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ABSTRACT 

 

This thesis investigates path-planning for a high-speed off-road autonomous vehicle. A 

1/5th scale Remote Control (RC) vehicle was modified with sensors to be able to track vehicle 

position, trajectory, velocity, and other parameters necessary while performing traversals on a 

specifically designed off-road course that challenges the vehicles maneuverability and velocity. 

Advanced global position system (GPS) and encoder algorithms are implemented into the 

vehicles onboard microcontrollers to determine real time data necessary to dictate the necessary 

steering and throttle inputs. The sensor algorithms allow for the vehicle to measure its position 

and velocity, thereby enabling the foundation of path-following. 

Using algorithms to control the two receiving functions, steering and throttle, the vehicle 

must traverse the course autonomously with the aim of increasing speed per traversal until 

reaching an optimal steady-state velocity profile. Using iterative learning control (ILC) and 

similar control strategies, the vehicle learns from prior traversals to find limiting levels of 

velocity to be able to repeatedly produce traversals faster with each lap.  

The foundation for a 1/5th scale high-speed off-road vehicle path following simulation is 

created on MATLAB prior to vehicle implementation. The simulation successfully models 

constant speed along a path for both large-scale and 1/5th scale vehicles. The simulation is 

prepared for the implementation of ILC to determine the optimal steady-state velocity profile. 

The goal is for the simulation to achieve lap navigation faster than if a human were to control the 

vehicle via its remote-control unit. 

This research discussion concludes by outlining the next steps for algorithm development 

and field testing. The overall goal is to contribute to the development of autonomous off-road 
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vehicles for use in a range of applications, including agriculture, mining, and search and rescue. 

The findings of this thesis seek to advance core algorithms and deployment technologies for 

autonomous systems in challenging off-road environments.  
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Chapter 1  

 
Introduction 

Motivation 

The exploration and advancement of off-road autonomous vehicles is critical due to the 

condition of off-road driving. Off-road driving is often considered difficult and multifaceted due 

to a variety of factors such as variable traction, obstacles, uneven terrain, and many other 

conditions which limit the performance of a vehicle. Conversely, off-road driving’s lack of 

definition allows for the user to have a greater margin for decisions when path-planning.  

Several industries such as mining, agriculture, construction, forestry, and others heavily 

rely on off-road vehicles. Thus, research in autonomous off-road vehicles can significantly 

benefit these industries in the development of their vehicles and machinery they use to 

accomplish their respective tasks. 

In mining operations, where rugged and often hazardous terrains are faced, off-road 

autonomous vehicles can enhance safety, efficiency, and productivity. Autonomous vehicles can 

also minimize human exposure to suboptimal conditions. Off-road autonomous vehicles in 

agriculture can revolutionize tasks such as planting, harvesting, and soil management. Generally, 

research in the field of off-road autonomous vehicles is vital for developing robust and adaptable 

systems capable of navigating challenging terrains and performing tasks autonomously. 

The ultimate challenge of off-road vehicle control is understanding how to reach the 

highest performance, which usually is limited by the vehicle’s maneuverability limits under these 
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unpredictable conditions. This maneuverability challenge can be measured via the goal of 

achieving the minimum time for a vehicle to traverse an off-road path successfully and safely. To 

reach this robust limit, many algorithms and systems must be explored and researched to ensure 

the optimal performance of the vehicle under the off-road conditions. 

Goals of This Thesis 

 The goal of this thesis is to achieve the successful implementation of autonomous off-

road path-optimization using a 1/5th scale RC vehicle. The objective of this research is threefold: 

first, to develop the vehicle system architecture; second, to conduct data collection through 

various testing methods; and third, to develop and improve algorithms aimed at enhancing off-

road vehicle performance. The primary goal is to enhance autonomous off-road vehicle 

capabilities, surpassing human drivers in controlling high-speed off-road vehicles through 

algorithm development. 

To develop these objectives, this thesis explains the substantial hardware improvements 

made to the off-road vehicle platform. Essential modifications have been implemented to ensure 

the vehicle can withstand the rigors of high-speed, high-impact off-road driving. Safety 

measures, including an emergency stop system, have been integrated to mitigate the risk of high-

speed collisions and safeguard the vehicle and its surroundings. The electronics and connections 

for data collection have been adapted to facilitate repeatability of the data collection process. 

The thesis also explores the development of data collection methods. Initially, the RC 

vehicle is manually controlled to traverse an intended path developed on the Penn State Test 

Track. While the vehicle traverses the course, an onboard Teensy 4.1 microcontroller collects 
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encoder and GPS data are collected storing it onto a micro-SD card. This dataset – encompassing 

parameters such as wheel angular velocity, linear car velocity, and relative position – is extracted 

for post-processing in MATLAB. These parameters serve as inputs in creating a course-

following algorithm. 

The final phase of the thesis focuses on the development of algorithms designed for off-

road vehicle control. The long-term outcome of this work is an autonomous vehicle capable of 

swiftly navigating designed off-road courses, with the goal of driving quicker and more 

consistently than a human could. This approach aims to push the boundaries of off-road 

autonomous vehicle capabilities, contributing to advancements in autonomous systems for off-

road environments. 

Organization of This Thesis 

The organization of the remainder of this thesis is as follows: 

Chapter 2 reviews previous research and literature in the development of autonomous 

vehicles. This includes development in sensor hardware, system architecture, sensor algorithms, 

path-following, path-planning, and iterative learning control, the control theory which is further 

explored to determine the velocity of the vehicle.  

Chapter 3 is an overview of the 1/5th scale RC vehicle used in this thesis. Hardware 

modifications and other details regarding the hardware and vehicle itself are explored in depth. 

This chapter also explores the electronic circuitry and subsequent modifications made during this 

work to ensure polarization and protection for repeatable data collection cycles. Lastly, this 

chapter discusses the software dictating the vehicle dynamics and data collecting. 
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Chapter 4 discusses the steering and throttle limiting controls that are considered. 

Chapter 5 discusses the data collection process regarding and the results of several field 

data collection studies accomplished. More specifically, the results of defining the official track 

trajectory and determining the vehicle's primary states: velocity, acceleration, yaw, and power. 

Chapter 6 explores the primary path-following algorithms and development given 

different inputs. This chapter discusses the use of iterative learning control within simulation as 

well as the results of preliminary simulation models of path following. 

Finally, Chapter 7 concludes the research accomplished during this thesis, next steps in 

operation, and future work to be done on the vehicle for the next cohort of undergraduate 

researchers. 
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Chapter 2  

Literature Review 

Autonomous Vehicles 

Autonomous vehicles, also known as AVs, are quickly becoming commonplace in road 

navigation. Companies such as Tesla, Google, GM, and many others are researching ways to 

implement autonomous capabilities in their current fleet of vehicles. The primary motivation for 

this is due to the 1.24 million people worldwide who die yearly due to vehicle-related accidents 

[1]. The guiding view in the scientific community is that autonomous vehicles and intelligent 

transportation systems may reduce driver behavior-related crashes, thus minimizing fatalities. 

Autonomous vehicles are simply robotic vehicles which have functionalities that often 

emulate a human operating a vehicle [1]. An autonomous vehicle measures its surroundings and, 

using these measurements, attempts to maneuver properly to its destination with minimal 

assistance or guidance from a human. An autonomous vehicle can accomplish this by using 

sensors, computers, data, and control systems to replace many human functions [1], [2].  

Humans are incredibly good at making on-the-spot driving decisions, which is an 

inherent challenge of driving activities. However, humans are susceptible to making mistakes, 

which can lead to catastrophic outcomes when driving. Autonomous vehicles, on the other hand, 

are generally programmed with the goal of avoiding making the same mistakes as a human when 

driving. To accomplish this, autonomous vehicles are designed to have predictable algorithm 

performance. This predictability avoids error but can be challenged by on-the-spot changes while 

driving.  One means of studying the interaction between a predictable environment and a 



6 

changing environment is to operate the vehicle such that it is starting with an incorrect model of 

its operational area, but the vehicle then must learn – as quickly as possible – how to change its 

performance. This is a key motivation to the methods and approach of this thesis. 

Autonomous vehicles use intelligent transport system algorithms to optimize driving 

decisions to accomplish three applications, one of which being vehicle safety [2]. Figure 2.1 

illustrates the three domains which include: safety – avoiding accidents, crashes, and fatalities, 

transportation efficiency- which is to optimize gas mileage and take optimal routes, and 

infotainment applications – enabling a human to engage in non-driving activities.  

 

 

Figure 2.1 - Three Main Applications of Intelligent Transport Systems [2] 

System Architecture of Autonomous Vehicles 

The on-vehicle systems that allow autonomous vehicles to complete the tasks necessary 

to operate a vehicle are comprised of a complex array of sensors, processors, and actuators [3]. 

The sensors typically found surrounding an autonomous vehicle are either exteroceptive, which 

are for perception of surroundings, and proprioceptive sensors, which are for internal 

measurements [3]. Such sensor configurations are used to develop an observable environment in 

which the vehicle can engage in pathfinding by deciding its route based on sensor information.  
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Exteroceptive sensors are typically used in autonomous vehicles to be able to detect 

objects, identify the object’s respective distance, and identify the object’s current motion, if any. 

The exteroceptive sensors commonly found on autonomous vehicles include LiDAR, radar, 

cameras, and ultrasonic sensors. Most autonomous vehicles use a combination of these 

exteroceptive sensors in what is known as a sensor suite which work together to detect an 

object’s location and motion. Figure 2.2, from Li J et al., demonstrates object detection 

accomplished from a sensor suite including a LiDAR, camera, and radar sensor on an 

autonomous vehicle [4]. 

 

Figure 2.2 – Object Detection Accomplished with a Exteroceptive Sensor Suite [4] 

LiDAR sensors, also known as light detection and ranging, use laser time-of-flight 

technology to measure distances and create 3D representations of their surroundings [2], [3]. 

LiDAR is commonly used on autonomous vehicles to detect other vehicles on the road, 

pedestrians, signs, and other objects to create a 3D world map of what to avoid.  

Radar sensors use high-frequency radio waves to measure distances and velocities of 

objects [3]. Autonomous vehicles use radar to also detect objects and their motions relative to the 

autonomous vehicle itself.  
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Cameras intrinsically convert light emission into pixels arranged by the spherical angle of 

incoming light relative to the camera. The pixels may detect colors and, with time-of-flight 

cameras or stereo cameras, possibly specific depth perception [3], [5]. Cameras are often used in 

autonomous vehicles to read stop lights, road signs, lane lines, and local terrain.  

Lastly, ultrasonic sensors use sound waves to measure the distances and velocities of 

relative objects [3]. Although cheap, ultrasonic sensors are uncommon in autonomous vehicles 

since they may be greatly affected by weather and atmospheric events, air temperature, and 

crosstalk from surrounding sensors. The typical AV’s combination of LiDAR, radar, and camera 

perception is beneficial for the autonomous vehicle to register accurate details regarding what 

surrounds the vehicle.  

Proprioceptive sensors typically measure internal vehicle-specific variables such as 

vehicle velocity, acceleration, forces, moments, and many other dynamic variables [2], [3], [5]. 

The proprioceptive sensors usually found on an autonomous vehicle include GPS, encoders, and 

Inertial Measurement Units (IMUs).  

Encoders are a major hardware component in this thesis. Encoders, as imaged in Figure 

2.3, use a rotational shaft to convert motion into electrical signals which can be read and 

processed by a controller [6].  

 

Figure 2.3 – Rotary Wheel Encoder used in This Thesis [7] 
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Global positional systems (GPS) use satellite-based navigation for measuring local 

positions. IMU sensors can measure an object’s acceleration (and net external forces), angular 

rate, and magnetic field. IMU’s are typically built with three accelerometers, three gyroscopes, 

and three magnetometers in a compact printed circuit board to gather information along each of 

the axes in the typical XYZ cartesian coordinate system.  

The sensors that form the infrastructure of an autonomous vehicle serve the purpose of 

collecting all the data necessary to capture what the vehicle is doing, where the vehicle is doing 

it, and what is near the vehicle [5]. The data package is responsible for the motion and decisions 

made by an autonomous vehicle. The amount of raw data collected by the sensors can be 

challenging to process. To simplify computation, land vehicle navigation relies on a complex 

process of data filtration to determine which data is worth using to help in imaging and 

navigation [5]. A key focus of previous research is to define chains of algorithms, called an 

“autonomy stack”, that interrupt and filter corresponding data. The goal of this and similar 

research is to combine algorithms with sensors, processors, and actuator behaviors for consistent 

outcomes. A popular approach for sensor and data relationships is the multi-modal approach 

which uses multiple sensors to focus on different datasets. These datasets are filtered in parallel, 

and the results are merged at key processing steps [5]. Approaches, such as Kalman Filtering, are 

being applied in the research presented in this thesis. 

 Path-planning Fundamentals for Autonomous Vehicles 

A key focus of current research related to on-road autonomous vehicles is to develop 

algorithms that achieve reliability rather than feasibility. Reliability in autonomous vehicle 
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driving is the ability of a vehicle to be able to drive as predictably as possible within the limits of 

its operational domain. Feasibility on the other hand seeks to demonstrate that the vehicle can 

operate at least once within a given situation or operational domain. Thus, the feasible 

operational domain must be much larger, usually, than the reliable operational domain, as 

feasibility tests seek to define the extent to where autonomous vehicles can perform with any 

success. Conversely, reliability tests seek to define the extent to which autonomous vehicles can 

perform without any failures.  

On-road autonomous vehicles are designed to follow defined paths in predictable 

environments while making supervised decisions based on their surroundings [1], [2]. On-road 

autonomous vehicles currently follow well-paved roads with discernable markings and signs to 

indicate direction, rules of road, expectations on other vehicles, among others. In contrast, off-

road autonomous vehicles do not always follow well-paved paths with discernable markings for 

directions [8].   

Off-road and on-road autonomous vehicles thus can face very different challenges when 

it comes to considerations for programming and algorithms. Consequently, the algorithm types 

for on-road and off-road vehicles may be vastly different. For example, off-road driving must 

consider changes in terrain, steep slopes, weather, unpredictable obstacles, and other situations 

that an on-road driver rarely, if ever, must consider [8]. Thus, showing feasibility in off-road 

driving – for some situations – may improve reliability in on-road driving. 

As another item of contrast between on-road and off-road AVs, the research behind off-

road autonomous vehicles is focused on path-planning and following since the off-road setting 

often does not have a set path to follow. Thus, various algorithms for path-planning in 

unstructured environments have been created and researched in various settings. Such path-
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planning algorithms depend on levels to control various aspects of the vehicle [9], [10]. The 

levels control all the parameters that determine vehicle movement and behavior including, but 

not limited to, position, throttle, steering, and trajectory. Humans instinctively decide what angle 

to take a turn, whereas the path-planning algorithm may attempt to accomplish the same level of 

success using a data-driven approach [5]. Figure 2.4, from K. Chu et al., illustrates the path 

candidate concepts that autonomous vehicles must decide on based on their anticipated path 

displacements [10]. 

 

Figure 2.4 - Path Candidate Profile of an Autonomous Vehicle Taking a Turn [10] 

Data dependency is the main difficulty with path-planning since the higher-level 

algorithms are usually designed to assume the world is static, and thus often lack a representation 

between changes in the world environment, certainty in the data, and decisions on when to re-

plan paths. This interaction for human drivers is often intuitive. To address the lack of human 

intuition, prior research has found the use of cost functions to optimize how the vehicle should 

value different goals relative to each other [9], [10]. For example, when taking a turn, a vehicle 
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must consider speed, safety, barriers, and maneuverability. A vehicle could drive extremely fast 

to a corner, stop abruptly, and then turn sharply. The algorithm would detect such an event as a 

high-cost event since the vehicle had to stop and did not optimally turn. A low-cost event would 

be taking the turn from a wider angle and slower to maximize smoothness.  

Lower-level algorithms include kinematics to calculate optimal trajectory and 

corresponding errors. Kinematic algorithms receive input from the sensors and can adjust the 

controls through feedback to follow the trajectory optimally [9], [10], [11]. 

The controls are simply the part of the autonomous vehicle which controls how the 

vehicle operates. The basic controls of a vehicle are throttle, braking, and steering. The controls 

of the autonomous vehicle of this research are manually controlled via a two-function remote 

control which consists of throttle/braking on one channel and steering on the other channel [12]. 

Autonomously, the vehicle is controlled via transponder control in which signals are sent directly 

to the transponder via a computer algorithm rather than a manual remote control. Path-planning 

algorithms are designed to communicate with the physical vehicle to activate the accelerator, 

brakes, steering wheel, and any other mechanical part of the vehicle. 

Prior Research Contributions 

Prior research has accomplished many direct tasks which have led to the growth of 

autonomous vehicle research both on- and off-road. This section explores various research topics 

and their major contributions to the autonomous vehicle path-planning realm. 

A major component of autonomous vehicle development involves navigation using GPS 

technology. Leveraging GPS data allows the vehicle to pinpoint its location on the globe and 
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establish the foundation for its relative coordinate systems used for all dynamic algorithms. 

Research conducted at Stanford University created a GPS, Rate Gyro, Compass, and Odometer 

to create a visual navigation display [13] The use of the sensors and tools created the foundation 

for internal and external mapping systems for vehicular use. Dead reckoning sensors were also 

implemented into the system design to fill in gaps in GPS data [13]. The foundation laid by 

creating a low-cost and intelligent GPS has been vital to modern autonomous vehicle research. 

The research, however, did conclude that GPS is only accurate with the assistance of 

supplemental sensors and data which compensate for calibration errors. 

Other sensors have been researched to facilitate the ability to create an autonomous 

vehicle. Research conducted in 1998 explored the use of millimeter wave radars in autonomous 

vehicle use for their ability to create a visual map [14]. The research created a system of 77 GHz 

millimeter wave radars and encoders to determine the active steer angle and velocity of the 

vehicle. Figure 2.5 illustrates the beacon observation from this research. This beacon setup 

facilitated the development of the algorithms necessary for the vehicle to understand what was in 

front of it, along with its respective distance and speed. Sensor setups like the one from this 

research are common in autonomous vehicles today to communicate to the controls of the 

vehicle in the case in which the steer angle or velocity must change.  
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Figure 2.5 - Beacon Observation of a Vehicle using an Exteroceptive Sensor 

Path-following is considered the precursor step to path-planning. Hongyan Guo et al. 

researched how to create path-following controls using model predictive control with 

considerations in road region and vehicle dynamics [11]. The sensor model used for this research 

includes cameras, radar, and real-time kinematic positions (RTK) which is a correction sensor 

for GPS systems [11], [13]. 

Prior autonomous vehicle research has laid out the foundations for object identification 

and intelligence. Research conducted at the Honda Research Institute has developed a way for a 

vehicle to identify its surroundings [4] using encoders, deep feature extractors, and cameras. 

Using the estimation of objects around the vehicle, the vehicle can determine what the object is 

and any tasks it might accomplish. This research has also laid the foundation of data sifting in 

object identification by filtering out unnecessary data and objects that might be considered 

insignificant or repetitive [4]. 

In the realm of object identification, research conducted by Mayuka et al. [15] was able 

to identify and decide what terrain type was optimal for the robot to operate. A skid steer robot 

equipped with cameras identified different terrain types and by previously gathering color and 
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texture patterns. Over several trials, the vehicle was able to successfully identify if the terrain 

ahead was gravel, wood, or grass and would decide which path was best for the robot to drive 

over [15]. Figure 2.6 demonstrates the vehicles design, sensor configuration, and path plan. The 

ability for the vehicle to learn from previous trials is notable and novel relative to prior work. 

The robot uses a form of artificial intelligence in its algorithm to be able to learn what type of 

terrain it is traversing as well as properties that would deem a terrain favorable or not. 

 

Figure 2.6 - Self-Supervised Learning Vehicle for Terrain Detection [15] 

Research conducted by the Ford Motor Company has created 3D virtual driving 

environments for simulation purposes [16] This research has connected the virtual environment 

to MATLAB and Simulink to gather and sift data in a structured manner. The research used 

LiDAR sensors to detect total surroundings and create 3D maps that were controlled via the 

programs. 3D maps provide the vehicle with a perceptive component which helps in determining 

how close and far things are as well as what exactly are they doing relative to the test vehicle 

[16]. Simulation systems are becoming increasingly important for autonomous vehicle research 

since they must be able to create an eye and feel for the vehicle with as much precision as 

possible. Simulations allow for inexpensive and easy means of testing items without the need to 

be on track. The downside is that simulations lack the reality of off-road vehicular driving such 
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as constant changes in terrain friction, weather, and other variables which affect the driving 

experience. 

