
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Adaptive Partial Training for Model-Heterogeneous Federated Learning

JASON SWOPE
SPRING 2024

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Computer Science
with honors in Computer Science

Reviewed and approved* by the following:

Mehrdad Mahdavi
Assistant Professor of Computer Science

Thesis Supervisor

Mohamed Almekkawy
Associate Research Professor of Computer Science

Honors Adviser

*Signatures are on file in the Schreyer Honors College.

i

Abstract

Federated Learning (FL) has increasingly become an area of interest within Machine Learning
(ML) recently for its ability to combine the performance of multiple devices. Model-Heterogeneous
FL in particular allows for the clients to train a larger model than each individual device could
train individually by dropping out specific neurons from the global model. This allows even
low-performance devices to contribute to training even when the device would otherwise would
not be able to contribute under traditional Model-Homogeneous FL. The state of the art method
for sub-model extraction is FedRolex, which systematically steps through the available neurons.
In addition to model-heterogeneity, another major factor in the performance of FL is the level
of data-heterogeneity between the devices. This study investigates the performance of Model-
Heterogeneous methods FedRolex and FedDropout at differing levels of dropout, data-heterogeneity,
and synchronization, and compares their performance with the Model-Homogeneous method Fe-
dAvg. In addition, three new methods are proposed to tackle the problem: FedStack, FedCover,
and FedMinOccurances. The performance of FedDropout falls below the performance of any of
the other methods, and FedMinOccurances shows inferior performance with high model hetero-
geneity.

ii

Table of Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Machine Learning . 2

1.1.1 Deep Neural Networks . 2
1.1.2 Minimization of Empirical Risk . 3
1.1.3 Gradient Descent . 4

1.2 Distributed Machine Learning . 4
1.2.1 Synchronous Distributed Machine Learning 5

1.3 Federated Learning . 5
1.4 Model-Heterogeneous Federated Learning . 6

2 Methodology 8
2.1 Dataset . 9

2.1.1 Data Heterogeneity . 9
2.2 Model . 11

2.2.1 Model Heterogeneity . 12
2.2.2 Client Network Selection Methods . 12

3 Results and Discussion 14
3.1 Parameters . 15
3.2 Seed 1 . 15

3.2.1 Low Synchronization . 15
3.2.2 High Synchronization . 18

3.3 Seeds 2 and 3 . 20
3.4 Average Performance . 21

3.4.1 Low Synchronization . 21
3.4.2 High Synchronization . 22

4 Conclusion 24

Bibliography 26

Appendices 28
A.1 Seed 2 Results . 29

iii

A.1.1 Low Synchronization . 29
A.1.2 High Synchronization . 31

A.2 Seed 3 Results . 33
A.2.1 Low Synchronization . 33
A.2.2 High Synchronization . 35

iv

List of Figures

1.1 A Visualization of the structure of a DNN . 3

3.1 Seed 1 Accuracy Summary with Low Synchronization 16
3.2 Seed 1 Loss Summary with Low Synchronization 17
3.3 Seed 1 Method Comparison low synchronization, 2 classes per client, 0.25 neruons

selected . 18
3.4 Seed 1 Accuracy Summary with High Synchronization 19
3.5 Seed 1 Loss Summary with High Synchronization 20

A.1.1 Seed 2 Accuracy Summary with Low Synchronization 29
A.1.2 Seed 2 Loss Summary with Low Synchronization 30
A.1.3 Seed 2 Accuracy Summary with High Synchronization 31
A.1.4 Seed 2 Loss Summary with High Synchronization 32
A.2.1 Seed 3 Accuracy Summary with Low Synchronization 33
A.2.2 Seed 3 Loss Summary with Low Synchronization 34
A.2.3 Seed 3 Accuracy Summary with High Synchronization 35
A.2.4 Seed 3 Loss Summary with High Synchronization 36

v

List of Tables

3.1 Low Synchronization Average Accuracy . 22
3.2 High Synchronization Average Accuracy . 23

1

Chapter 1

Introduction

2

In this chapter we introduce the basics behind machine learning, in particular neural networks.
We gradually increase the scope of the problem investigated in this study through distributed ma-
chine learning, federated learning, and finally model-heterogeneous federated learning. This chap-
ter discuss the optimization problems for each of these sections and the approaches used to find
the approximate solution of these problems.

