applied Math-
ematics, 75(9):1889–1935, September 2022.

[2] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. An initial-
ization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum,
3:214, December 2019.

[3] Edward Grant, Marcello Benedetti, Cao Shuxiang, Andrew Hallam, Joshua Lockhart, Vid Sto-
jevic, Andrew G. Green, and Simone Severini. Hierarchical quantum classifiers. npj Quantum
Information, 4:65, December 2018.

[4] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao. Quantum circuit
architecture search for variational quantum algorithms. npj Quantum Information, 8:62, May
2022.