 Such real-world extreme off-road autonomous vehicle testing has been conducted but 

using small-scale replica vehicles. Using full-scale vehicles for autonomous off-road testing is 

expensive and very situation-specific; thus, most research testing is completed with simulations, 

hardware bench tests, or with surrogate systems such as small-scale vehicles [12], [17]. In the 

area of small-scale vehicles, Goldfain et al. created AutoRally to research aggressive driving in 

the off-road environment [17]. The AutoRally is a 1/5th scale remote control vehicle equipped 

with cameras, GPS, IMUs, and other hardware for research. The AutoRally, as seen in Figure 

2.7, is also highly designed to withstand crashes and other potential failures due to aggressive 

off-road driving. The program used to run AutoRally was in fact simulated initially, but 

ultimately, the actual vehicle was tested on an off-road track [17]. The research conducted in this 

thesis resembles that of AutoRally in which the goal is to follow an optimal path algorithm. This 

thesis and corresponding research intend to extend the study to include different learning control 

models along with path-planning.  
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Figure 2.7 - AutoRally Vehicle Undergoing Autonomous Testing at Georgia Tech [17] 

Successes in Path-Following Algorithms 

Path-following and planning is not entirely new. It has been successful on many 

occasions such as the research conducted by Guo et al. [11]. Their novel contribution to path-

following was the consideration of vehicle dynamics into their algorithm. Previous research 

treats the vehicle as a point load object rather than a three-dimensional space. The model 

predictive control (MPC) algorithm could handle the additional constraints that prior algorithms 

were unable to do in path-following. The research created a highly optimized path with dynamic 

predictions which were very favorable, but MPC algorithms require a lot of computational power 

to run which is a potential downside to this algorithm. 

Another success in path-following was research that investigated environmental detection 

and mapping for off-road autonomous driving [18]. This research explored the power of LiDAR 

and Vislab Embedded Lane Detection (VELD) to understand an obstacle course. Other sensors 

such as CCD Cameras, IBEO, and SICK scanners were implemented to read the total 
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surroundings of the vehicle. Like the research conducted by Mayuku et al., the vehicle had an 

intelligent component driven by the camera to decide where to go [15], [18].  Figure 2.8 

demonstrates the image processing pipeline in Mayuku et al. research which successfully 

identified varying terrain. The LiDAR sensors were responsible for detecting obstacles and 

assigning a point cloud of data corresponding to it for the computer of the autonomous vehicle to 

evaluate. The evaluation simply determined how aggressively the object should be avoided [18]. 

The path was then created by following the line of objects that avoids all obstacles the most 

efficiently in terms of path desirability. The vehicle succeeded in avoiding obstacles and driving 

smoothly [18]. 

 

Figure 2.8 - Image Processing Pipeline Which Determined Terrain Types [15] 

Gaps in Literature 

All the prior research succeeded heavily in their specific goals and objectives. Prior 

research, however, includes gaps that are the forefront of this theses' goals. The largest gap in 

literature is that many previous paths following and planning algorithms only address one or two 

parameters that make up autonomous driving. The environmental detection research focused on 

being able to create plotted environmental maps of obstacles for the computer to understand [18]. 



19 

The MPC model algorithm addressed vehicle dynamics mostly [11]. The 3D environmental 

simulation research only addressed the process of creating a simulation on Simulink of an 

environment for a point load autonomous vehicle to traverse [16]. The data-based approach for 

autonomous motion research studies focused entirely on organizing data and creating cost 

functions for identified obstacles [8], [10]. 

Another gap that much of the prior research lacks is the concept of having the robot learn 

from itself. The terrain identification research conducted by Mayuku et al. does include a level of 

artificial intelligence [15]; however, the AI is focused on external variables, the terrain, rather 

than internal variables such as the vehicles speed, yaw angle, and trajectory.  

A form of learning which has been previously explored in other applications and 

currently being explored for autonomous vehicles is that of iterative learning control (ILC). ILC 

is an algorithm practice aimed at improving an operation through iterative repetition [19]. A 

simple analogy of ILC is that of practicing free throws in basketball. When shooting a free 

throw, the thrower receives immediate feedback whether the shot was made or not. If the shot 

was missed, there could be various reasons why. Such reasons include the ball was thrown too 

hard, too soft, or off trajectory in any direction. The thrower then can adjust their shot in 

subsequent attempts until the ball goes in. ILC follows the exact same principle as repeatedly 

shooting free throws [19]. ILC is an open-loop algorithm which can be used for a robot to learn 

from iteratively repeating a task. Figure 2.9 demonstrates the basic ILC configuration of a system 

per Ahn et al. [20]. The lack of ILC-related autonomous vehicle research is a gap in literature 

addressed in this thesis. 
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Figure 2.9 - Basic ILC I/O Model Configuration [20] 

Ultimately, there is room for the exploration of combining previous algorithms, research, 

and novel considerations that can provide a new infrastructure for autonomous vehicles in the 

off-road setting. This thesis combines various forms of intelligence to learn how to optimize 

vehicle speed on an off-road multi-terrain course. The goal is to design a vehicle with the 

necessary infrastructure and intelligence to autonomously traverse a course repeatedly with 

increasing speed based on iterative learning control. ￼  
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Chapter 3  
 

Vehicle, Hardware, and Software Overview 

Vehicle Overview 

 The vehicle subject of this thesis is the Losi DBXL-E 2.0 RC Buggy which is a 1/5th 

scale vehicle. The vehicle is powered by a brushless electric motor with four-wheel drive 

capabilities due to front and rear differentials. Figure 3.1 shows the Losi DBXL-E 2.0 RC Buggy 

as it comes stocked. 

 

 

Figure 3.1 - Losi DBXL-E 2.0 RC Buggy Original Configuration [21] 

The listed vehicle above has been heavily modified to maximize torque power, ensure 

means of data collection through sensors, and to achieve autonomous path-following. The 

hardware that has been added to the vehicle’s assembly include four high resolution rotary 

encoders on each wheel, custom encoder mounts, a dual-band GPS receiver, an emergency stop 

system, an emergency stop system mount, and the on-board electrical circuit. The hardware that 

has been removed from the vehicle’s assembly consists of only the front differential. Figure 3.2 

shows the modified Losi DBXL-E 2.0 RC Buggy.  
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Figure 3.2 - Losi Buggy with Sensor Attachments as of March 2024 

RC Car Platform 

The Losi DBXL-E 2.0, with outer dimensions measuring 33.15 inches in length, 19.5 

inches in width, and 12.5 inches in height, is designed as a 1/5th scale representation of an 

automobile. The vehicle weighs an estimated 30.5 pounds out of the box. The electric vehicle, 

propelled by a Spektrum Firma 4-pole 780Kv brushless motor managed by a Spektrum Firma 

160-amp brushless smart electronic speed controller (ESC), is rated for a top speed of 50 mph. 

Designed for rigorous off-road driving, the vehicle is assembled with a four-wheel-drive 

drivetrain with front and rear differentials, coupled with four aluminum shocks in its suspension. 

Figure 3.3 shows the described system architecture of the Losi DBXL-E 2.0 RC Vehicle. 
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Figure 3.3 - System Architecture of the Vehicle [21] 

The vehicle includes the Spektrum SR6100AT 6-channel AVC telemetry receiver and a 

Spektrum S906 1/5th -waterproof servo. The Spektrum DX3 2.4GHz remote transmitter 

facilitates communication with the on-board receiver, which transmits steering and throttle 

commands to the respective components. 

In the context of this research, the vehicle's control system is explored further. A 

microcontroller, such as a Teensy 4.1 microcontroller, can interface between the receiver and the 

ESC and steering servo through a standard 3-pin pulse width modulation (PWM) connection. 

This interface allows for implementing steering and throttle control through the Teensy 4.1 

microcontroller. 

An electric RC vehicle was selected for this project to mitigate the potential hazards 

associated with gas-to-electric conversions and minimize the risk of fire or explosion during 

high-speed collisions. The DBXL-E 2.0 RC platform operates with two Spektrum 14.8V 

5000mAh 4S Smart LiPo batteries as seen in Figure 3.4. Each battery cell has a nominal voltage 

of 3.7V and can achieve a maximum voltage of 4.2V per cell, resulting in a total maximum 
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voltage of 16.8 volts. These rechargeable batteries are directly connected in series to the ESC, 

providing power to the motor and ESC. 

 

Figure 3.4 - LiPo Batteries Used to Power the Vehicle and Emergency Stop System[22] 

Additionally, the vehicle's sensors, microcontroller, encoders, and related components are 

powered by two 3.7V Lithium Ion in 2000 mA batteries as shown in Figure 3.5. Voltage 

regulators play an important role in converting the battery output voltage to the required 5V and 

3.3V for optimal functioning of the electronic components in the system. These details are 

explained further in subsequent sections of this thesis. 

 

Figure 3.5 - Lithium-Ion Batteries Used to Power Data Collection Sensors [23] 
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Vehicle Modifications 

 In the pursuit of enabling autonomous path-following capabilities for the Losi DBXL 

vehicle, various modifications to the vehicle were implemented. In prior research on the vehicle, 

the front center drive shaft was removed, thereby disconnecting the front wheels from the 

drivetrain. This modification facilitated the installation of front disk brakes, allowing for 

independent braking of the front wheels [12]. To ensure continued power transmission to the rear 

wheels, a modified aluminum I-beam was employed to lock the front output of the center 

differential [12], [24]. Concurrently, the removal of the stock RC vehicle's spoiler and plastic 

passenger insert took place, while preserving the integrity of the base frame, roll cage, and 

plastic covering. 

 The implementation of an Anti-lock Braking System (ABS) was necessitated by prior 

thesis work conducted by Stephen Maransky [12]. Most electric RC vehicles typically rely on the 

electric motor to break all four wheels simultaneously. Consequently, the vehicle design 

incorporated front wheel brake installation. Subsequently, the front drive shaft and differential 

were reinstalled during Micah Delattre’s tenure with the vehicle [24]. A previous data collection 

revealed operational issues, particularly when driving off-road at the vehicle's maximum speed. 

Under these conditions, the back differential locked, rendering the vehicle inoperable. The 

aluminum I-beam, which initially locked the front differential, failed, causing severe vibration at 

a high frequency, and effectively locking the entire drivetrain. To address this issue, the front 

drive train and differential were reinstalled, restoring four-wheel-drive capability for Micah 

Delattre [24].  

 Due to assembly issues during the reinstallation process, the front differential often 

disconnected from the wheel shaft during data collection, thus causing the vehicle to operate 
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normally without the front wheels engaged. To prevent a front differential lock or unnecessary 

wear on the gear box redirecting the driveshaft, the front driveshaft and front differential were 

once again removed entirely, thus yielding the vehicle to be rear wheel drive. This decision is 

also substantiated by the changes in weight distribution of the vehicle. Subsequent additions to 

the vehicle greatly increase the weight in the rear of the vehicle. Increased traction due to rear 

wheel drive will greatly benefit the vehicle’s acceleration and overall performance when in high-

speed applications.  

 Another significant modification to the vehicle involved the incorporation of an 

emergency stop system, detailed in subsequent sections, which allows the operator to wirelessly 

shut down the vehicle with a simple push of a button. 

Hardware Overview 

Sensor Implementation 

 A critical requirement for autonomous driving capabilities is high-resolution wheel 

rotation sensing. Such measurements play an important role in determining wheel position, 

speed, slip, rotation count, direction, and many other metrics involved in advanced algorithm 

development for autonomous vehicles. Wheel rotation data is obtained through a feedback signal 

generated by sensing devices like rotary encoders. The installation of US Digital H5 ball bearing 

optical encoders, as seen in Figure 3.6, on each wheel addressed this need. These industrial 

rotary encoder sensors provide high-resolution measurements with a resolution of .018 degrees 

and output 20,000 pulses per revolution, translating wheel rotation into a digital signal 

interpretable by a microcontroller. 
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Figure 3.6 - US Digital H5 Ball Bearing Optical Encoders attached to the Vehicle [7] 

In the realm of autonomous driving functionalities, having a high-precision GPS 

positioning system stands as a vital requirement for the vehicle to know its own relative location. 

The capacity to know the precise location of the vehicle is important for the computation of 

velocity and accelerations. To fulfill this necessity, the vehicle is equipped with a SparkFun 

GPS-RTK Breakout Board, as seen in Figure 3.7, incorporating the ZED-F9P receiver and a 

multiband global navigation satellite system (GNSS) u-blox antenna dedicated to satellite 

positioning. 

  

a) b) 

Figure 3.7 - GPS Communication System a) GPS-RTK Receiver [25] b) GNSS Antenna 

Mount [26] 

 The accuracy of GPS measurements is dependent on various external factors such as 

radio interference, atmospheric conditions, and meteorological phenomena in general. These 
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external influences introduce distortions into the radio signals, thereby limiting the precision of 

GPS-derived positional data to the extent of multiple centimeters or even meters which is 

suboptimal for autonomous vehicle performance. Mitigating this challenge, the ZED-F9P 

receiver leverages the utilization of two distinct signal bands, denoted as L1C/A and L2C, which 

operate at different frequencies. This dual-band approach enhances the accuracy of the GPS 

positioning system, providing a more resilient solution in the face of signal disturbances induced 

by environmental and atmospheric variables. 

The mitigation of distortions can also be achieved through the implementation of real-

time kinematic positioning (RTK). To activate RTK, a stationary base station positioned at or 

close to the vehicle's designated test track is chosen and identified, with a predetermined and 

precisely known geographic location. The base station configuration encompasses an additional 

ZED-F9P receiver, a u-blox antenna, a telemetry radio, a 5V regulator, and a power supply 

comprising two 3.73V batteries arranged in series.  

The wireless communication between the telemetry radio situated at the base station and 

its counterpart attached to the vehicle is operated by the HolyBro SiK Telemetry Radio V3, as 

seen in Figure 3.8, radios on each system. The telemetry radio has a rated output power of 

100mW and operates at a frequency of 915MHz. The radio can also establish a fully transparent 

serial link with other radio stations. This transparency ensures that the signal input into one radio 

precisely mirrors the signal output by the other. Algorithm development related to the 

communication between the base station and the onboard GPS unit are discussed in subsequent 

chapters. 
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Figure 3.8 - HolyBro SiK Telemetry Radio V3 [27] 

The base station's stationary GPS receiver generates corrections by recording signal 

distortions evident from perceived timing changes despite a stationary position fix. 

Simultaneously, these corrections are transmitted wirelessly to the vehicle via the HolyBro SiK 

Telemetry Radio V3. The onboard receiver collects these corrections, applying them to the 

satellite signals received to yield highly precise positioning measurements through the 

mechanism of the RTK positioning. 

The stationary base station is adaptable to two configurations: a permanent base station or 

a temporary alternative. Due to the current absence of a permanent base station at the test track, 

the establishment of a temporary base station at the off-road course is necessary for current 

research needs. The configuration of this base station mandates the selection of a distinct and 

consistent location for antenna placement. At the designated off-road course area, which is 

discussed in more detail in subsequent chapters, a specific location marked by a permanent 

manhole cover was identified and chosen for the antenna's placement. Prior to setting up the 

antenna, GPS data was logged for an extended period exceeding four hours by Micah Delattre in 

previous research [24]. This data was subsequently uploaded to the Canadian Spatial Reference 
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System Precise Point Positioning Service (CSRS-PPP), which, after processing, yielded a precise 

position of the antenna with an accuracy of approximately 7 mm in latitude and longitude [24]. 

This precise position was then configured to the base station receiver, enabling the transmission 

of RTK corrections to the moving vehicle's receiver. It is imperative to note that, for each RTK-

based GPS data collection, the base station antenna must be precisely positioned in accordance 

with the initially generated geographic coordinates. This was tested several times throughout the 

research process to ensure stability. 

Connecting everything together, vehicle data acquisition is conducted by a Teensy 4.1 

microcontroller, as seen in Figure 3.9, due to its compatibility with Arduino code programmed as 

well as its superior features. Different from the Arduino Uno by its enhanced features, processor 

speed, and computing power, the Teensy 4.1 operates at a speed of 600 MHz, possesses 55 

interrupt-capable digital input pins, and operates on 3.3V logic. Notably, the Teensy 4.1 

incorporates a built-in SD card reader, instrumental in the storage of all collected data onto a 

micro-SD card. This facilitates the subsequent retrieval of the micro-SD card for data post-

processing which is executed on MATLAB. 

 

Figure 3.9 - Teensy 4.1 Microcontroller [28] 
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 The use of SparkFun logic level converters is necessary to interface with the Teensy 4.1, 

given its 3.3V logic requirement, to allow for signal reading of the more conventional 5V logic 

utilized by most devices. This choice of logic level converters is motivated by their superior 

performance, avoiding electromagnetic interference issues inherent in alternatives such as 

voltage dividers. All sensors are meticulously connected through soldered wiring in a base 

printed circuit board (PCB) which is attached to the Teensy 4.1’s via an electronic screw 

terminal block.  

Mounting and Packaging 

 The installation of optical encoders on each wheel required the development of a custom 

mounting solution, characterized by the imperative criteria of rigidly holding the encoder during 

vehicle operation, facilitating complete encoder functionality, and ensuring durability to 

withstand operational stress. Following an iterative design process and experimentation, a 

solution meeting these prerequisites was achieved. The resulting solution comprised three 

distinct components mounting the encoders. 

 The first component, the wheel-nut adapter, was devised to securely grasp the wheel nut, 

thereby stabilizing the tire while also attaching directly to the encode shaft exteriorly. As the tire 

rotates, the adapter rotates correspondingly, thereby rotating the encoder shaft at the same 

angular velocity as the tire. For the secure affixation of the encoder read head, custom mounts 

were strategically positioned on both front and rear wheels. Figure 3.10 shows the external and 

internal features of the wheel nut adapter. 
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a) b) 

Figure 3.10 - Wheel Nut Adapter a) Exterior Model b) Interior Model 

 On the front wheels, a metallic mount connects the encoder secured to the wheel adapter 

with the spindle carriers located on the wheel's interior as seen in Figure 3.10. Similarly, on the 

rear wheels, a multicomponent mounting system fixes the encoder to the wheel adapter with the 

rear suspension system. A 3D printed double jointed mount attaches directly to the rear 

suspension mount on the tire's interior. A laser-cut 5051 Aluminum bracket wraps around the 

rear of the vehicle directly onto the encoder secured to the wheel adapter as seen in Figure 3.11. 

The modeling and manufacturing process meticulously accounted for factors such as vibration, 

3D print orientation, stress direction, weight considerations, and mount geometry. 
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Figure 3.11 - Rear Encoder Mount Metal Bracket 

 On the vehicle itself, the u-blox antenna and the HolyBro telemetry radio found their 

mounting locations on the roof. The magnetic antenna adhered to a circular 4-inch diameter steel 

ground plate, affixed to the plastic roof through bolting. Meanwhile, the telemetry radio was 

securely attached to the roof using an adhesive patch. Internally, within the RC vehicle’s main 

chamber, an electronics packaging box is included, housing the onboard electrical circuitry 

detailed upon in subsequent chapters. To address challenges encountered during off-road data 

collection, where regular breadboard connections proved susceptible to vibration-induced 

disconnections, a waterproof metal box was adopted, featuring customized front and back panels 

with DB-9 Connector slots, as seen in Figure 3.12 below, to ensure constant polarity.  
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Figure 3.12 - DB9 Connector Inserted on Front Plate of Electronics Box 

 Notably, for enhanced repeatability in off-road data collection, all electrical connections 

within the circuit were soldered onto a blank PCB board. The switch, battery connections, and 

other components were steadfastly secured to the customized front panel with DB-9 connection 

points. This design approach, as shown in Figure 3.13, not only mitigated the issue of wires 

coming loose during high-speed off-road driving but also streamlined the data collection process 

while maintaining polarity in wire connections. A user, aiming to collect data, can simply secure 

the battery connections, secure the sensor connections, activate the power switch, and initiate the 

data log button.   
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Figure 3.13 - Soldered PCB Electronics into a Push Pin Wiring Block 

 Also notable to the electronics box, a 3D printed baseplate with sliding insert capabilities 

was designed and implemented as shown in Figure 3.14. This allows a user to easily slide the 

internal electronics, which are attached to the baseplate via dual lock reusable fasteners, out of 

the waterproof box. The dual lock fasteners tightly secure the electrical components to the 

baseplate, preventing excessive vibration and internal collision within the box due to robust 

movements. 

 

Figure 3.14 - 3D Printed Sliding Baseplate for Electronic Access 
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Control System Architecture 

As previously mentioned, the vehicular data acquisition and recording is collected by a 

Teensy 4.1 microcontroller, operating on a 3.3V logic level. The Teensy interfaces with signals 

coming from the four rotary wheel encoders, the ZED-F9P GPS receiver, and the vehicle's 

receiver simultaneously.  

The on-vehicle GPS receiver receives signals from both the on-vehicle GPS antenna and 

a corrected GPS signal transmitted via the telemetry radio. The system architecture flow chart 

delineates the intricate circuit wiring necessary for the seamless transmission of data signals. 

Figure 3.15 provides a visual representation of the schematic underpinning the vehicle's on-board 

electrical circuit. The circuit is powered by a tandem arrangement of two 3.7V LiPo batteries, 

serially connected, and further regulated to 5V. This regulated voltage powers the Teensy, wheel 

encoders, GPS receiver, and telemetry radio. 

 

Figure 3.15 - Vehicle Data Collection Flow 
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Each wheel encoder encompasses two channels, denoted as A and B, emitting a 

quadrature signal characterized by an out-of-phase relationship which determines movement 

direction. This feature is favorable for vehicles capable of traversing in both forward and reverse 

directions. This research focuses on the forward direction; however, the rotation for the left and 

right wheels spins complementary to each other, thus the direction of the encoder matters. In 

essence, encoders on the right side of the vehicle will spin counterclockwise whereas encoders 

on the left side of the vehicle will spin clockwise. Wiring configurations entail connecting 

Channels A and B from each encoder to the 5V high voltage side of the logic level converter, 

while the 3V low voltage side is interfaced with specific digital pins on the Teensy 4.1 

microcontroller. The rear encoders are linked to the circuit through shielded twisted pair cables, 

while the front encoders utilize unshielded CAT5 cables. 

The telemetry radio's signal wires establish a direct connection with the GPS receiver, 

with the latter transmitting its signal to the Teensy through three distinct digital pins. Noteworthy 

is the strategic inclusion of capacitors throughout the circuit. These capacitors serve the crucial 

function of maintaining a stable voltage supply to the components, ensuring reduction of 

electrical noise and fluctuations. A full wiring schematic can be seen in Figures 3.16 and 3.17.  
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Figure 3.16 - Simplified Wiring Schematic of Objectives 
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Figure 3.17 - True Wiring Schematic on the PCB and Screw Terminals 
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Emergency Stop System 

In the pursuit of ensuring the safety of the Losi DBXL-E 2.0 RC vehicle, an emergency 

stop system was integrated. This system, acquired based on recommendations from the 

Intelligent Vehicles and Systems Lab Group at Penn State, features a Kar-Tech wireless 

emergency stop (E-Stop) system, as seen in Figure 3.18. The selected system operates on a 

900MHz frequency, offering a range of up to 1.22 km. Components procured for this emergency 

stop system include a handheld wireless transmitter and a DC wireless E-stop 900 MHz receiver, 

both integral to the system's functionality. 

 

  

a) b) 

Figure 3.18 – Kar-Tech E-Stop System on Vehicle [29] a) DC Wireless E-Stop Receiver b) 

Handheld Transmitter 

To augment this system, a Crydom D1D40 solid-state relay (SSR) was incorporated. This 

SSR, featuring 100VDC and 40A output capabilities, cuts power from the LiPo batteries to the 

Electronic Speed Controller (ESC) on the vehicle when the E-stop button is engaged. 

Prototyping was undertaken to validate the safety and efficacy of the system. 

The initial benchmark circuit involved a simple LED connected to the E-stop receiver, 

demonstrating successful power interruption upon pressing the E-stop button. Subsequent tests 
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incorporated the SSR into the circuit, revealing the expected power cutoff both at the LED and a 

simulated ESC. The final test replaced the voltage supply with one of the 14.7V LiPo batteries, 

necessitating the introduction of resistors to align with the SSR's input current requirements. The 

prototype circuit functioned as intended. 

Upon successful prototyping, the Kar-Tech emergency stop system was integrated into 

the vehicle. The wiring diagram of the emergency stop system illustrates the connection to the 

ESC and the power source as seen in Figure 3.19. The EC5 wired connectors were employed, 

with an important note regarding the color representation in the diagram. 

 

Figure 3.19 - Emergency Stop Wiring Diagram 

 During vehicle testing, the integrated emergency stop system functioned as expected with 

a confirmed range of roughly 640 m. When the E-stop button was pressed, power to the ESC and 

motor was promptly cut, halting the vehicle's motion. The E-stop receiver, mounted at the rear of 
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the vehicle on a 3D printed plate, further validated the system's practical implementation. This 

safety feature holds significant importance, particularly when operating the vehicle 

autonomously. 

Software Overview 

Data Parameters and Preprocessing 

At system initialization, the Teensy 4.1 microcontroller executes a data-logging code 

programmed within the Teensy Integrated Development Environment (IDE). This code 

systematically acquires data signals from various sensors and logs each raw data parameter 

throughout the operational span of the vehicle. The recorded data is then stored onto the on-

board microSD card in a text file format. This text file becomes the basis for subsequent post-

processing operations performed on MATLAB. 

The Teensy captures and logs 23 distinct data parameters, each at varying frequencies, as 

detailed in Table 3.1. The raw data is logged in a comma-separated value (CSV) format to 

facilitate high-frequency data collection. Upon initializing the data collection circuit, the Teensy 

executes the setup routine for the data logging code. This entails an initial check for the presence 

of an SD card. If detected, a .txt file is initialized, and an initial write of data commences. 

Subsequently, the code verifies the availability of RTK corrections and awaits the activation of 

the data logging button. Upon pressing this button, hardware interrupts are engaged for both GPS 

and encoder signals. 
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Table 3.1 - Data Parameters logged by the Teensy [24] 

Parameter Unit Frequency [Hz] 

Teensy Clock Time Milliseconds 100 

Encoder Count 1 Counts 100 

Encoder Count 2 Counts 100 

Encoder Count 3 Counts 100 

Encoder Count 4 Counts 100 

GPS Hour Hour 20 

GPS Minute Minute 20 

GPS Second Seconds 20 

GPS Millisecond Milliseconds 20 

GPS Nanosecond Nanoseconds 20 

Relative x Millimeters 20 

Relative y Millimeters 20 

Relative z Millimeters 20 

North Velocity Millimeters / Second 20 

East Velocity Millimeters / Second 20 

Up Velocity Millimeters / Second 20 

Vertical Acceleration Millimeters / (Second)2 20 

Horizontal Acceleration Millimeters / (Second)2 20 

Speed Acceleration Millimeters / (Second)2 20 

Heading Acceleration Millimeters / (Second)2 20 

Satellites in View Dimensionless 20 

Throttle Microseconds 20 

Steering Microseconds 20 
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 In this context, a hardware interrupt denotes an electronic signal received by the Teensy 

from a sensor, triggering a specific function within the code. For instance, each encoder emits a 

count signal every 10ms. The Teensy, responding to these signals, activates the corresponding 

code function, incrementing the encoder count for the respective encoder. The application of 

hardware interrupts is favorable in scenarios with multiple data parameters collected at different 

frequencies. Given that the Teensy is unable to simultaneously log all 23 parameters when 

signals arrive at rates of 100 kHz or higher, interrupts facilitate logging data at predetermined 

intervals, ensuring that data collection takes precedence over other code executions. 

The subsequent loop segment of the code perpetually runs as long as data collection 

remains active. Within this loop, GPS and encoder parameters are logged to memory each time 

the GPS time interval interrupt is triggered. Time data is stored, and the Teensy continuously 

monitors the status of the data collection button. Upon pressing the data collection button, the 

data collection ceases, and the accumulated data is stored on the SD card. The circuit can then be 

powered down, and the SD card extracted for the processing of raw data into comprehensible 

graphs and figures. See Appendix A for datalogging code for the Teensy 4.1 microcontroller. 

Post Processing 

Post-processing of the data is executed in MATLAB. The raw data is initially imported, 

followed by the determination of encoder and GPS velocities. The GPS receiver logs velocities, 

which can be stored directly or subjected to further processing for data fusion. Encoder velocities 

are derived by calculating encoder counts per second, dividing by the corresponding time 

interval. Angular encoder velocity, in radians per second, is then computed by converting 
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encoder counts per second. Finally, linear encoder velocity is obtained by multiplying the 

encoder radians per second by the radius of the wheels. This assumes that a constant wheel 

radius is maintained across all wheels.  

The GPS position data is acquired and plotted by extracting relevant parameters from the 

raw data file. Vehicle latitude and longitude can be visualized on a 2D map using MATLAB 

commands such as 'geoscatter' and 'geobasemap.' Examples of such figures are presented in 

Chapter 5.
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Chapter 4  
 

Steering and Throttle Control for Path-following 

To enable autonomous path-following in the RC vehicle, steering and throttle control 

must be capable of receiving external signals from the microcontroller. Normally, these 

commands are input by the user to the transmitter unit of the remote-control vehicle, as depicted 

in Figure 4.1. The RC transmitter wirelessly transmits these commands to the receiver onboard 

the vehicle, typically connected to both the Electronic Speed Controller (ESC) and steering servo 

via a 3-pin wire connection. The receiver is powered by the battery connection to the ESC and 

distributes power to other servos, with the steering and throttle commands sent directly to the 

corresponding devices. 

 

Figure 4.1 - Remote Control Transmitter for the Vehicle 

The installed receiver is the SR61000AT AVC Technology Telemetry Receiver, as 

shown in Figure 4.2, featuring 6 channels, including a battery/programming port, a steering port 
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(channel 2), and a throttle port (channel 3). In the current configuration, only the steering and 

throttle ports are utilized. To facilitate steering and throttle control, the Teensy must establish 

connections between the receiver, steering servo, and ESC. The Teensy intercepts signals from 

the receiver, checks them using the steering and throttle limiting code, and then outputs limited 

signals to the ESC and servo. Figure 4.3 illustrates the schematic of the throttle and steering 

limiting control circuit, incorporating a double pull double throw switch (DPDT) for toggling 

between computer-driven and manually driven modes. 

 

Figure 4.2 - SR61000AT AVC Technology Telemetry Receiver 

 

Figure 4.3 - Proposed Steering and Throttle Control Circuit Schematic 

In computer-driven mode, the Teensy intercepts and modifies receiver signals, while in 

manual mode, signals are sent directly to the ESC and steering servo. The steering and throttle 
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limiting code defines steering and throttle signals as inputs, comparing them to predefined 

neutral, minimum, and maximum values stored in the Teensy permanent memory. If the input 

signal falls within the established range, it is output normally. If outside the range, the output is 

constrained to the nearest limit (minimum or maximum).  

It is important to note that the connections between telemetry, Teensy, and servo have yet 

to be established due to project needs. 

 

  

 

 



49 

Chapter 5  
 

Field Data Collection and Corresponding Results 

 Field data plays a critical role in analyzing the vehicle’s dynamic system, designing 

robust algorithms, and further determining essential information regarding high-speed off-road 

autonomous driving. The information critical for the next steps of developing a highly intelligent 

system includes the states of the vehicle, such as velocity, acceleration, yaw, and power. The 

relationship between all the states ultimately determines how the vehicle maneuvers and its 

capabilities in each environment. The focus of the field data collection for this work was to fully 

define our states, course, and have sufficient information to accurately simulate the driving 

environment the vehicle is expected to endure. For this, a real-world test course was designed on 

an off-road course which challenges the vehicle’s maneuverability while allowing the vehicle to 

reach maximum speeds. Before that, a relatively accurate estimation of the vehicle's maximum 

speed, acceleration, and distance to maximum speed was determined for maximum accuracy in 

designing our test course. Ultimately, the test course was then traced via GPS data of the vehicle 

conducting several laps. This data was refined, processed, and later simulated as will be 

discussed in subsequent sections and chapters. 

Off-Road Test Course 

The off-road autonomous vehicle is tested at the Penn State test track at a designated off-

road area selected due to its variety in topological features. The selected course, as seen in Figure 

5.1, for evaluating the autonomous vehicle is characterized by a steep inclined side hill, ditches, 
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irregular grassy terrain, and small hills. The course configuration deliberately incorporates 

various challenges to assess the vehicle's path-following capabilities comprehensively. 

 

Figure 5.1 - Image of the Terrain for the Test Track 

The development of the off-road test course underwent several iterations to achieve its 

finalized configuration. Initial iterations incorporated all the specified features, except the 

straight stretch, which fell short of meeting the crucial requirement for enabling the vehicle to 

attain its maximum speed. Ensuring that the vehicle reaches its peak speed on this straight stretch 

is important in achieving the high-speed component of the overall testing. 

The original iterations of the course, designed by Stephen Maransky and Micah Delattre, 

were unable to fulfill the speed requirement. Figure 5.2a presents a plot of GPS data collected 

during the vehicle's operation on the initial off-road course design, highlighting the inadequacy 

in achieving the desired speed along the straight stretch. This observation prompted further 

refinement in subsequent iterations to optimize the course layout and address the identified 

limitations. Figure 5.2b presents a plot of GPS data collected during the vehicle’s operation of 
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the second off-road course design which also failed to achieve maximum speed along the straight 

stretch. This second course was primarily on asphalt which did not satisfy the off-road conditions 

desired. 

  

a)                                                                     b) 

Figure 5.2 - GPS Data Plot of the Prior Off-Road Course Design  

The current iteration of the course consists of several extended straight sections, with one 

elongated stretch allowing the vehicle to attain its maximum speed. To enhance the complexity 

of the course, deliberate inclusion of switchback segments necessitates the vehicle to execute 

significant deceleration for proper maneuvering during turns. Additionally, the course layout 

strategically introduces ditches and small hills, compelling the vehicle to moderate its speed to 

prevent unintended airborne trajectories or collisions with ditch walls.  

A distinctive feature of the course involves a steep side hill where the vehicle must 

traverse vertically and horizontally, diagonal to the slope. This element adds a layer of difficulty 

to the autonomous path-following, requiring the vehicle to employ steering adjustments, slightly 

upslope, to maintain a constant horizontal trajectory across the inclined terrain. The multifaceted 

nature of the test course, as seen in Figure 5.3, aims to rigorously evaluate the autonomous 

vehicle's performance in diverse and challenging real-world scenarios. 
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Figure 5.3 - Designed Test Track for 2024 Data Collection 

Field Data Collection Process 

Upon arriving at the test track, the initial step in the field data collection involved setting 

up the RTK base station. The tripod is positioned to align the center with the desired GPS 

position, verified using a plumb bob and a screw on the orange reflector. The GNSS antenna is 

centered on the tripod, followed by placing the RTK base station circuit box within the antenna's 

line of sight to all areas on the test course. Connecting the antenna cable to the GPS receiver in 

the circuit box and powering on the circuit completed the RTK base station setup.  

Subsequently, the RC vehicle is positioned at the designated starting point on the course, 

with both LiPo batteries and the emergency stop system connected. The vehicle's onboard circuit 

batteries are also connected, the micro-SD card inserted, and the power switch is flipped on. To 
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conclude data collection, the data log power switch is flipped off, and the micro-SD card is 

removed for post-processing. 

Depending on the test being performed, certain sensors can be isolated. GPS data can 

solely be collected by uploading only GPS datalogging capabilities to the Teensy 

Microcontroller. Likewise, can be performed for the encoders. An external accelerometer linked 

to a cloud-based system is also used in logging acceleration data which is isolated in its own 

nature.  

On March 14th, 2024, a critical event occurred during the testing phase of the high-speed 

off-road autonomous vehicle project. The vehicle was subjected to a straight-line acceleration 

test, which will be discussed in subsequent sections, aimed at determining maximum speed and 

acceleration. Despite planning and preparation, the unforeseen loss of control by the vehicle near 

maximum speed resulted in a high-speed collision, causing significant damage to several 

components.  

The collision led to the catastrophic failure of both the front left and back right encoder 

mounts, essential for precise speed and position sensing. Due to the nature of the front encoder’s 

attachment, the wheel assembly came apart exposing the rotating front differential axle extension 

to hang loosely, thus removing control from the wheel. Additionally, the ESTOP mounting 

system, designed to keep the ESTOP receiver attached to the vehicle, was torn apart leading to 

the ESTOP to be dangerously dragged through rough terrain. This led to the ESTOP control 

button to be severely damaged. The aftermath of the collision posed further challenges as the 

GPS wires became dangerously entangled, and slight damage was found in several electronic 

connection points. Images of the wrecked components can be seen in Figure 5.3  
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a) b) 

  

c) d) 

Figure 5.4 - a) Detached and Broken Front Encoder Mount, b) Disconnected Front Wheel 

Axle, c) Torn Estop Mount, d) Dremel Repaired ESTOP Receiver 

This incident emphasizes the importance of robust safety measures and highlights areas 

for improvement in both vehicle design and control systems to mitigate risks during high-speed 

operations. This incident also emphasizes the importance of testing with scaled vehicles 

compared to full-scale vehicles. Crashes like this can be costly and dangerous and thus it is 

difficult to commit research like this on full-scale vehicles. Future works on the vehicle will 

incorporate the addition of a roll cage, lateral bumpers, and object detection sensors to prevent 

similar damages. 
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GPS Traversal Data and Desired Trajectory 

As previously seen in Figure 5.3, the off-road test track was outlined using GPS data 

from the vehicle as it traversed the stake-marked course. From this data, it is imperative to 

process the GPS data accordingly to create a desired reference trajectory for the vehicle. The 

desired reference trajectory is simply the track as well as its corresponding track limits such as 

one would see on a competitive motor speedway. Having this data is imperative for simulation 

purposes as well as programming purposes when it comes to intelligent path following and the 

subsequent path planning. 

 Figure 5.3 includes data from the GPS measured in latitude, longitude, and altitudes 

(LLA) coordinates. This leads to the first step of processing which is to convert the acquired 

GPS data from LLA coordinates to a coordinate system which is simpler to work with. For 

autonomous driving, this coordinate system is East, North, UP (ENU) coordinates given a 

relatively close reference point such as a base station. The conversion from LLA coordinates to 

ENU coordinates is essential for effective controller implementation in navigation and control 

applications within autonomous driving systems. ENU coordinates are easy to handle 

mathematically in terms of computing distance, velocity, and acceleration. ENU coordinates are 

also a more intuitive representation of the vehicle's motion.  

Unlike the global LLA coordinate system, the ENU coordinate system provides a local 

tangent plane centered at a specific Earth surface point, with the positive x-axis aligned eastward, 

the positive y-axis aligned northward, and the positive z-axis oriented vertically upwards from 

the tangent plane. This transformation enables a clearer understanding of the vehicle's position 

and orientation relative to its direct plane of site. The reference surface point is located at the 
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Penn State Test Track near the utilities building. Figure 5.5 demonstrates the conversion from 

LLA to ENU coordinates. 

 

Figure 5.5 - LLA to ENU Conversion Plot 

To extract a singular desired trajectory from the data and mitigate the issue of multiple 

overlaid traversals, the traversals must be broken down into laps. This segmentation is achieved 

through the establishment of zone definitions, which delineate regions marking the start and end 

of a single lap. These zone definitions are crucial in generating individual laps without needing 

the vehicle to hit precisely the same ENU point at the start of each lap. A line segment zone was 

defined for both the start and finish as can be seen by the green and red lines in Figure 5.6. The 

line segment zone allows our processing to trigger when the data starts a new lap and then 

subsequently ends a lap. A very broad line segment was chosen to ensure that all traversals 

comfortably fell within both zone definitions, and thus the function could then label the laps 

accordingly. 
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Figure 5.6 - Breaking the Data into Laps via Line Segment Definitions 

At this point, the lap data has been further refined to include more points in between GPS 

points to ensure that there is a 10 cm (about 3.94 in) difference between all points. This is done 

to ensure consistency in points, provide excess data for more accuracy, as well as simplify the 

stations’ processing steps. The lap data is converted to a station which is simply a one-

dimensional distance term to define any point in the path. The station value at the starting index 

is zero, and the station value at the ending index is the ultimate path length. This one-

dimensional representation of the path length along a traversal is beneficial in being able to 

determine the average reference traversal as well as giving us a known constant parameter that 

the vehicle is supposed to achieve in each traversal.  One way to determine the average traversal 

of several laps is to define each lap into their station form of equal station lengths, then 

comparing corresponding stations and averaging out all ENU coordinates for a station, along 

every station, until one reaches the end of the track. This method can result in an extremely noisy 

average traversal due to the presence of outliers at any station, thus it was not utilized in this way 
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during processing. Note that a station is not a property of how far the vehicle has travelled, but 

rather a constant property of the track regardless of how the vehicle operates. 

Given the lap data produced by the vehicle and later refined during processing, an 

average traversal was produced using orthogonal projections from a given lap in correspondence 

to its designated stations. This method was unsuccessful due to a sparsity of data points during 

the switchback segment of the track. In essence, the GPS failed to collect data rapidly enough 

relative to the vehicle’s speed during the switchback segment, resulting in points of extremely 

acute angles as seen in Figure 5.7. These clusters of acute angles produced in the GPS data were 

unrecognizable by the orthogonal projection command, and thus required the average traversal to 

essentially decide to skip the switchback segment deeming that the best path given the collection 

of paths was to cut directly through the switch backs as if it were a single turn.  

 

Figure 5.7 – Examples of Extreme Acute Angles in Switchback Data Highlighted in Green 

Future iterations of this test should seek to drive the vehicle slower through these 

switchbacks to ensure more GPS points are collected to allow for a smoother reference map. Due 
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to the vehicle being temporarily inoperable due to the collision, a manual approach was taken to 

create the reference traversal used in Simulation. Using a manual review of the test area map 

using the ‘ginput’ function on MATLAB, nearly 400 points based on the previous lap traversals 

were manually selected. This ensured enough data was accounted for within turns to produce a 

smooth and realistic reference path traversal. Figure 5.8 illustrates the outcome of the manually 

selected points in green. 

 

Figure 5.8 - Manually Input Traversal in Green 

The manually input data similarly converted to a traversal, resampled for each point to be 

exactly 10 cm away from each other, and processed as a lap. Due to the noise and inconsistencies 

in manually inputting data, the traversal was smoothed using a distance-based zero-phase 

smoothing Butterworth filter.  

To design the filter, conversion from time-domain filtering concepts to spatial-

incremented domains. Knowing that each meter contained 10 points, derived from each point 

being 10 cm away from each other, we defined the spatial sampling frequency of this plot to be 
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10 spatial Hz, e.g. 10 points in every meter. Note that spatial frequencies are in units of spatial 

Hertz, defined as one sample per meter rather than the more commonly known definition of 

Hertz being one sample per second. 

Per the Nyquist-Shannon sampling theorem, the Nyquist spatial frequency, or the 

minimum rate at which a signal should be sampled to accurately reconstruct the original signal 

without aliasing, is equal to half the spatial sampling frequency. This would yield a Nyquist 

spatial frequency of 5 spatial Hz. Using this information, the cutoff frequency for filtering was 

calculated as: 

𝜔𝑐𝑢𝑡𝑜𝑓𝑓 =
𝛼

𝜔𝑁𝑦𝑞𝑢𝑖𝑠𝑡
 (5.1) 

where 𝛼   is an estimated cutoff ratio based on the desired filtration necessary. In this instance, 𝛼 

was deemed to be 1/10 to eliminate high-frequency noise while maintaining the integrity of the 

manually input lap traversal. With this calculation, a second-order Butterworth filter was applied 

to the manually input traversal using the ‘butter’ command and using the zero-phase ‘filtfilt’ 

command. The x and y coordinate data were filtered independently and converted back into a 

traversal. Figure 5.9 illustrates the newly acquired reference lap. The reference lap is a smooth 

representation of what the ideal lap should look like for the vehicle and will be an input in both 

simulation and path following applications. See Appendix B for GPS processing code. 
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Figure 5.9 - Official Reference Lap for Simulation and Path Following 
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Acceleration Testing and Results 

In the domain of autonomous vehicle development, comprehending and accurately 

quantifying the acceleration of the vehicle is a fundamental aspect for ensuring safe and efficient 

operation. The acceleration profile of an autonomous vehicle impacts its dynamic performance 

and influences its ability to navigate diverse driving scenarios effectively. Understanding the 

vehicle's acceleration capabilities is necessary as it directly influences factors such as trajectory 

planning, collision avoidance strategies, and maneuverability through a course like the one in 

Figure 5.3. Precise knowledge of acceleration aids in the calibration and validation of control 

algorithms such as the simulation model which will be discussed in a subsequent chapter, 

contributing to the robustness and reliability of autonomous driving systems. An important 

aspect of the research presented in this work is to understand acceleration to determine the 

distance it takes to reach maximum velocity. Achieving maximum velocity during a traversal is 

pertinent to the success of our research focusing on high-speed off-road autonomous driving. 

Therefore, it was pertinent to measure our vehicle's acceleration to understand its dynamic 

capabilities and design a track which maximized the vehicle's velocity capacity. 

The determination of the distance to the maximum speed of the vehicle involved a 

preliminary on-road straight-line test and kinematics. The vehicle was positioned at a section of 

open, flat, pavement on the test track and accelerated to its maximum throttle while traversing 

the straight stretch of the test track. To gauge the distance to maximum speed, an accelerometer 

with readings at 30 Hz was strategically placed in the vehicle measuring the effective 

acceleration of the vehicle while performing the straight-line test. The data was processed on 

MATLAB by determining maximum acceleration segments and calculating the effective 

maximum acceleration at these points, effective velocity, and effecting position at the end of 
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segmentation when acceleration reached zero presumably at maximum velocity. This process 

was repeated twice with eleven acceleration segments used for calculation purposes. Plots of the 

acceleration data can be seen in Figure 5.10. 

  

Figure 5.10 - Acceleration Data for the Two Acceleration Tests Performed 

Note that the acceleration data exhibited in Figure 5.10 demonstrates the collision at 

around 350 seconds (about 6 minutes). The acceleration data presented after that major spike is 

due to a previously acquired acceleration data set which was combined with the data set that 

included the crash acceleration data. Information shortly before, during, and after the crash was 

intentionally omitted during processing. The best practice would have been to organize the 

acceleration data sets in order of their occurrence. However, due to time constraints they were 
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placed as such and processed accordingly. It is important to note that the order of appearance for 

the dataset has no effect on the yielded outcomes of this test. 

In the domain of vehicular dynamics analysis, the x direction acceleration indicates the 

longitudinal acceleration aligned with the motion of the vehicle; the y direction acceleration 

encompasses lateral accelerations, extending to both left and right orientations; lastly, the z 

direction acceleration pertains to accelerations orthogonal to the ground plane, characterizing 

vertical movements of the vehicle. A model of this alignment can be seen in Figure 5.11. It is 

assumed that the accelerometer was consistently perfectly aligned with this relative coordinate 

system during the acceleration tests for processing purposes. 

 

Figure 5.11 – Ideal Alignment of Accelerometer Coordinates for Acceleration Processing 

Results regarding the x direction acceleration yielded that that the average acceleration of 

the vehicle on pavement equated to 4.40 m/s2 with maximum acceleration data averaging 

between 3.10 m/s2 and 4.90 m/s2. Acceleration plots during the accelerated segments can be seen 

in Figure 5.12. Do note that the acceleration data is noisy due to high sensitivity of the 

instrumentation at such sampling frequency. 
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Figure 5.12 – Acceleration vs Time During the Various Segmented Intervals 

The x acceleration data was integrated using a cumulative trapezoidal numerical 

integration command to yield estimated velocity data during the accelerated segments of the data 

set. Figure 5.13 demonstrates the velocity contours of the vehicle during the testing period per 

the estimations of the trapezoidal integration.  
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Figure 5.13 - Velocity vs Time During the Various Segments per Numeric Integration 

With an estimated maximum velocity of 28 m/s, equating to approximately 64 miles per 

hour, as well as integrated results from the data plots, it was yielded that the average distance it 

takes to reach maximum speeds is 94 meters with the distance to reach maximum speed ranging 

anywhere from 59 meters to 146 meters per the yielded acceleration segments. Total recorded x 

acceleration data can be seen in Figure 5.14 and Table 5.1. See Appendix C for data processing 

code. 
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Figure 5.14 - x Acceleration Data Considered for Processing 

Table 5.1 - Acceleration Data Analysis 

Parameter Minimum Maximum Average Standard Deviation 

Maximum Acceleration [m/s2] 3.10 5.75 4.40 0.681 

Maximum Velocity [m/s] 23.4 35.3 28.7 4.05 

Distance to Max Velocity [m] 89.9 97.6 93.8 5.41 

 

The provided data from the acceleration experiment provides both acceleration and 

velocity data which it is imperative to relate due to the significance of Force versus Velocity in 

vehicle dynamics. Understanding this relationship is good for optimizing the performance and 

control of autonomous vehicles. Force, as exerted by the vehicle's propulsion system, directly 

influences its acceleration capability. Higher forces lead to greater acceleration, enabling faster 

attainment of desired velocities. However, the relationship between force and velocity is more 

complicated than that; as velocity increases, the requirement for force is expected to decrease to 
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sustain or further increase acceleration. Power limiting and real-world conditions yield force vs 

velocity plots that are not as linear as can be seen in Figure 5.15. The various outcomes of Force 

vs. Velocity plots can be explained through causal means. 

 

Figure 5.15 - Force vs. Velocity Plot for the Various Segments of Acceleration 

Due to the nature of the acceleration test, the approximations and estimations calculated 

during processing must be considered only theoretically and not in practice. Further validation 

must be accomplished through more accurate testing methods to determine acceleration, 

velocity, and distance to reach maximum velocity. Testing acceleration without the assistance of 

other sensors can prove to be faulty and inaccurate due to sensitivity of such sensors compared to 

others as well as several calibration metrics which must be rigorously accounted for during 

testing periods.  

One such calibration metric was consistently observed throughout the data and was 

assumed to be negligible during processing. However, this metric may be responsible for 

potentially overestimating the resulting data. Figure 5.11 demonstrates the idealized orientation 



69 

of the accelerometer during the entirety of the experiment. If the accelerometer were to be 

misaligned even to the slightest degree such as in Figure 5.16 below, then the processing 

methodology would need to consider the relative x and y axes offset in relation to the vehicles 

longitudinal acceleration denoted by a thin blue line. 

 

Figure 5.16 – Slight X-Y Axis Offset Which Could Lead to Inaccurate Results given 

Current Assumptions 

To counteract this potential offset in the x and y direction acceleration, the accelerometer 

was meticulously and rigidly placed on the electronics bed using dual lock reusable fasteners as 

well as Loctite glued mounting to ensure rigidity of orientation. Although this calibration metric 

was able to be addressed beforehand, the more critical metric of an x and z direction offset was 

unable to be addressed and is likely responsible for overestimating the exact results. Like Figure 

5.15, an offset in the x and z direction would also need to be addressed in the data processing 

stage. The difficulty in this offset is that gravity in the absolute −𝑘̂ direction is read by the 

accelerometer in both the x, y, and z. Ideally, as in Figure 5.11, the z acceleration data of the 

accelerometer will be consistently 9.8 m/s2 and the x and y acceleration data will be 0 m/s2 at 
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rest. If either of the cases presented in Figure 5.17 show up, then the x acceleration data at rest 

will contain a component of gravity of the form, 

𝑎𝑥 = 𝑔 sin 𝜃 (5.2) 

where 𝜃   is the angle of displacement of the x direction of the accelerometer and the vehicles 

longitudinal direction of motion. 

 

Figure 5.17 - Slight X-Z Axis Offset Demonstrated During the Vehicles Acceleration Test 

This behavior is exhibited in the data consistently during periods of rest as seen in Figure 

5.18. If the accelerometer’s platform were perfectly level, then the data at rest would read 0 m/s2. 

The variation in this at rest acceleration of the x direction data is most likely due to the 

suspension of the vehicle which is not calibrated to return to a level position during every rest 

but to find a steady state equilibrium after each full stop which can vary depending on the 

vehicle’s previous behavior. Ultimately, this gravitational consideration leads to inaccurate 

results regarding the vehicle's true longitudinal acceleration, velocity, and distance to velocity.  

Due to the nature of a vehicle’s front bumper tilting up during acceleration, it is expected 

that the x acceleration data included a gravitational component. Although it was documented that 



71 

the accelerometer was aligned as shown in Figure 5.11, it is expected that the x axis was truly 

non-constant and teetered between both positions exhibited in Figure 5.17. Thus, this would 

conclude that the acceleration being documented by the accelerometer included a component of 

the vehicle’s acceleration, previously estimated to be around 4 m/s2, and a component of the 

acceleration of gravity denoted by Equation 5.2. 

 

Figure 5.18 - Points of Rest where x Acceleration Demonstrated Behaviors of Including 

Gravitational Acceleration 

Future iterations of this test will need to include the integration of additional sensors to 

enhance the calibration of accelerometer data, thereby improving the accuracy of results. The 

automotive industry standard for assessing vehicle acceleration uses timed GPS data and front 

wheel encoder data to obtain precise acceleration and velocity measurements. GPS data can 

gather distance and time parameters, which are then used in basic kinematic equations to 

determine velocity between two points. This data can be extrapolated and processed to estimate 

relative acceleration behaviors. Front wheel encoder data is preferred due to its reduced 

susceptibility to slip compared to the rear wheel in rear-wheel drive vehicles. The encoder 
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gathers angular velocity data over time, which can also be extrapolated and processed to derive 

longitudinal acceleration and velocity information, aiding in determining the distance required to 

attain maximum velocity. Employing an integrated approach incorporating data from multiple 

sensors is the most accurate method to calibrate and compute acceleration data for vehicular 

applications and will be applied in future works. Note that GPS data was not collected because 

the external accelerometer lacked GPS information. 

Assuming the acceleration test yielded relatively accurate results, the on-road distance to 

maximum speed falls within the range of 90 meters, and thus the off-road course necessitates a 

comparable distance in relation to the dynamic coefficient of frictions of the different surfaces. It 

is assumed that for vehicles, the coefficient of friction for pavement and grass are 0.7 and 0.35, 

respectively. Accounting for the likelihood of a prolonged acceleration period on grass due to 

friction compared to paved roads, an estimated distance of 120 meters for the off-road straight 

stretch was considered. Subsequently, the off-road course was adjusted to incorporate a straight 

stretch of this estimated length, with the course layout meticulously outlined using numerous 3-

foot-tall reflective driveway markers, as depicted in Figure 5.19. 
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Figure 5.19 - Starting Point for the Off-Road Track  
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Chapter 6  
 

ILC Path Following Simulation 

To achieve the goal of optimal path-planning, it is essential to master path-following. 

This can be achieved by creating an algorithm that models steering as a function of position 

dictating the motion of the vehicle throughout a traversal. This is then accompanied by a throttle 

control algorithm to control the speed of the vehicle.  

To enable path-following with the actual RC vehicle, the development of a robust path-

following algorithm requires careful design. An initial step in this process involves creating a 

simulation. Simulations offer valuable insights into the vehicle's behavior while following a 

designated path, enabling the testing and validation of control algorithms before implementing 

them on the physical vehicle. Additionally, simulations facilitate the fine-tuning of control 

algorithms, optimizing parameters such as speed, steering angle, and acceleration.  

As previously mentioned, two key parameter inputs that heavily influence path following 

are steering and throttle. Steering as a function of position is a common practice in path 

following, however throttle control is more difficult to manage due to the factors that arise with 

high-speed driving such as robust maneuvers through sharp turns as well as look ahead control 

for the vehicle to make rapid decisions. For this, the vehicle’s velocity profile was simulated 

using data from previous chapters’ tests, coupled with iterative learning control methods of 

artificial intelligence.  

Iterative learning control is implemented to determine the optimal speed of the vehicle 

based on the speed from previous iterations. Using iterative learning control, the vehicle uses 

different stations determined by the steering algorithm. This enables the determination for the 
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maximum achievable at various milestones based on previous iterations. This ultimately is the 

theory being applied to optimize the vehicle’s velocity throughout any traversal. 

Path-following Kinematics 

For an effective path-following simulation, precise modeling of the vehicle's kinematics 

is essential. The RC vehicle employed in this study is characterized as a car-like mobile robot, 

representing a four-wheeled robot with front steerable wheels, resembling a typical car 

configuration. Car-like mobile robots, prevalent in ground robotics, are commonly 

conceptualized using a two-wheel model in their kinematic analysis. This model features a fixed 

rear wheel on the body, non-rotating concerning the base frame, while the plane of the front 

wheel rotates about the vertical axis for steering. The two-wheel model, like a bicycle model 

without sideways slip, assumes the wheels roll without lateral movement. It is imperative to note 

that when accounting for sideways slip, the model commonly used in general vehicle literature is 

termed the bicycle model. However, as slip is omitted in this analysis, this chapter intentionally 

refers to the vehicle as a two-wheel kinematic model. 

Figure 6.1 illustrates the two-wheel kinematic model of a car-like mobile robot, depicting 

the assigned coordinate system for both the base frame and the vehicle. Additionally, the figure 

presents the instantaneous center of rotation, the point where the wheels cannot move. This 

center of rotation serves as a tool to determine the turning radius of the vehicle, influenced by the 

wheelbase, denoted as L, and the steering angle, represented as γ. 
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Figure 6.1 - Two-Wheel Model Vehicle Kinematics 

The kinematic equations of motion about the two-wheel kinematic model are as follows: 

𝑥̇ = 𝑣 cos 𝜃 (6.1) 

 𝑦̇ = 𝑣 sin 𝜃 (6.2) 

 𝜃̇ =
𝑣

𝐿
tan 𝛾  (6.3) 

Where 𝑥̇ and 𝑦̇ are relative velocities in the global base frame as measured from the center of the 

rear axle. 𝜃̇ can be defined as the change of heading or change in relative steer angle. 

 The vehicle will typically have to traverse a trajectory of points in the xy plane. A viable 

strategy for trajectory tracking involves employing a pure pursuit steering and throttle controller. 

In this algorithm, the initial step is designating a specific goal point in the xy plane, denoted as 

(x*, y*), which serves as the target toward which the vehicle will navigate. The control 
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mechanism dictates that the robot's velocity is modulated proportionally to its distance from the 

designated goal point: 

𝑣∗ = 𝐾𝑣√(𝑥∗ − 𝑥)2 + (𝑦∗ − 𝑦)2 (6.4) 

The parameter 𝐾𝑣, denoted as the velocity gain, assumes a crucial role in the control algorithm. 

In control systems, a gain serves as a parameter for amplifying or attenuating an input signal, 

representing the ratio of the control system's output to the input signal. Subsequently, the 

algorithm governs the robot's heading and steering angle to facilitate alignment with the 

specified goal point, guided by the following control law. It is noteworthy that the heading gain, 

denoted as 𝐾ℎ, enables fine-tuning of the steering action. The desired heading is denoted as 𝜃∗, 

and the corresponding steering angle is represented by 𝛾: 

𝜃∗ = tan−1
𝑦∗ − 𝑦

𝑥∗ − 𝑥
(6.5) 

𝛾 = 𝐾ℎ(𝜃∗ − 𝜃) (6.6) 

Which denotes that that the steering input can is determined by the desired heading angle. In 

essence, the algorithms force the vehicle to face the next corresponding point at a given position. 

 Once the foundational control laws for point-to-point motion have been defined, there 

arises an opportunity for tuning to enhance trajectory or path-following. In addressing the 

trajectory following challenge, the vehicle's motion towards a point persists, albeit with the 

pursuit point dynamically updated over time. The maintained distance between the robot and the 

pursuit point is denoted as 𝑑∗. Leveraging this distance parameter, an error function, 𝑒, can be 

formulated to further characterize the system's performance: 

𝑒 = √(𝑥∗ − 𝑥)2 + (𝑦∗ − 𝑦)2 − 𝑑∗ (6.7) 

Where this error function can be used to the iterative-learning control algorithm to determine the 

robot's velocity. Iterative learning control determines the next velocity to be had rather than the 
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current velocity through the traversal. Typically, an ILC algorithm will have an assumed initial 

velocity which will be altered by adding the product of the learning rate, 𝛼, and the error 

function: 

𝑣𝑘+1 = 𝑣𝑘 + 𝛼 ∗ 𝑒 (6.8) 

Where 𝑣𝑘 is the velocity of the current iteration. The iterative learning control algorithm is 

discussed further in subsequent sections.  

Iterative Learning Control 

 As discussed in Chapter 2, Iterative Learning Control is a control methodology widely 

applied in mechanical engineering in contexts where precise repetitive tasks are accomplished. 

At its core, ILC leverages past performance data to refine control inputs iteratively, aiming to 

enhance system performance with each iteration. The advantage of ILC lies in its ability to 

improve tracking accuracy over time, as it learns from previous errors and adjusts control signals 

leading to enhanced trajectory tracking and reduced tracking errors [19], [30]. Moreover, ILC 

often requires minimal additional hardware, making it a cost-effective solution in many 

applications. However, its effectiveness heavily relies on accurate modeling of the system 

dynamics and assumptions of repeatability in tasks, which can be challenging to achieve in 

complex real-world scenarios such as autonomous driving. Additionally, the convergence of ILC 

algorithms can be slow, demanding careful tuning and validation processes. 

 The parameter for which ILC representation is achieved is the vehicle's velocity profile 

throughout the traversal. In theory, the vehicle will learn from previous iterations to enhance its 

velocity at specific waypoints defined by the traversal itself. Using a base design of velocity as a 
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function of curvature and station, the vehicle profile will ultimately converge to an ideal steady 

state velocity profile that will be as fast as possible. This ILC model of velocity will essentially 

teach the vehicle to go fast through waypoints of low curvature and to go slow through 

waypoints of high curvature until the vehicle can repeatedly drive the traversal with essentially 

zero positional error and maximum speed. 

 Iterative learning control is most often associated with a time-based repetition model, 

where every iteration of an event ends in a fixed time of a duration such that the converging 

output is a function of a constant time. Due to the nature of this project, having a fixed time 

representation of the velocity profile would be counterintuitive since the goal is to minimize the 

time the vehicle traverses the path through a maximized velocity profile. Thus, the velocity ILC 

model will follow a fixed station representation for the velocity profile. The repeated constant is 

the station of the track. Again, note that station is not to be considered the length the vehicle 

traverses. The difference between station and path length is that path length can vary slightly 

depending on track limits and idealization, whereas station is a constant that represents 

segmented zones for the vehicle to pass through during a traversal. 

 To incorporate ILC, a simulation model was created in MATLAB which practices path 

following given an input traversal as well as vehicle parameters, controller parameters, and field 

traversal parameters. Initial conditions of the states are defined as longitudinal velocity, lateral 

velocity, yaw rate, angular velocity of the wheel, and relative initial position in east, north, and 

heading. The simulation was created using tools from Penn State Intelligent Vehicles and 

Systems Group GitHub libraries for Geometry, Path, and Vehicle Dynamics. Such MATLAB 

simulation code can be found in Appendix D. 
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 Prior to creating running simulations regarding the subject vehicle of this research, the 

simulation created was validated and tuned using a proven large-scale vehicle model. The large-

scale vehicle model is loosely based on the C5 Corvette with simplified parameters which allow 

for relatively easy tuning and simulation understanding. Table 6.1 details the differences between 

the large-scale vehicle model parameters compared to those offered by the subject vehicle of this 

research. All data regarding the subject vehicle was collected through general calculation models 

based on measurements from the actual subject vehicle as well as calculations based off the 

large-scale vehicle. 

Table 6.1 - Large Scale Vehicle Compared to Subject Vehicle Parameters 

Parameter Large Vehicle Subject Vehicle Calculation 

Mass [kg] 1,600 14.719 𝑚  

Mass Moment of Inertia [kg m2] 2,500 1.20761 𝐼𝑧𝑧 = 𝑚 ⋅ 𝑎 ⋅ 𝑏 (6.9) 

Wheel Mass Moment of Inertia [kg m2] 1.2 1.2*10-3 𝐼𝑤 = 𝐼𝑧𝑧 ⋅ 10−3 (6.10) 

Effective Radius of Wheel [m] 0.32 0.09 𝑟  

Center of Gravity to Front Axle [m] 1.3 0.26276 𝑎  

Center of Gravity to Rear Axle [m] 1.3 0.31224 𝑏  

Wheelbase [m] 2.6 0.575 𝑤𝑏 = 𝑎 + 𝑏 (6.11) 

Trackwidth [m] 1.5 0.44 𝑤𝑡 

Height of Center of Gravity [m] 0.42 0.1 ℎ𝑐𝑔 

Wheel Corner Stiffness Front [-] 95,000 873.94 𝐶𝑎,𝑓 

Wheel Corner Stiffness Rear [-] 110,000 1011.9 𝐶𝑎,𝑟 

Longitudinal Stiffness [-] 65,000 597.96 𝐶𝑏 

Contact Patch Length [m] 0.15 0.03 𝑙𝑐𝑝 
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Large Scale Vehicle Simulation and Tuning 

The large-scale vehicle simulation tuning validation test was conducted to ensure that the 

simulation conformed with expected performance criteria, allowing accurate plotting of 

anticipated behaviors. Additionally, the large-scale vehicle simulation provided a baseline for 

analyzing multiple input parameters and their consequent impacts on diverse output variables 

like slip angle, lateral tire force, lateral acceleration, and tracking error. 

 In the initial phase of simulation studies, the large-scale vehicle was programmed to 

follow a scaled version of the designated reference path outlined in Chapter 5, maintaining a 

constant velocity. This reference path, scaled to ten times the real-life track dimensions, ensured 

the feasibility of traversing the path with the larger vehicle model. The simulation included 

speeds of 10 m/s, 13 m/s, and 15 m/s to assess the effectiveness of path following. At 10 m/s, the 

large-scale vehicle autonomously traversed the path with zero tracking error or deviation. 

Conversely, at 13 m/s, the vehicle encountered significantly more tracking errors and deviations, 
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although it managed to complete most of the track. These observations are depicted in Figures 

6.2 and 6.3. 

  

                a)                b) 

Figure 6.2 - Large Vehicle Model Simulation Path Success a) 10 m/s b) 13 m/s. 

  

                 a)                b) 

Figure 6.3 - Large Vehicle Model Simulation Tracking Error a) 10 m/s b) 13 m/s. 

 Note that the reference path is annotated with corresponding stations along selected 

intervals. The switchback segment of the track garners interest due to its sharp curvature, leading 
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to challenges in path following at higher velocities. This segment, spanning stations 1500 to 

2000, is designated as the switchback zone. 

 Note that the tracking error is related to the station closest associated to the vehicle 

during its traversal. Consequently, in regions characterized by significant tracking error, the 

vehicle may align with a different station than the anticipated next one, as evidenced by the 

thickened points in the case of 13 m/s which span across the x-axis. As anticipated, the areas 

exhibiting the highest tracking error and notable deviations in the plot lie within stations 1500 to 

2000, previously identified as the switchback zone.  

 Further analysis was conducted at the constant speed of 15 m/s due to it demonstrating 

exceptional success in most of the track but exhibited behaviors during the switchback zone 

which are worth observing and identifying. Figure 6.4 illustrates the path following success at 

the constant speed of 15 m/s. 

 

Figure 6.4 - Large Vehicle Model Simulation at 15 m/s around the Scaled Track 
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 While the vehicle successfully completed the traversal, further post-processing and 

analysis of outputs reveal critical behaviors endured by the vehicle during the maneuver. These 

behaviors must be carefully considered by the ILC algorithm to ensure an optimal path traversal 

without adverse consequences.  

 One such adverse effect observed is complete tire slippage. Lateral tire force is a metric 

which determines the force the wheel is acting on in the lateral direction. Analysis of lateral tire 

force plots reveals instances where the vehicle's tires reach a plateaued maximum at various 

points along the switchback zone. The presence of these flat maximums, depicted in Figure 6.5, 

indicates a loss of traction, with the wheels potentially sliding sideways instead of solely moving 

along the vehicle's longitudinal axis. This subtle drift signals that the vehicle is navigating the 

turn at excessive speed, nearing the threshold of losing control.  

 

Figure 6.5 - Lateral Tire Force vs. Station Plot Exhibiting Sideways Slip 

An investigation of the lateral acceleration thus exhibits a similar trend where maximum 

slip force is found. Figure 6.6 illustrates the lateral acceleration as well as lateral acceleration 
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limits defined by the friction coefficient of the track. In this case, lateral acceleration is not to 

exceed ±8.83 m/s2. During moments of high lateral force, it’s observed that the lateral 

acceleration is nearing the limit, yet not exceeding it. Surpassing the acceleration limit could lead 

to severe skidding, increased risk of rollover, understeering, or oversteering depending on the 

tires that exhibit the behavior the most. 

 

Figure 6.6 - Lateral Acceleration vs Station for 15 m/s Simulation. 

This requires an examination of the slip angle for each tire, which quantifies the degree of 

sliding or drifting in radians. It is expected that the slip angle will exhibit an inverse relationship 

with the lateral tire force, a correlation that is verified and illustrated in Figure 6.7. The analysis 

reveals that the front tires undergo significant slippage, while the rear tires exhibit less, which 

yields more stability. This difference in behavior is expected, as the front wheels pivot in 

response to steering inputs, rendering them more susceptible to increased levels of slip. Slip in 

this case is assumed to be a suboptimal behavior which should be minimized to ensure smooth 

driving behaviors. Slip can sometimes be considered an optimal behavior in the form of 
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controlled drifting; however, this behavior is beyond the scope of this work and can be 

considered in future research. 

 

Figure 6.7 - Slip Angle vs Station for 15 m/s Simulation. 

Lastly, considering the behaviors exhibited in the lateral direction of the wheels, it is 

crucial to assess their impact on the vehicle's ability to stay on track. Figure 6.8a provides an 

overview of the vehicle's tracking error in comparison to both the optimal path line—where 

tracking error equals zero—and the track limits, defined as points situated 10 meters away from 

the optimal path. As expected, the tracking error is most pronounced within the switchback zone, 

with several station points indicating a failure to remain within the track limits. This is 

particularly evident in a close-up examination of station 1700, where the vehicle significantly 

exceeds the track limits. As previously mentioned, a thick spot forms as the calculations yield the 

error on different sides of similar stations due to the proximity of stations. Such deviations from 

the optimal path represent suboptimal behaviors that must be mitigated via ILC to achieve 

optimal path following. 
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a) b) 

Figure 6.8 - a) Tracking Error Plot, b) Switchback Zone Closeup 

Comparing the plots obtained at 15 m/s with those at 10 m/s and 13 m/s yields valuable 

insights into optimal and suboptimal vehicle behaviors across all station points, particularly 

emphasizing segments where suboptimal behaviors are prevalent, such as the switchback zone. 

Ultimately, this comparative analysis sheds light on the various factors to be mindful of and their 

subsequent effects. This aids in refining the tuning process for the subject vehicle simulations, 

building upon the insights gained from the analyses described above. 

Moreover, the large-vehicle simulation serves as a crucial tool for result validation. The 

simulations with the large-vehicle model effectively showcase expected behaviors, supported by 

reasoned explanations. They demonstrate the simulation's capability to achieve path following at 

constant speeds, laying a foundation for the inclusion, and tuning of more advanced path 

following scenarios such as variable speed cases and ultimately ILC implementation. 
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1/5th Scale Vehicle Simulation Validation 

Following the validation and tuning of the large-scale vehicle simulation, it is imperative 

to confirm and validate the capabilities of the simulation when applied to a small-scale vehicle 

model. The performance of the small-scale vehicle simulation serves as a critical validation step 

to ensure the reliability and accuracy of the model across varying scales and conditions. 

Unlike the initial phase of the large-scale vehicle simulation, the small-scale vehicle 

model is programmed to traverse the designated reference path as designed in normal 

dimensions, while maintaining a constant velocity. To compare with the results of the large-scale 

model simulation, similar parameters were investigated such as slip angle, lateral tire force, 

lateral acceleration, and tracking error. This comparative analysis provides insights into the 

scalability and robustness of the simulation across diverse operating conditions. The analysis 

also confirms the simulations accuracy and consistency.  

Ultimately, the validation of the small-scale vehicle simulation is imperative for 

confirming the simulation's capability to accurately emulate real-world behaviors for the vehicle 

model being researched. Table 6.1 from earlier in the chapter illustrates the changes made to the 

simulation parameters to go from large-scale model to the 1/5th scale vehicle model in 

simulation. After initial constant velocity tests, the vehicle successfully traversed the course at 2 

m/s (or roughly 5 mph) with minimal tracking error as seen in Figure 6.9. 
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Figure 6.9 - 1/5th Scale Vehicle Simulation Result 

This relatively low constant velocity makes sense due to the intense curvature of the 

switchback zone. The speed of 2 m/s is equivalent to the speed of a light jog, and from traversing 

the track by foot it is observed that the switchbacks at the speed of a light jog would be 

extremely difficult to accomplish consistently, thus the result can be inferred as possibly 

accurate. At the speed of 2 m/s, the tracking error comfortably stayed within the designated track 

limits as seen in Figure 6.10. The vehicle did experience some tracking errors at turns and in the 

switchback zone, which is expected. Note that switchback zone is denoted as stations 150 to 200. 
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Figure 6.10 – Tracking Error vs Station for 1/5th Scale Vehicle Simulation 

Comparatively, the lateral tire force acceleration and lateral acceleration were evaluated 

to ensure consistency with the large-scale vehicle model. Unlike the large-scale vehicle model, 

the rear tires were more susceptible to enduring large lateral tire force, as seen in Figure 6.11, 

however the general points of tire force shape look to be roughly the same with emphasis at the 

same stations. The rear tire force difference is observed when manually driving the Losi DBXL-

E 2.0 Buggy in which the rear tires are noticeably more susceptible to slipping than the front 

tires. Similarly, lateral acceleration results corresponded with the outcomes derived from the 

large-scale vehicle model as seen in Figure 6.12 



91 

 

Figure 6.11 - Lateral Tire Force vs Station for 1/5th Scale Vehicle Simulation 

 
Figure 6.12 - Tracking Error for 1/5th Scale Vehicle 

Once the constant speed velocity profile was compared for both large-scale and 1/5th 

scale vehicle models, the variable velocity phase of testing was initiated. Initially, variable speed 

was defined through a series of if statements which changed the velocity depending on the 
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previous station the vehicle has passed. Table 6.2 demonstrates the various segments of the track 

defined by their stations which were given different velocities. 

Table 6.2 - Track Segment Zones and Their Corresponding Velocities 

Zone Name Station Range Relative Velocity 

Straightaway Zone 0-90 VERY HIGH 

Hairpin One Zone 90-110 LOW 

High Speed Corner 110-150 HIGH 

Switchback Zone 150-200 VERY LOW 

Acceleration Zone 200-250 HIGH 

Hairpin Two Zone 250-End LOW 

  

 Various velocity profiles were tested using Table 6.2’s relative velocity using a hard 

coded estimation method. At a maximum velocity of 8 m/s during the straightaway zone, and 

minimum velocity of 2 m/s during the switchback zone, the vehicle successfully traversed the 

track with a variable velocity profile as seen in Figure 6.13. Due to the simulation being 

determined through a designated time, it can be observed the vehicle successfully completed a 

lap and was able to traverse at least half of a second lap due to overlay in the plotting data.  
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Figure 6.13 - 1/5th Scale Variable Velocity Profile Path Completion 

It must be noted this variable velocity profile only succeeds at time steps greater than 0.1 

seconds which is not a direct indication that this profile would succeed in real time. When tested 

at a more finite time step of 0.01 seconds, the vehicle experiences a serious slip in the 

straightaway zone and spins out of control in the form of a donut as seen in Figure 6.14. Thus, 

this indicates that in real-world situations, the vehicle is more likely to spin out given this 

velocity profile rather than not. 
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Figure 6.14 - 1/5th Scale Variable Velocity Profile Path Failure 

Despite having the same velocity profile, the time step yields vastly different results. This 

is due to the simulation solver discretization which determines how often the steering is updated, 

and thus how aggressively the vehicle maneuvers in response to a change in the vehicle position. 

A simplified explanation of this phenomenon is like driving with the goal of evading potholes: at 

a fast time-step, a driver constantly adjusts maneuvers to achieve this goal, resulting in 

heightened sensitivity and very “jerky” vehicle behavior. Conversely, at a slower time step, the 

driver would drive blindly briefly prior to initiating new maneuvers, leading to a smoother 

trajectory compared to the more dynamically adjusted path. Ultimately, the increased time step 

acts as a low-pass filter for the vehicle maneuvers allowing for a smoother outcome. For this 

reason, the ‘successful’ plot is not further examined since it is likely not very accurate to a real-

world outcome. These results do suggest that the concept of variable velocity profiles could have 

some degree of success, particularly in the use of ILC to tune and adjust the velocity profile.   
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Chapter 7 

 
Conclusions 

Ultimately, this thesis represents a comprehensive exploration and research into 

advancing high-speed off-road autonomous vehicle technology specifically in the realm of path 

planning. True high-speed off-road path planning requires three primary development 

components: First, the proper development of a vehicle capable of driving fast with capable 

maneuverability; second, the development of a hardware package with all necessary sensors 

properly mounted to the vehicle; and third, the development of advanced software algorithms 

which collect data intelligently and translate that information into intelligent path following 

subsequently path planning. 

The Losi DBXL-E 2.0 RC Buggy used in this study is a vehicle renowned for its capacity 

to achieve high velocities and maneuverability through challenging off-road terrain. By 

implementing modifications and enhancements of the vehicle’s hardware and mounts – 

specifically by compacting the electronics packaging with a printed circuit board, developing 

metal reinforced rear encoder mounts, and integrating polar electronic connectors for all 

connecting pieces – both reliability and usability were significantly improved, providing a 

foundation for ongoing research.  

The acquisition and analysis of acceleration data provided invaluable insights into the 

dynamic behavior of the vehicle, facilitating the refinement of control algorithms and the 

optimization of the overall system performance. 

Moreover, the design and creation of a new test-track, along with the processing of GPS 

data to generate a highly refined and accurate reference traversal, encompassing complicated 

geographic features and segments of high velocity and maneuverability offer a novel approach to 
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simulation and path following. This remarkable achievement contributes to the development of 

autonomous vehicle navigation systems and opens avenues for testing and validation in 

controlled environments. 

Furthermore, the creation and validation of a reliable and complex simulation model on 

MATLAB using a large-scale vehicle model, and later validated with the 1/5th scale vehicle 

model, represents an advancement in predicting the adaptability and robustness of autonomous 

systems in path-following. This simulation model characterized by simple input requirements – 

including a reference traversal, vehicle parameters, steering control parameters, and terrain 

parameters – yields intuitive data regarding the vehicle’s states, associated vehicular forces on all 

tires, and even complex slip calculation data exhibited during high-speed turns.  

The simulation model also enables the fine tuning of parameters prior to field testing and 

facilitating the establishment of a baseline understanding of potential outcomes that the vehicle 

might encounter across various segments of the track. Ultimately, the simulation serves as a 

critical tool for refining control algorithms and optimizing system performance. It also provides a 

relative baseline regarding outcome of the iterative learning control velocity model.  

Overall, this research emphasizes the variety of interdisciplinary components essential for 

advancing innovation of high-speed off-road autonomous vehicles. Despite encountering 

setbacks, such as a high-speed collision that delayed vehicle testing, this study expands the 

boundaries of knowledge within both the vehicle under this study and the broader field of high-

speed off-road autonomous vehicles.  
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Future Work 

Significant tasks remain to fully integrate autonomous off-road path-following, and 

eventually path planning, into the vehicle. Further development of the simulation model needs to 

be accomplished to provide a more refined outcome regarding the small-scale vehicle itself 

rather than the large-scale vehicle. Predicted velocity profiles need and associated algorithms, 

such as velocity as a function of curvature, need to be further developed and linked to associated 

station structures in MATLAB for simulation. 

The implementation of suitable internal GPS conversion from LLA to ENU along with 

steering angle mapping and control code onto the onboard Teensy is underway. This would 

allow for fundamental physical path-following tests such as following a straight line, following a 

curved line, then following an internalized path using an ENU-based coordinate system. Upon 

successful completion of these initial tests, the Teensy code should be enhanced to facilitate 

path-following. 

The subsequent phase involves integrating a control block into the steering control within 

the path-following model. After tuning and rigorous testing, the variable velocities will be 

determined via real time iterative learning control such as the simulation predicts and 

subsequently incorporated into the path-following Teensy code. Following the successful 

implementation of autonomous steering and throttle control during on-road testing, time trials 

will be systematically evaluated. Upon the achievement of successful high-speed on-road path-

following, a similar process will be completed at the off-road test track to enable high-speed off-

road path-following. 

The future for the vehicle encompasses further understanding of the vehicle itself. A full-

fledged model of the vehicle’s internal dynamic system is to be created and documented as well 
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as a full CAD model of the vehicle. This includes determining more accurate values for 

parameters such as acceleration, velocity, wheel cornering stiffness, longitudinal stiffness, and 

friction coefficient factors. This will allow for more accurate simulation results as well as design 

modification facilitation in the case of additional sensors or modifications.  

Another plan for the vehicle includes the incorporation of off-road path-planning 

facilitated by an onboard computing system, such as a Raspberry Pi or NVIDIA Jetson Nano. To 

enable path-planning, additional sensors like LiDAR, cameras, IMU, etc., must be integrated to 

enable obstacle detection and avoidance.  
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Appendix A 

 

RC Vehicle Datalogging Code 

#include <SD.h> 

/* IVSG RC Test Vehicle Datalogging V3.0 

    Last Updated: 3/23/2022 

    Microcontroller: Teensy 4.1 

    For additional documentation, see "Vehicle Embedded Software" page of 

Hardware_RCVehicle wiki 

    (https://github.com/ivsg-psu/Hardware_RCvehicle/wiki/Vehicle-Embedded 

Software#rc_vehicle_datalogging_v3) 

    Required libraries: 

    - Wire 

    - SD 

    - SparkFun_u-blox_GNSS_Arduino_Library (https://github.com/sparkfun/SparkFun_u-

blox_GNSS_Arduino_Library) 

    Notes: 

    - This program assumes the encoders only rotate in one direction to optimize performance. 

Backwards rotation will be recorded as forward. 

*/ 

 

// Libraries 

#include <Wire.h> //For I2C to GNSS 

#include <SD.h> //For writing to sd card 

https://github.com/ivsg-psu/Hardware_RCvehicle/wiki/Vehicle-Embedded
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#include <SparkFun_u-blox_GNSS_Arduino_Library.h> //For interfacing with ZED-F9P 

 

SFE_UBLOX_GNSS myGNSS; // Create GNSS object 

 

File myFile; // Create file for reading/writing data 

const int chipSelect = BUILTIN_SDCARD; // sets the SD card reader to be the onboard one 

 

// Reduce defaultMaxWait for GNSS library operations to 250 from the default 1100. (This 

program only uses I2C communication with the GNSS receiver, 

// which does not require waits longer than 250 ms). 

#define defaultMaxWait 250 

 

// Define pins 

#define Encoder1CHA 4 // Teensy pin connected to CHA pin of encoder 1 

#define Encoder1CHB 12 // Teensy pin connected to CHB pin of encoder 1 

#define Encoder2CHA 5 

#define Encoder2CHB 9 

#define Encoder3CHA 6 

#define Encoder3CHB 10 

#define Encoder4CHA 41 

#define Encoder4CHB 40 

#define ppsInterrupt 36 // Teensy pin connected to the PPS output of ZED-F9P GNSS receiver 

#define buttonPin 29  // Connected to a button for starting and stopping datalogging 
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#define TeensyLED 13 // Pin for built in Teensy LED. 

 

// Declare variables 

 

// Master Count - updates with every encoder interrupt 

volatile long encoder1MasterCount = 0; 

volatile long encoder2MasterCount = 0; 

volatile long encoder3MasterCount = 0; 

volatile long encoder4MasterCount = 0; 

 

// Polled Count - Updates once every GPS pulse 

long polledEncoder1Count = 0; 

long polledEncoder2Count = 0; 

long polledEncoder3Count = 0; 

long polledEncoder4Count = 0; 

 

// Polled GNSS Variables 

long latitude = 0; 

long longitude = 0; 

long alt = 0; 

byte SIV = 0; 

int gpsHour = 0; 

int gpsMin = 0; 
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int gpsSec = 0; 

int gpsMs = 0; 

int gpsNs = 0; 

int northVel = 0; 

int eastVel = 0; 

int downVel = 0; 

int verticalAcc = 0;; 

int horizontalAcc = 0; 

int speedAcc = 0; 

int headAcc = 0; 

 

String dataString; // Stores next line to be written to file 

 

// Flags 

boolean doSave = false; 

volatile boolean newPulse = false; 

boolean buttonCheck = false; 

 

// Other vars 

byte RTK = 0; 

 

// Time values 

long startTime = 0; 
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long thisTime = 0; 

long printTime = 0; 

long lastButtonCheckTime = 0; 

volatile long gpsPulseCount = 0; 

volatile long interruptTeensyTime = 0; 

 

void setup() { 

 

  // Set the pins as inputs 

  pinMode(Encoder1CHA, INPUT); 

  pinMode(Encoder1CHB, INPUT); 

  pinMode(Encoder2CHA, INPUT); 

  pinMode(Encoder2CHB, INPUT); 

  pinMode(Encoder3CHA, INPUT); 

  pinMode(Encoder3CHB, INPUT); 

  pinMode(Encoder4CHA, INPUT); 

  pinMode(Encoder4CHB, INPUT); 

  pinMode(ppsInterrupt, INPUT); 

  pinMode(buttonPin, INPUT); 

 

  // Set TeensyLED pin as output 

  pinMode(TeensyLED, OUTPUT); 
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  // Note that Serial.begin() is not necessary for Teensy 4.1 code 

 

  // Wait 1 second 

  delay(1000); 

  // see if the card is present and can be initialized: 

  if (!SD.begin(chipSelect)) { 

 

    // if the card is not present, freeze 

    while (1); 

  } 

 

  myFile = SD.open("datalog.txt", FILE_WRITE); // to write to SD card need name, file will be 

called datalog.txt. 

 

  if (myFile) { // Check that the file opened correctly 

    myFile.println("----RC_vehicle_datalogging_v3 - 4 Encoders - GPS - SD Card Storage - Last 

Updated 3-23-22 ----"); 

    myFile.println("Time (ms), GPS Pulse Count, Encoder 1 Counts, Encoder 2 Counts, Encoder 

3 Counts, Encoder 4 Counts, GPS Hour, GPS Min, GPS Sec, GPS Millisecond, GPS 

Nanosecond, Latitude, Longitude, Altitude, North Velocity, East Velocity, Down Velocity, 

Vertical Acc, Horizontal Acc, Speed Acc, Head Acc, SIV"); 

  } 

  Wire.begin(); //Begin I2C comunication 
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  Wire.setClock(400000); // Increase I2C clock speed to 400kHz 

 

  if (myGNSS.begin() == false) //Connect to the u-blox module using Wire port 

  { 

    //If connection to u-blox module failed, print debug message to file: 

    myFile.println("u-blox GNSS not detected at default I2C address. Please check wiring. 

Freezing."); 

    while (1); 

  } 

  myGNSS.setI2COutput(COM_TYPE_UBX); //Set the I2C port to output UBX only (turn off 

NMEA noise) 

  myFile.println(); 

 

  // Create storage for the time pulse parameters 

  UBX_CFG_TP5_data_t timePulseParameters; 

  // Get the time pulse parameters 

  if (myGNSS.getTimePulseParameters(&timePulseParameters) == false) 

  { 

    myFile.println(F("getTimePulseParameters failed! Freezing...")); 

    while (1) ; // Do nothing more 

  } 

  // Print the CFG TP5 version 

  myFile.print(F("UBX_CFG_TP5 version: ")); 
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  myFile.println(timePulseParameters.version); 

  timePulseParameters.tpIdx = 0; // Select the TIMEPULSE pin 

 

  // While the module is _locking_ to GNSS time, make it generate 100Hz 

  timePulseParameters.freqPeriod = 100; // Set the frequency/period to 100Hz 

  timePulseParameters.pulseLenRatio = 0x80000000; // Set the pulse ratio to 1/2 * 2^32 to 

produce 33:67 mark:space 

 

  // When the module is _locked_ to GNSS time, make it generate 100 Hz 

  timePulseParameters.freqPeriodLock = 100; // Set the frequency/period to 100Hz 

  timePulseParameters.pulseLenRatioLock = 0x80000000; // Set the pulse ratio to 1/2 * 2^32 to 

produce 50:50 mark:space 

 

  timePulseParameters.flags.bits.active = 1; // Make sure the active flag is set to enable the time 

pulse. (Set to 0 to disable.) 

  timePulseParameters.flags.bits.lockedOtherSet = 1; // Tell the module to use freqPeriod while 

locking and freqPeriodLock when locked to GNSS time 

  timePulseParameters.flags.bits.isFreq = 1; // Tell the module that we want to set the frequency 

(not the period) 

  timePulseParameters.flags.bits.isLength = 0; // Tell the module that pulseLenRatio is a ratio / 

duty cycle (* 2^-32) - not a length (in us) 

  timePulseParameters.flags.bits.polarity = 1; // Tell the module that we want the rising edge at 

the top of second. (Set to 0 for falling edge. 
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  // Now set the time pulse parameters 

  if (myGNSS.setTimePulseParameters(&timePulseParameters) == false) 

  { 

    myFile.println(F("setTimePulseParameters failed!")); 

  } 

  else 

  { 

    myFile.println(F("setTimePulseParameters successful!")); 

  } 

  myGNSS.saveConfigSelective(VAL_CFG_SUBSEC_IOPORT); //Save (only) the 

communications port settings to flash and BBR 

  myGNSS.setNavigationFrequency(20); //Send navigation solutions at 25 hz 

  myGNSS.setAutoPVT(true); 

 

  byte rate = myGNSS.getNavigationFrequency(); //Get the update rate of this module 

  myFile.print("Current navigation update rate:"); 

  myFile.println(rate); 

 

  // Blink the Teensy LED twice to indicate setup is complete and it is ready to collect data once 

the button is pressed 

  digitalWrite(TeensyLED, HIGH); 

  delay(1000); 
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  digitalWrite(TeensyLED, LOW); 

  delay(1000); 

  digitalWrite(TeensyLED, HIGH); 

  delay(1000); 

  digitalWrite(TeensyLED, LOW); 

 

  while (!buttonCheck) { 

 

    buttonCheck = digitalRead(buttonPin); 

    delay(600); 

  } 

  buttonCheck = false; 

 

  // Check if the GNSS receiver  is currently generating positions with RTK corrections 

  RTK = myGNSS.getCarrierSolutionType(); 

  if (RTK == 0) myFile.println(F("RTK Currently Off")); 

  else if (RTK == 1) myFile.println(F("RTK Currently On (Floating))")); 

  else if (RTK == 2) myFile.println(F("RTK Currently On (Fix)")); 

  else myFile.println(F("Check RTK failed")); 

 

  // Set interrupts 

  attachInterrupt(ppsInterrupt, ppsFlag, RISING); // Attach an interrupt for GPS pulses (rising 

edge only) 
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  attachInterrupt(Encoder1CHA, encoder1FlagA, CHANGE); // Attach an interrupt for state 

changes on channel A. 

  attachInterrupt(Encoder1CHB, encoder1FlagB, CHANGE); // Attach an interrupt for state 

changes on channel B. 

  attachInterrupt(Encoder2CHA, encoder2FlagA, CHANGE); // Attach an interrupt for state 

changes on channel A. 

  attachInterrupt(Encoder2CHB, encoder2FlagB, CHANGE); // Attach an interrupt for state 

changes on channel B. 

  attachInterrupt(Encoder3CHA, encoder3FlagA, CHANGE); // Attach an interrupt for state 

changes on channel A. 

  attachInterrupt(Encoder3CHB, encoder3FlagB, CHANGE); // Attach an interrupt for state 

changes on channel B. 

  attachInterrupt(Encoder4CHA, encoder4FlagA, CHANGE); // Attach an interrupt for state 

changes on channel A. 

  attachInterrupt(Encoder4CHB, encoder4FlagB, CHANGE); // Attach an interrupt for state 

changes on channel B. 

 

  // Turn the Teensy LED on to indicate that data is being collected 

  digitalWrite(TeensyLED, HIGH); 

 

  startTime = millis(); // Record startTime 

} // End setup() 
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void loop() { 

 

  if (newPulse) { // If data has not been printed since last pulse 

    newPulse = false; 

    printTime = interruptTeensyTime - startTime; 

    if (myGNSS.getPVT()) { // If there is a new GNSS solution, get the values 

      gpsHour = myGNSS.getHour(); 

      gpsMin = myGNSS.getMinute(); 

      gpsSec = myGNSS.getSecond(); 

      gpsMs = myGNSS.getMillisecond(); 

      gpsNs = myGNSS.getNanosecond(); 

      latitude = myGNSS.getLatitude(); 

      longitude = myGNSS.getLongitude(); 

      alt = myGNSS.getAltitude(); 

      SIV = myGNSS.getSIV(); 

      northVel = myGNSS.getNedNorthVel(); 

      eastVel = myGNSS.getNedEastVel(); 

      downVel = myGNSS.getNedDownVel(); 

      verticalAcc = myGNSS.getVerticalAccEst(); 

      horizontalAcc = myGNSS.getHorizontalAccEst(); 

      speedAcc = myGNSS.getSpeedAccEst(); 

      headAcc = myGNSS.getHeadingAccEst(); 
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      dataString = ((String)printTime) + ", " + ((String)gpsPulseCount)  + ", " + 

((String)polledEncoder1Count) + ", " + ((String)polledEncoder2Count) + ", " + 

((String)polledEncoder3Count) + ", " + ((String)polledEncoder4Count) + ", " + 

((String)gpsHour) + ", " + ((String)gpsMin) + ", " + ((String)gpsSec) + ", " + ((String)gpsMs) + 

", " + ((String)gpsNs) + ", " + ((String)latitude) + ", " + ((String)longitude) + ", " + ((String)alt) + 

", " + ((String)northVel) + ", " + ((String)eastVel) + ", " + ((String)downVel) + ", " + 

((String)verticalAcc) + ", " + ((String)horizontalAcc) + ", " + ((String)speedAcc) + ", " + 

((String)headAcc) + ", " + ((String)SIV); 

    } // End if (myGNSS.getPVT()) 

    else { 

      dataString = ((String)printTime) + ", " + ((String)gpsPulseCount)  + ", " + 

((String)polledEncoder1Count) + ", " + ((String)polledEncoder2Count) + ", " + 

((String)polledEncoder3Count) + ", " + ((String)polledEncoder4Count); 

    } 

    // if the file opened okay, write dataString to it: 

    if (myFile) { 

      myFile.println(dataString); 

    } 

  } // End if if (newPulse) 

 

  thisTime = millis(); // Record the current time 
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  // Check if button is pressed once a second (1 hz), ignore button presses that take place in the 

first 10 seconds after datalogging starts 

  if ((thisTime - lastButtonCheckTime > 1000) && ((thisTime - startTime) >= 10000)) 

  { 

    doSave = digitalRead(buttonPin); 

    if (doSave) { //If button is pressed, save and pause 

      if (myFile) { 

        myFile.println("-------------Save and pause---------------"); 

        myFile.close(); 

        // Turn Teensy LED off to indicate that data is not being collected 

        digitalWrite(TeensyLED, LOW); 

      } // End if (myFile) 

      delay(5000); 

      // Wait for button press to resume dataLogging 

      while (!digitalRead(buttonPin)) { 

        delay(10); 

      } 

      // Turn on Teensy LED to indicate that data is again being collected 

      digitalWrite(TeensyLED, HIGH); 

      myFile = SD.open("datalog.txt", FILE_WRITE); 

 

      if (!myFile) { // Check that the file opened correctly 

        while (1); 
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      } 

      delay(5000); 

    } // End if (doSave) 

lastButtonCheckTime = thisTime; // Record the last time the status of the button was checked 

} // End if ((thisTime - lastButtonCheckTime > 1000) && ((thisTime - startTime) >= 10000)) 

} // End loop() 

void encoder1FlagA() { // Interrupt function for state change in channel A 

encoder1MasterCount++ ; 

} // End encoder1FlagA() 

void encoder1FlagB() { // Interrupt function for state change in channel B 

encoder1MasterCount++; 

} // End encoder1FlagB() 

void encoder2FlagA() { // Interrupt function for state change in channel A 

encoder2MasterCount++ ; 

} // End encoder2FlagA() 

void encoder2FlagB() { // Interrupt function for state change in channel B 

encoder2MasterCount++; 

} // End encoder2FlagB() 

void encoder3FlagA() { // Interrupt function for state change in channel A 

  encoder3MasterCount++ ; 

} // End encoder3FlagA() 

void encoder3FlagB() { // Interrupt function for state change in channel B 

 encoder3MasterCount++; 
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} // End encoder3FlagB() 

void encoder4FlagA() { // Interrupt function for state change in channel A 

  encoder4MasterCount++ ; 

} //End encoder4FlagA() 

void encoder4FlagB() { // Interrupt function for state change in channel B 

  encoder4MasterCount++; 

} //End encoder4FlagB() 

void ppsFlag() { //Interrupt function to run each time Teensy receives a GNSS pulse 

  newPulse = true; // Set a flag to indicate that a new pulse has arrived 

  gpsPulseCount++; 

  polledEncoder1Count = encoder1MasterCount; // Record the counts for each encoder at this 

instant 

  polledEncoder2Count = encoder2MasterCount; 

  polledEncoder3Count = encoder3MasterCount; 

  polledEncoder4Count = encoder4MasterCount; 

  interruptTeensyTime = millis(); 

} //End ppsFlag() 
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Appendix B 

 

GPS Processing Code 

%% Plot GPS Traces of Off-road Track 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  _____  _       _        _____ _____   _____ 
% |  __ \| |     | |      / ____|  __ \ / ____| 
% | |__) | | ___ | |_    | |  __| |__) | (___ 
% |  ___/| |/ _ \| __|   | | |_ |  ___/ \___ \ 
% | |    | | (_) | |_    | |__| | |     ____) | 
% |_|    |_|\___/ \__|    \_____|_|    |_____/ 
% 
% 
%  _______                               __ 
% |__   __|                             / _| 
%    | |_ __ __ _  ___ ___  ___    ___ | |_ 
%    | | '__/ _` |/ __/ _ \/ __|  / _ \|  _| 
%    | | | | (_| | (_|  __/\__ \ | (_) | | 
%    |_|_|  \__,_|\___\___||___/  \___/|_| 
% 
% 
%   ____   __  __                            _   _______             _ 
%  / __ \ / _|/ _|                          | | |__   __|           | | 
% | |  | | |_| |_ ______ _ __ ___   __ _  __| |    | |_ __ __ _  ___| | __ 
% | |  | |  _|  _|______| '__/ _ \ / _` |/ _` |    | | '__/ _` |/ __| |/ / 
% | |__| | | | |        | | | (_) | (_| | (_| |    | | | | (_| | (__|   < 
%  \____/|_| |_|        |_|  \___/ \__,_|\__,_|    |_|_|  \__,_|\___|_|\_\ 
% 
% https://patorjk.com/software/taag/#p=display&v=0&f=Big&t= 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
 
GPS = load('20240314_GPS.txt'); 
 
allData_lat = [GPS(:,1)]; 
allData_lon = [GPS(:,2)]; 
allData_alt = [GPS(:,3)];  
 
t = 1:length(allData_lat); 
 
offset_Lon = 0.0000054; 
offset_Lat = -0.0000008; 
 
reference_latitude = 40.86368573; 
reference_longitude = -77.83592832; 
reference_altitude = 344.189; 
 
h_geoplot = geoplot(reference_latitude, reference_longitude, '*','Color',[0 1 
0],'Linewidth',3,'Markersize',10); 
h_parent =  get(h_geoplot,'Parent'); 
set(h_parent,'ZoomLevel',19.125); 
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set(h_parent,'MapCenter',[40.865751663703335 -77.829815064107393]); 
try 
    geobasemap satellite 
 
catch 
    geobasemap openstreetmap 
end 
geotickformat -dd 
hold on 
 
% Plot latitude and longitude data 
geoplot(allData_lat+offset_Lat, allData_lon+offset_Lon, '-','Color',[1 0 
0],'Linewidth',1,'Markersize',10); 
title('Penn State Off Road Test Track Course'); 
 
%% Convert data from LLA to ENU 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   _____                          _          _       _ 
%  / ____|                        | |        | |     | | 
% | |     ___  _ ____   _____ _ __| |_     __| | __ _| |_ __ _ 
% | |    / _ \| '_ \ \ / / _ \ '__| __|   / _` |/ _` | __/ _` | 
% | |___| (_) | | | \ V /  __/ |  | |_   | (_| | (_| | || (_| | 
%  \_____\___/|_| |_|\_/ \___|_|   \__|   \__,_|\__,_|\__\__,_| 
% 
% 
%   __                       _      _ 
%  / _|                     | |    | |        /\ 
% | |_ _ __ ___  _ __ ___   | |    | |       /  \ 
% |  _| '__/ _ \| '_ ` _ \  | |    | |      / /\ \ 
% | | | | | (_) | | | | | | | |____| |____ / ____ \ 
% |_| |_|  \___/|_| |_| |_| |______|______/_/    \_\ 
% 
% 
%  _          ______ _   _ _    _ 
% | |        |  ____| \ | | |  | | 
% | |_ ___   | |__  |  \| | |  | | 
% | __/ _ \  |  __| | . ` | |  | | 
% | || (_) | | |____| |\  | |__| | 
%  \__\___/  |______|_| \_|\____/ 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
allData_LLA = [allData_lat, allData_lon, allData_alt]; 
reference_LLA = [reference_latitude, reference_longitude, reference_altitude]; 
 
fig_num = 875576; 
allData_ENU = fcn_GPS_lla2enu(allData_LLA, reference_LLA, fig_num);  
 
% THIS SHOULD WORK ONCE THE GPS IS FIXED 
% subplot(2,1,1); 
% geotickformat -dd 
% try 
%     geobasemap satellite 
%  
% catch 
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%     geobasemap openstreetmap 
% end 
 
%% Break data into laps 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%  ____                 _       _____        _ 
% |  _ \               | |     |  __ \      | | 
% | |_) |_ __ ___  __ _| | __  | |  | | __ _| |_ __ _ 
% |  _ <| '__/ _ \/ _` | |/ /  | |  | |/ _` | __/ _` | 
% | |_) | | |  __/ (_| |   <   | |__| | (_| | || (_| | 
% |____/|_|  \___|\__,_|_|\_\  |_____/ \__,_|\__\__,_| 
% 
% 
%  _       _          _ 
% (_)     | |        | | 
%  _ _ __ | |_ ___   | |     __ _ _ __  ___ 
% | | '_ \| __/ _ \  | |    / _` | '_ \/ __| 
% | | | | | || (_) | | |___| (_| | |_) \__ \ 
% |_|_| |_|\__\___/  |______\__,_| .__/|___/ 
%                                | | 
%                                |_| 
% 
https://patorjk.com/software/taag/#p=display&v=0&f=Big&t=Break%20%20Data%0Ainto%20Lap
s 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Convert ENU data into traversal types using the E as "X" and N as "Y" 
 
% Convert paths to traversals structures. Each traversal instance is a 
% "traversal" type, and the array called "data" below is a "traversals" 
% type. 
allData_traversal = fcn_Path_convertPathToTraversalStructure(allData_ENU); 
allData_traveralArray.traversal{1} = allData_traversal; 
 
 
% Plot the traversal 
fig_num = 474764; 
fcn_Laps_plotLapsXY(allData_traveralArray,fig_num); 
 
% Call the Laps function to break data into laps 
fig_num = 33737; 
start_definition = [535 240; 520 246];  
end_definition = [530 234; 515 240];  
excursion_definition = []; % empty 
title('Lap Input Data With Start and End Conditions') 
xlabel('East [m]') 
ylabel('North [m]') 
 
 
lap_traversals = fcn_Laps_breakDataIntoLaps(... 
    allData_traversal,... 
    start_definition,... 
    end_definition,... 
    excursion_definition,... 
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    fig_num); 
xlabel('East [m]') 
ylabel('North [m]') 
 
% Plot the lap traversals (should have 6) 
fig_num = 323; 
fcn_Laps_plotLapsXY(lap_traversals,fig_num); 
title('Total Lap Data from GPS') 
xlabel('East [m]') 
ylabel('North [m]') 
 
%% Find reference traversal 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%  ______ _           _ 
% |  ____(_)         | | 
% | |__   _ _ __   __| | 
% |  __| | | '_ \ / _` | 
% | |    | | | | | (_| | 
% |_|    |_|_| |_|\__,_| 
% 
% 
%  _____       __ 
% |  __ \     / _| 
% | |__) |___| |_ ___ _ __ ___ _ __   ___ ___ 
% |  _  // _ \  _/ _ \ '__/ _ \ '_ \ / __/ _ \ 
% | | \ \  __/ ||  __/ | |  __/ | | | (_|  __/ 
% |_|  \_\___|_| \___|_|  \___|_| |_|\___\___| 
% 
% 
%  _______                                 _ 
% |__   __|                               | | 
%    | |_ __ __ ___   _____ _ __ ___  __ _| | 
%    | | '__/ _` \ \ / / _ \ '__/ __|/ _` | | 
%    | | | | (_| |\ V /  __/ |  \__ \ (_| | | 
%    |_|_|  \__,_| \_/ \___|_|  |___/\__,_|_| 
% 
% 
% 
https://patorjk.com/software/taag/#p=display&v=0&f=Big&t=Find%20%0AReference%20%0ATra
versal 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Resample Data 
reference_traversal = lap_traversals.traversal{1}; 
interval = 0.2; 
reference_station_points    = (0:interval:reference_traversal.Station(end))'; 
redecimated_reference_traversal = ... 
    fcn_Path_newTraversalByStationResampling(reference_traversal, 
reference_station_points); 
 
% Redecimate all the traversals 
redecimated_lap_traversals = lap_traversals; 
for ith_traversal = 1:length(lap_traversals.traversal) 
    redecimated_lap_traversals.traversal{ith_traversal} = ... 
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fcn_Path_newTraversalByStationResampling(lap_traversals.traversal{ith_traversal}, 
reference_station_points); 
end 
 
% Plot the redecimated lap traversals (should have 6) 
fig_num = 3454; 
figure(fig_num); 
clf; 
title('Manually Input Traversal Data over Laps') 
xlabel('East [m]') 
ylabel('North [m]') 
 
fcn_Laps_plotLapsXY(redecimated_lap_traversals,fig_num); 
 
 
%% Use path library to find average traversal 
% % choose first one for traversal 
% % reference_traversal = lap_traversals.traversal{2}; 
% num_iterations = 5; 
% weight_for_averaging = 0; 
% averaging_fig = 22; 
%  
%  
% figure(averaging_fig); 
% clf; 
% hold on; 
% grid on; 
% axis equal; 
%  
% [path_average, closestXs, closestYs, closestDistances]  = ... 
%     
fcn_Path_findAverageTraversalViaOrthoProjection(redecimated_lap_traversals,reference_
traversal,num_iterations,weight_for_averaging,averaging_fig); 
 
 
%% Use ginput to get manual "reference" 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   _____                   _                  
%  |_   _|                 | |                 
%    | |  _ __  _ __  _   _| |_                
%    | | | '_ \| '_ \| | | | __|               
%   _| |_| | | | |_) | |_| | |_                
%  |_____|_| |_| .__/ \__,_|\__|               
%              | |                             
%              |_|                             
%   __  __                         _           
%  |  \/  |                       | |          
%  | \  / | __ _ _ __  _   _  __ _| |          
%  | |\/| |/ _` | '_ \| | | |/ _` | |          
%  | |  | | (_| | | | | |_| | (_| | |          
%  |_|  |_|\__,_|_| |_|\__,_|\__,_|_|          
%                                              
%                                              
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%   _______                                 _  
%  |__   __|                               | | 
%     | |_ __ __ ___   _____ _ __ ___  __ _| | 
%     | | '__/ _` \ \ / / _ \ '__/ __|/ _` | | 
%     | | | | (_| |\ V /  __/ |  \__ \ (_| | | 
%     |_|_|  \__,_| \_/ \___|_|  |___/\__,_|_| 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                             
                                             
 
% [X,Y] = ginput; 
% reference_path = [X, Y]; 
% fprintf(1,'Copy the following and past into MATLAB script:\n'); 
% disp(reference_path); 
 
% % Copy first 10 points to the end to force overlap 
% manually_selected_XY_points = [manually_selected_XY_points; 
manually_selected_XY_points(1:10,:)]; 
%  
% % Keep only the unique points 
% [manually_selected_XY_points] = 
unique(manually_selected_XY_points,'rows','stable'); 
%  
% figure(fig_num) 
% hold on 
% plot(manually_selected_XY_points(:,1),manually_selected_XY_points(:,2),'g-
','LineWidth',3) 
%  
% % Convert this into a traversal (for resampling) 
% manually_selected_traversal = 
fcn_Path_convertPathToTraversalStructure(manually_selected_XY_points); 
%  
% % Resample the path to exactly 10 cm spacing 
% path_length = manually_selected_traversal.Station(end)+2; 
% new_stations = (0:0.10:path_length)'; 
% fig_num = 22; 
% [equal_spaced_manually_selected_traversal] = 
fcn_Path_newTraversalByStationResampling(manually_selected_traversal,new_stations,(fi
g_num)); 
 
 
manual_data = load('20240328_Manual_XY.mat'); 
 
figure(fig_num) 
hold on 
plot(manual_data.manually_selected_XY_points(:,1),manual_data.manually_selected_XY_po
ints(:,2),'g-','LineWidth',3) 
 
% Convert this into a traversal (for resampling) 
manually_selected_traversal = 
fcn_Path_convertPathToTraversalStructure(manual_data.manually_selected_XY_points); 
 
% Resample the path to exactly 10 cm spacing 
path_length = manually_selected_traversal.Station(end)+2; 
new_stations = (0:0.10:path_length)'; 
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fig_num = 22; 
[equal_spaced_manually_selected_traversal] = 
fcn_Path_newTraversalByStationResampling(manually_selected_traversal,new_stations,(fi
g_num)); 
 
% Clean up the path to make it "smooth" using a distance-based smoothing 
% filter. The Nyquist spatial sampling frequency is 1/2 of the the spatial 
% sampling frequency (e.g. 10 samples/meter or 10 "spatial" Hz), so our 
% Nyquist frequency is 5 spatial Hz. 
 
[B,A] = butter(2,(1/10)/5); 
initial_X = [equal_spaced_manually_selected_traversal.X(1), 
equal_spaced_manually_selected_traversal.X(1)]; 
initial_Y = [equal_spaced_manually_selected_traversal.Y(1), 
equal_spaced_manually_selected_traversal.Y(1)]; 
 
filtered_manual_traversal_x = 
filtfilt(B,A,equal_spaced_manually_selected_traversal.X); 
filtered_manual_traversal_y = 
filtfilt(B,A,equal_spaced_manually_selected_traversal.Y); 
 
% Close off the ends before plotting 
filtered_manual_traversal_x = [filtered_manual_traversal_x; 
filtered_manual_traversal_x(1)]; 
filtered_manual_traversal_y = [filtered_manual_traversal_y; 
filtered_manual_traversal_y(1)]; 
 
filtered_manual_traversal = 
fcn_Path_convertPathToTraversalStructure([filtered_manual_traversal_x 
filtered_manual_traversal_y]); 
 
% Plot the redecimated lap traversals (should have 6) 
fig_num = 22; 
figure(fig_num); 
filtered_manual_traversalArray.traversal{1} = filtered_manual_traversal; 
fcn_Laps_plotLapsXY(filtered_manual_traversalArray,fig_num); 
 
% Plot the results (nicely) 
fig_num = 34784; 
figure(fig_num); 
clf;  
 
hold on; 
grid on; 
axis equal; 
 
handles = fcn_Path_plotTraversalsXY(lap_traversals, fig_num); 
legend_strings = cell(1); 
for ith_handle = 1:length(handles) 
    set(handles(ith_handle),'LineWidth',3,'Marker','.','Markersize',20); 
    legend_strings{ith_handle} = sprintf('Lap %.0d',ith_handle); 
end 
handle_filt = fcn_Path_plotTraversalsXY(filtered_manual_traversalArray,fig_num); 
set(handle_filt,'LineWidth',5,'Marker','none','Markersize',20,'Color',[1 0 0]); 
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legend_strings{7} = sprintf('Reference Lap'); 
legend(legend_strings); 
title('Lap data versus manual data smoothed'); 
xlabel('East [m]') 
ylabel('North [m]') 
 
reference_lap_x = filtered_manual_traversal_x; 
reference_lap_y = filtered_manual_traversal_y; 
%  
% % NumLaps = length(lap_traversals.traversal); 
% %  
% % % Initialize the data 
% % XY_lap_data{NumLaps} = cell; 
% % for ith_lap = 1:NumLaps 
% %     XY_lap_data{NumLaps} = [lap_traversals.traversal.X lap_traversals.traversal.Y 
% % end 
% fcn_Laps_plotLapsXY(lap_traversals,fig_num); 
 
%% Plot deviation of laps versus reference 
reference_traversal = filtered_manual_traversal; 
reference_station_points = (0:1:reference_traversal.Station(end))'; 
flag_rounding_type = 3; % Use average of projections at end points 
search_radius = 7; 
 
[~, ~, closestDistances] = fcn_Path_findOrthoScatterFromTraversalToTraversals( 
reference_station_points, reference_traversal, lap_traversals, 
flag_rounding_type,search_radius);  
%%  
% plot the variances with the reference path, 1 standard deviation 
variance_fig = 2343; 
figure(variance_fig) 
clf 
axis equal 
title('Average Plot Traversal With Relative Track Limits') 
xlabel('East [m]') 
ylabel('North [m]') 
grid on; 
 
legend('off') 
% standard_deviation_in_path_following = 
std(closestDistances(~isnan(closestDistances)),0,'all'); 
standard_deviation_in_path_following = 2; 
fcn_Path_plotTraversalXYWithVarianceBands(reference_traversal,standard_deviation_in_p
ath_following,variance_fig); 
 
 
% Plot the path errors 
figure(3737) 
clf; 
hold on; 
grid on; 
 
for ith_lap = 1:length(closestDistances(1,:)) 
    plot(reference_station_points,closestDistances(:,ith_lap),'-'); 
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end 
 
 
%% Plot the results 
 
% Plot the final XY result of orthogonal 
path_points_fig = 33333; 
figure(path_points_fig); 
clf; 
title('Segmented Lap Data') 
xlabel('East [m]') 
ylabel('North [m]') 
hold on 
grid on; 
axis equal; 
 
 
fcn_Path_plotTraversalsXY(lap_traversals,path_points_fig); 
plot(reference_traversal.X,reference_traversal.Y,'Linewidth',4); 
title('Original paths and final average path via orthogonal projections') 
xlabel('X [m]') 
ylabel('Y [m]') 
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Appendix C 

 

Acceleration Processing Code 

%% Acceleration Pre Processing 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                        _                _   _         
%      /\               | |              | | (_)             
%     /  \   ___ ___ ___| | ___ _ __ __ _| |_ _  ___  _ __   
%    / /\ \ / __/ __/ _ \ |/ _ \ '__/ _` | __| |/ _ \| '_ \  
%   / ____ \ (_| (_|  __/ |  __/ | | (_| | |_| | (_) | | | | 
%  /_/    \_\___\___\___|_|\___|_|  \__,_|\__|_|\___/|_| |_| 
%                                                            
%                                                            
%   _____                             _                      
%  |  __ \                           (_)                     
%  | |__) | __ ___   ___ ___  ___ ___ _ _ __   __ _          
%  |  ___/ '__/ _ \ / __/ _ \/ __/ __| | '_ \ / _` |         
%  | |   | | | (_) | (_|  __/\__ \__ \ | | | | (_| |         
%  |_|   |_|  \___/ \___\___||___/___/_|_| |_|\__, |         
%                                              __/ |         
%                                             |___/          
% https://patorjk.com/software/taag/#p=display&v=0&f=Big&t= 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Mass of the Vehicle [kg] 
m = 14.14; 
 
% Load Acceleration Data 
a = load('20240314_Acceleration.txt'); 
 
%{ 
Segmenting Data Per X Y Z 
X is Vehicle Direction Acceleration 
Y is Side to Side Acceleration of Vehicle 
Z is perpendicular to Ground Plane 
%} 
 
% Acceleration Data in X Y Z 
x_acceleration = a(:,1); 
y_acceleration = a(:,2); 
z_acceleration = a(:,3); 
time = a(:,4); 
 
%% Processing 
 
% Reduced Noise Data 
window_size = 75; 
smoothed_x_acc = movmean(x_acceleration, window_size); 
smoothed_y_acc = movmean(y_acceleration, window_size); 
smoothed_z_acc = movmean(z_acceleration, window_size); 
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% Segmenting Data for First Test 
starts1 = [9.03; 26.1; 87.57; 106.53; 182.28; 201.99; 239.91]; 
ends1 = [21.27; 36.3; 98.22; 117.96; 197.37; 217.83; 254.04]; 
 
% Segmenting Data for Second Test 
starts2 = [125.46; 179.13; 203.97]; 
ends2 = [134.7; 189.81; 214.53]; 
 
% Combined Segmented Data 
test_starts = [starts1; 430.65 + starts2]; 
test_ends = [ends1; 430.65 + ends2]; 
 
% Initializing Variables 
acceleration =  zeros(1,length(test_starts)); 
distance = zeros(1,length(test_starts)); 
kinematic_distance = zeros(1,length(test_starts)); 
max_velo = zeros(1,length(test_starts)); 
 
% Processing For Loop For Each Segmented Data 
for acceleration_test = 1:length(test_starts) 
 
    start_time = test_starts(acceleration_test); 
    end_time = test_ends(acceleration_test); 
 
    delta_time = end_time - start_time; 
 
    % Find indices corresponding to start and end times 
    start_index = find(time >= start_time, 1); 
    end_index = find(time > end_time, 1); 
 
    % Extract segmented data 
    segment_t = time(start_index:end_index); 
    segment_x = x_acceleration(start_index:end_index); 
     
    acceleration(acceleration_test) = mean(abs(segment_x)); 
     
    % Apply moving average filter 
    window_size = 25; % Adjust window size as needed 
    smoothed_x = movmean(abs(segment_x), window_size); 
 
    % Velocity Integrations   
    velocity_norm = cumtrapz(time(start_index:end_index), segment_x); 
    velocity_smooth = cumtrapz(time(start_index:end_index), smoothed_x); 
     
    % Distance Integrations 
    distance_smooth = cumtrapz(time(start_index:end_index), velocity_smooth); 
    distance_norm = cumtrapz(time(start_index:end_index), velocity_norm); 
 
    % Calculations of Data 
    distance(acceleration_test) = distance_smooth(end)-abs(distance_norm(end)); 
    max_velo(acceleration_test) = max(abs(velocity_norm)); 
    kinematic_distance(acceleration_test) = 
max_velo(acceleration_test)^2/(2*acceleration(acceleration_test)); 
 



126 
    % Plotting All Data 
    tprime = linspace(0,delta_time,length(segment_x)); 
     
    hold on 
    figure(70) 
    plot(tprime, segment_x, 'Linewidth',1) 
    title('Acceleration vs Time') 
    xlabel('Time [s]') 
    ylabel('Acceleration [m/s^2]') 
    grid on 
     
    hold on 
    figure(71) 
    plot(tprime, abs(velocity_norm), 'Linewidth',2) 
    title('Velocity vs Time') 
    xlabel('Time [s]') 
    ylabel('Velocity [m/s]') 
        grid on 
   
    legend_labels{acceleration_test} = sprintf('Trial %d', acceleration_test); 
%#ok<SAGROW> 
end 
 
figure(70) 
legend(legend_labels, 'Location','northwest') 
 
figure(71) 
legend(legend_labels, 'Location','southeast') 
 
 
distance_matrix = [mean(distance); 
                   mean(kinematic_distance)]; 
 
average_acceleration = mean(acceleration); 
std_acc = std(acceleration); 
 
average_max_velocity = mean(max_velo); 
std_velo = std(max_velo); 
 
average_distance = mean(distance_matrix); 
std_dist = std(distance_matrix); 
 
calculated_distance = average_max_velocity^2/(2*average_acceleration); 
 
percent_error = 100*abs(calculated_distance - average_distance)/calculated_distance; 
 
%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                        _                _   _              
%      /\               | |              | | (_)             
%     /  \   ___ ___ ___| | ___ _ __ __ _| |_ _  ___  _ __   
%    / /\ \ / __/ __/ _ \ |/ _ \ '__/ _` | __| |/ _ \| '_ \  
%   / ____ \ (_| (_|  __/ |  __/ | | (_| | |_| | (_) | | | | 
%  /_/    \_\___\___\___|_|\___|_|  \__,_|\__|_|\___/|_| |_| 
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%                                                            
%                                                            
%   _____  _       _                                         
%  |  __ \| |     | |                                        
%  | |__) | | ___ | |_ ___                                   
%  |  ___/| |/ _ \| __/ __|                                  
%  | |    | | (_) | |_\__ \                                  
%  |_|    |_|\___/ \__|___/                                  
%                                                            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                          
 
% USE BELOW PLOTS TO FIND STARTING AND ENG INDICES OF ACCELERATION 
% UNCOMMENT AND DEFINE START AND END POINTS TO SEGMENT DATA ACCORDINGLY 
 
% Plot original and smoothed data 
% figure; 
% plot(t(start_index:end_index), abs(seg_x), 'b-', 'LineWidth', 1); 
% hold on; 
% plot(t(start_index:end_index), smoothed_x, 'r-', 'LineWidth', 1); 
% xlabel('Time'); 
% ylabel('X'); 
% title('Original and Smoothed Data'); 
% legend('Original', 'Smoothed'); 
% grid on; 
 
% figure 
% plot(seg_t, abs(seg_x)); 
% xlabel('Time'); 
% ylabel('Value'); 
% title('Segmented X Acceleration'); 
% grid on; 
 
% Plots of All Acceleration Data 
% figure(6123) 
% subplot(3,2,1) 
% plot(time,smoothed_x_acc,'Linewidth',1) 
% title('X Acceleration Noise Reduced') 
% xlabel('Time [s]') 
% ylabel('Acceleration [m/s]') 
% grid on 
%  
% subplot(3,2,3) 
% plot(time,smoothed_y_acc,'Linewidth',1) 
% title('Y Acceleration Noise Reduced') 
% xlabel('Time [s]') 
% ylabel('Acceleration [m/s]') 
% grid on 
%  
% subplot(3,2,5) 
% plot(time,smoothed_z_acc,'Linewidth',1) 
% title('Z Acceleration Noise Reduced') 
% xlabel('Time [s]') 
% ylabel('Acceleration [m/s]') 
% grid on 
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subplot(3,1,1) 
plot(time,x_acceleration) 
title('Raw X Acceleration') 
xlabel('Time [s]') 
ylabel('Acceleration [m/s]') 
grid on 
 
subplot(3,1,2) 
plot(time,y_acceleration) 
title('Raw Y Acceleration') 
xlabel('Time [s]') 
ylabel('Acceleration [m/s]') 
grid on 
 
subplot(3,1,3) 
plot(time,z_acceleration) 
title('Raw Z Acceleration') 
xlabel('Time [s]') 
ylabel('Acceleration [m/s]') 
grid on 
 
 
% X Acceleration Only 
figure(237846) 
plot(time,smoothed_x_acc,'Linewidth',2) 
title('Noise Reduced Vehicle X Acceleration Data') 
xlabel('Time [s]') 
ylabel('Acceleration [m/s]') 
grid on 
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Appendix D 

 

MATLAB Path Following Simulation Code 

%% Vehicle Path-following Simulation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %  
 % __      __  _     _      _                                            
 % \ \    / / | |   (_)    | |                                           
 %  \ \  / /__| |__  _  ___| | ___                                       
 %   \ \/ / _ \ '_ \| |/ __| |/ _ \                                      
 %    \  /  __/ | | | | (__| |  __/                                      
 %     \/ \___|_| |_|_|\___|_|\___|                                      
 %  
 %  
 %  _____      _   _            __      _ _               _              
 % |  __ \    | | | |          / _|    | | |             (_)             
 % | |__) |_ _| |_| |__ ______| |_ ___ | | | _____      ___ _ __   __ _  
 % |  ___/ _` | __| '_ \______|  _/ _ \| | |/ _ \ \ /\ / / | '_ \ / _` | 
 % | |  | (_| | |_| | | |     | || (_) | | | (_) \ V  V /| | | | | (_| | 
 % |_|   \__,_|\__|_| |_|     |_| \___/|_|_|\___/ \_/\_/ |_|_| |_|\__, | 
 %                                                                 __/ | 
 %                                                                |___/  
 %   _____ _                 _       _   _                               
 %  / ____(_)               | |     | | (_)                              
 % | (___  _ _ __ ___  _   _| | __ _| |_ _  ___  _ __                    
 %  \___ \| | '_ ` _ \| | | | |/ _` | __| |/ _ \| '_ \                   
 %  ____) | | | | | | | |_| | | (_| | |_| | (_) | | | |                  
 % |_____/|_|_| |_| |_|\__,_|_|\__,_|\__|_|\___/|_| |_|                  
 %  
 %  
% See: https://patorjk.com/software/taag/#p=display&v=0&f=Big&t= 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
% The goal of this section is to use the vehicle dynamics (VD) class 
% library of codes to demonstrate the ability of a vehicle to follow a 
% reference XY path that we defined above. The results should be a plot of 
% The vehicle's XY position on top of the reference path, showing that 
% path-following is working, and that the vehicle has some error. Another 
% goal is to calculate and plot the path-following errors so we can analyze 
% Them later in ILC. Finally, we want to generate plots of tracking error 
% versus vehicle speed, showing that the path error gets larger with 
% increasing speed. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   _____                   _ 
%  |_   _|                 | | 
%    | |  _ __  _ __  _   _| |_ ___ 
%    | | | '_ \| '_ \| | | | __/ __| 
%   _| |_| | | | |_) | |_| | |_\__ \ 
%  |_____|_| |_| .__/ \__,_|\__|___/ 
%              | | 
%              |_| 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% BELOW VEHICLE PARAMETER FOR 1/5th Scale HSOV  
 
% Define vehicle and controller properties 
% Define a MATLAB structure that specifies the physical values for a vehicle. 
% For convenience, we ask that you call this stucture 'vehicle'. 
% massratio = 14.719/1600;    % mass ratio between large vehicle and small 
% vehicle.m   = 14.719; % mass (kg) 
% vehicle.Izz = 1.20760570275114; % mass moment of inertia (kg m^2) 
% vehicle.Iw  = 0.00120760570275114; % mass moment of inertia of a wheel (kg m^2) 
% vehicle.Re  = 0.09; % effective radius of a wheel (m) 
% vehicle.a   = 0.262756405577049; % length from front axle to CG (m) 
% vehicle.L   = 0.575; % wheelbase (m) 
% vehicle.b   = 0.312243594422951; % length from rear axle to CG (m) 
% vehicle.d   = 0.44; % track width (m) 
% vehicle.h_cg = 0.1; % height of the cg (m) 
% vehicle.Ca  = massratio*[95000; 95000; 110000; 110000]; % wheel cornering 
stiffnesses 
% vehicle.Cx  = massratio*[65000; 65000; 65000; 65000]; % longitudinal stiffnesses 
 
% BELOW VEHICLE PARAMETERS FOR LARGE SCALE VEHICLE  
 
% Define inputs to the vehicle model 
% scaling factor is the difference between a full-scale and small-scale 
% vehicle 
scalingFactor = 10; 
% Define vehicle and controller properties 
% Define a MATLAB structure that specifies the physical values for a vehicle. 
% For convenience, we ask that you call this stucture 'vehicle'. 
vehicle.m   = 1600; % mass (kg) 
vehicle.Izz = 2500; % mass moment of inertia (kg m^2) 
vehicle.Iw  = 1.2; % mass moment of inertia of a wheel (kg m^2) 
vehicle.Re  = 0.32; % effective radius of a wheel (m) 
vehicle.a   = 1.3; % length from front axle to CG (m) 
vehicle.L   = 2.6; % wheelbase (m) 
vehicle.b   = 1.3; % length from rear axle to CG (m) 
vehicle.d   = 1.5; % track width (m) 
vehicle.h_cg = 0.42; % height of the cg (m) 
vehicle.Ca  = [95000; 95000; 110000; 110000]; % wheel cornering stiffnesses 
vehicle.Cx  = [65000; 65000; 65000; 65000]; % longitudinal stiffnesses 
 
 
vehicle.contact_patch_length = 0.15; % [m] % divide by 5 for small vehicle 
vehicle.friction_ratio = 1; 
 
controller.look_ahead_distance = scalingFactor; % look-ahead distance [meters] 
controller.steering_Pgain = 0.1; % P gain for steering control 
 
% Define the reference trajectory 
% Make the trajectory 10 times larger, because the full-sized vehicle is 10 
% times larger. If we used the real track size, the vehicle couldn't make 
% the curves. 
 
filtered_manual_traversal_x_scaled = filtered_manual_traversal_x*scalingFactor; 
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filtered_manual_traversal_y_scaled = filtered_manual_traversal_y*scalingFactor; 
filtered_manual_traversal = 
fcn_Path_convertPathToTraversalStructure([filtered_manual_traversal_x_scaled 
filtered_manual_traversal_y_scaled]); 
reference_traversal = filtered_manual_traversal; 
 
% Plot and check the "BIG" reference traversal 
figure(4747); 
clf; hold on; 
grid on; 
 
plot(reference_traversal.X,reference_traversal.Y,'r','Linewidth',3); 
title('Scaled Reference Traversal to be used for Path-following Tests') 
xlabel('X [m]') 
ylabel('Y [m]') 
axis equal 
 
X_trajectory       = reference_traversal.X; 
Y_trajectory       = reference_traversal.Y; 
Yaw_trajectory     = [reference_traversal.Yaw(1);reference_traversal.Yaw]; 
 
Station_trajectory = reference_traversal.Station; 
inputTrajectory = scalingFactor*[X_trajectory Y_trajectory Yaw_trajectory 
Station_trajectory];  
 
vdParam.fieldsTrajectory.east = 1; 
vdParam.fieldsTrajectory.north = 2; 
vdParam.fieldsTrajectory.yaw = 3; 
vdParam.fieldsTrajectory.station = 4; 
vdParam.searchDistance = 4; % [meters] 
vdParam.trajectorySize = size(inputTrajectory); 
vdParam.contactPatchLength = 0.15; 
vdParam.frictionCoefficientRatio = 1; 
vdParam.sampling_time_gps = 0.01; % [seconds] 
vdParam.sampling_time_imu = 0.01; 
vdParam.longitudinalTransfer = 1; 
 
 
% Define initial conditions 
% Parameters and initial conditions for matlab model 
U0 = 15; % longitudinal velocity [m/s] 
U = U0;  % longitudinal velocity [m/s] 
V = 0; % lateral velocity [m/s] 
r = 0; % yaw rate [rad/s] 
omega = U0*ones(4,1)/vehicle.Re; % angular velocity of wheel [rad/s] 
 
% initial pose 
east = 5100;  
north = 2000;  
heading = Yaw_trajectory(1);  
 
% road properties 
road_properties.grade = 0; road_properties.bank_angle = 0;  
friction_coefficient = [0.9, 0.9, 0.9, 0.9]; 
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% Define initial conditions 
% initial.longitudinalSpeed = 3; % longitudinal velocity of vehicle [m/s] 
% initial.wheelSpeeds = initial.longitudinalSpeed*ones(1,2)/vehicle.Re; % angular 
velocity of wheel [rad/s] 
% initial.east    = 0; % initial pose 
% initial.north   = 0; 
% initial.heading = 0; % [rad] 
% road_properties.grade = 0; road_properties.bank_angle = 0; % road properties 
% friction_coefficient = [0.8, 0.8]; 
 
% Define load transfer conditions 
type_of_transfer = 'both'; 
% type_of_transfer = 'default'; 
 
% Define inputs to the vehicle model 
wheel_torque = [0; 0; 5; 5]; % wheel torque [Nm] 
 
% Define items used to determine how long to run sim 
TotalTime = Station_trajectory(end)/U0; % This is how long the simulation will run. 
deltaT = 0.01; 
N_timeSteps = floor(TotalTime/deltaT)+1; % This is the number of time steps we should 
have 
 
% Main code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   __  __       _ 
%  |  \/  |     (_) 
%  | \  / | __ _ _ _ __ 
%  | |\/| |/ _` | | '_ \ 
%  | |  | | (_| | | | | | 
%  |_|  |_|\__,_|_|_| |_| 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Run the simulation in MATLAB 
% variables to store outputs of Matlab simulation 
matlab_time = nan(N_timeSteps,1); 
matlab_States = nan(N_timeSteps,9); matlab_pose = nan(N_timeSteps,3); 
matlab_alpha = nan(N_timeSteps,4); matlab_kappa = nan(N_timeSteps,4); 
matlab_Fz = nan(N_timeSteps,4); matlab_Mz = nan(N_timeSteps,4); 
matlab_Fx = nan(N_timeSteps,4); matlab_Fy = nan(N_timeSteps,4); 
matlab_friction = nan(N_timeSteps,4); 
matlab_station = nan(N_timeSteps,1); 
matlab_trackingError = nan(N_timeSteps,1); 
 
global flag_update global_acceleration 
global_acceleration = zeros(7,1); 
input_states = [U0;V;r;omega;east;north;heading]; % initial conditions 
counter = 1; 
for t = 0:deltaT:TotalTime 
    % Print every 100 iterations 
    if 0==mod(counter,100) 
        fprintf(1,'Time: %.3f of %.3f\n',counter*deltaT,TotalTime); 
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    end 
    matlab_time(counter) = t; 
    matlab_States(counter,1:7) = input_states(1:7)'; 
    matlab_pose(counter,:)     = input_states(8:10)'; 
 
    % Controller: Steering 
    pose = matlab_pose(counter,:)'; 
    [closest_xy,closest_station,~] = ... 
        fcn_Path_snapPointOntoNearestTraversal(pose(1:2)',... 
        reference_traversal); 
    matlab_trackingError(counter) = sum((closest_xy - pose(1:2)').^2,2).^0.5; 
    matlab_station(counter) = closest_station; 
    target_lookAhead_pose = fcn_VD_snapLookAheadPoseOnToTraversal(pose,... 
        reference_traversal,controller); 
    target_lookAhead_pose = real(target_lookAhead_pose); 
    steering_angle = fcn_VD_lookAheadLatController(pose,target_lookAhead_pose,... 
        controller); 
 
    % Estimate Slips for time 't' 
    % Slip Angle/Lateral Slip 
    slip_angle = fcn_VD_dtSlipAngle(U,V,r,steering_angle,vehicle); 
 
    % Wheel Slip/Longitudinal Slip 
    wheel_slip = fcn_VD_dtWheelSlip(U,V,r,omega,steering_angle,vehicle); 
    matlab_alpha(counter,:) = slip_angle'; 
    matlab_kappa(counter,:) = wheel_slip'; 
 
    % 7-DoF Vehicle Model 
    flag_update = true; % set it to to true before every call to RK4 method 
    [~,y] = fcn_VD_RungeKutta(@(t,y) fcn_VD_dt7dofModelForController(t,y,... 
        steering_angle,wheel_torque,... 
        vehicle,road_properties,friction_coefficient',type_of_transfer),... 
        input_states,t,deltaT); 
 
    % Extract ODE solver solution out 
    U = y(1);  
 
    % Overwrite U to force a constant speed 
    U = U0; 
    y(1) = U0; 
 
    V = y(2);  
    r = y(3);  
    omega = y(4:7); 
 
    input_states = y; clear y; 
    matlab_States(counter,8:9) = global_acceleration(1:2)'; 
 
    % Estimate Normal Forces for time 't' 
    if 1==1 %counter 
        normal_force = fcn_VD_dtNormalForce([0;0],vehicle,road_properties,... 
            type_of_transfer); 
    else 
        normal_force = fcn_VD_dtNormalForce(matlab_States(counter-1,8:9)',vehicle,... 
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            road_properties,type_of_transfer); 
    end 
    matlab_Fz(counter,:) = normal_force'; 
 
    % Estimate Tire forces for time 't' 
    tire_force = fcn_VD_dtTireForceBrush(slip_angle,wheel_slip,normal_force,... 
        friction_coefficient',vehicle); 
    matlab_Fx(counter,:) = tire_force(:,1)'; 
    matlab_Fy(counter,:) = tire_force(:,2)'; 
 
    % Aligning Moment 
    aligning_moment = fcn_VD_dtAligningMomentBrush(slip_angle,normal_force,... 
        friction_coefficient',vehicle); 
    matlab_Mz(counter,:) = aligning_moment'; 
 
    % Friction Estimation 
    estimated_vel = matlab_States(counter,1:3)'+... 
        [normrnd(0,1.4142*0.25)*0.01; normrnd(0,1.4142*0.25)*0.01; ... 
        normrnd(0,1.4142*0.009)*0.01]; 
    if 1==counter 
        estimated_accel = [0; 0]+... 
            [normrnd(0,0.5)*(0.01^2); normrnd(0,0.5)*(0.01^2)]; 
    else 
        estimated_accel = matlab_States(counter-1,8:9)'+... 
            [normrnd(0,0.5)*(0.01^2); normrnd(0,0.5)*(0.01^2)]; 
    end 
    slip_angle = fcn_VD_dtSlipAngle(estimated_vel(1),estimated_vel(2),... 
        estimated_vel(3),steering_angle,vehicle); 
    normal_force = fcn_VD_dtNormalForce(estimated_accel,vehicle,road_properties,... 
        type_of_transfer); 
    friction_estimate = fcn_VD_estimateFrictionCoefficient(slip_angle,... 
        normal_force,aligning_moment,vehicle); 
    matlab_friction(counter,:) = friction_estimate'; 
 
    counter = counter+1; 
end 
 
%% Plots to check MATLAB simulation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   _____  _       _   _   _ 
%  |  __ \| |     | | | | (_) 
%  | |__) | | ___ | |_| |_ _ _ __   __ _ 
%  |  ___/| |/ _ \| __| __| | '_ \ / _` | 
%  | |    | | (_) | |_| |_| | | | | (_| | 
%  |_|    |_|\___/ \__|\__|_|_| |_|\__, | 
%                                   __/ | 
%                                  |___/ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
 
% Fix station jump 
jump_indicies = find(diff(matlab_station)<0); 
matlab_station(jump_indicies) = nan; 
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fcn_VD_plotTimeSlipAngle(matlab_time,matlab_alpha); 
fcn_VD_plotStationSlipAngle(matlab_station,matlab_alpha); 
 
% fcn_VD_plotTimeWheelSlip(matlab_time,matlab_kappa); 
% fcn_VD_plotTimeNormalForce(matlab_time,matlab_Fz); 
% fcn_VD_plotTimeLongitudinalTireForce(matlab_time,matlab_Fx); 
 
fcn_VD_plotTimeLateralTireForce(matlab_time,matlab_Fy); 
fcn_VD_plotStationLateralTireForce(matlab_station,matlab_Fy); 
 
% fcn_VD_plotTimeAligningMoment(matlab_time,matlab_Mz); 
 
% fcn_VD_plotTimeLongitudinalAcceleration(matlab_time,matlab_States(:,8)); 
 
friction = 0.9;  % Check this 
fcn_VD_plotTimeLateralAcceleration(matlab_time,matlab_States(:,9),friction); 
fcn_VD_plotStationLateralAcceleration(matlab_station,matlab_States(:,9),friction); 
 
fcn_VD_plotTimeTrackingError(matlab_time,matlab_trackingError,10); 
fcn_VD_plotStationTrackingError(matlab_station,matlab_trackingError,10); 
 
% fcn_VD_plotTimeLongitudinalVelocity(matlab_time,matlab_States(:,1)); 
% fcn_VD_plotTimeLateralVelocity(matlab_time,matlab_States(:,2)); 
% fcn_VD_plotTimeYawRate(matlab_time,matlab_States(:,3)); 
% fcn_VD_plotTimeWheelSpeed(matltime,matlab_States(:,(4:7))); 
 
fcn_VD_plotCompareTrajectory([reference_traversal.X, reference_traversal.Y],... 
    'Reference Path',matlab_pose(:,[1,2]),'Actual Path',Station_trajectory); 
 
% fcn_VD_plotTimeYaw(matlab_time,matlab_pose(:,3)); 
 
% fcn_VD_plotTimeFriction(matlab_time,matlab_friction); 
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