1.1 Machine Learning
Machine learning (ML) is a subset of Artificial Intelligence aimed at creating a network of

neurons, or neural network (NN), that accomplishes a task such as classifying a set of images or
trying to predict an unknown value based on a set of known input values. In this sense, neural
networks learn an unknown function h : X → Y that maps an input x to an output y where
d = (x, y) is a data point in dataset D, which is sampled from source distribution D. The function
h ∼ H where H is the hypothesis space for a given neural network. Neural networks are trained
by taking samples from the input distribution with known outputs, such as an image of a car which
is know to be the image of a car, calculating what the neural network function believes the output
should be and then adjusting the function to improve its performance. This is called training the
neural network, and the set of samples used for this are called the training dataset. This is repeated
for several iterations, or epochs, until the neural network reaches the point where it no longer
improves from each epoch to the next.

1.1.1 Deep Neural Networks
A deep neural network (DNN) is a type of NN that consists of a series of several fully-connected

layers which contain a set of neurons that each receives the outputs of the previous layer and passes
its own output to each neuron in the next layer. The first layer is called the input layer, which is
given the values of the input of one sample, so it must consist of a number of neurons equal to
the number of input values for one sample. The final layer is the output layer and consists of the
value(s) the neural network has calculated as the output. Every layer between the input layer and
output layer are called the hidden layers. The basic structure of a DNN is shown in Figure 1.1.

3

Figure 1.1: A Visualization of the structure of a DNN

Each neuron is passed a set of values, which is a vector x with length m, where m is the number
of neurons in the previous layer. To calculate the value the neuron will pass to the next layer, the
neuron multiplies the input vector with a weight vector w, also with length m that denotes the
importance of values received from the neurons in the previous layer, and adds a bias term b that
allows for the value to be shifted, wx + b. To parrallelize the computation, the current layer of n
neurons can be calculated simultaneously where w is a n×m matrix, and b is a vector of length n.
The result of calculating wx+ b is an output vector of length n, which is the output of the current
layer.

1.1.2 Minimization of Empirical Risk
The true risk of a neural network is how well the network is able to map the input to the output.

This is measured by a true risk function ℓ(h, d), which is the loss for one data point d. The true
risk function

L(h) = Ed∼D[ℓ(h, d)]. (1.1)

However, it is impossible to practically calculate the expected value over the entire distribution –
notably because D and h cannot be defined easily – so we use the cumulative loss over a set of
samples D taken from distribution D. This means the neural network can only find the empirical
risk, which is the risk associated with the training samples. The empirical risk

L̂(h) =
∑

d∈D∼D

ℓ(h, d). (1.2)

This empirical risk must be minimized, which presents us with an optimization problem. The
optimal model is defined

h∗ = argmin
h∈H

L̂(h). (1.3)

4

1.1.3 Gradient Descent
To minimize the empirical risk, the network calculates the gradient of the loss function with

respect to the network weights, wt. The gradient will point in the direction of steepest ascent within
the loss function, and the magnitude will represent the steepness. To minimize the loss function,
the neural network will take a ”step” in the opposite direction of the gradient with a step size equal
to the magnitude of the gradient multiplied by η, the learning rate. This step is in the direction of
steepest descent of the loss function, which decreases the value of the loss function as rapidly as
possible. The weights are updated such that

wt+1 = wt − η∇L(wt)

= wt −
η

∥D∥
∑

d∈D∼D

∇ℓ(wt, d).
(1.4)

1.2 Distributed Machine Learning
Distributed Machine Learning (DML) is a branch of ML in which training is split between

several devices, which are called clients. The training data is split into local datasets D =
{D1, D2, ...Dm} where Di ∼ D. Each client calculates a local update to the neural network
weights using the local dataset. The local updates

∆wt,i =
1

∥Di∥
∑

di∈Di∼D

∇ℓ(wt, di) (1.5)

are calculated for each client i, and are aggregated at the server to create an update to the global
server model

wt+1 = wt − η
m∑
i=1

p(i)∆wt,i. (1.6)

This server update is a weighted average of the m local client updates, where the weights are given
by p(i) for each client i, and

∑m
i=1 p(i) = 1. The local true risk in DML is

L(h) = Edi∼D[ℓ(h, di)] (1.7)

for each client i, while the local empirical risk is found using only Di, the client’s shard of the
dataset D. The local empirical risk is

L̂i(h) =
∑

di∈Di∼D

ℓ(h, di) (1.8)

for each client i. DML also adjusts the optimization problem to account for the aggregation of the
local updates. The optimal model minimizes a weighted average of the empirical risk functions for
each client, such that

h∗ = argmin
h∈H

m∑
i=1

p(i)L̂i(h) (1.9)

5

Learning on multiple clients parallelizes the learning of the neural network, which speeds up
the learning process to a pace unachievable by any of the client machines individually. However,
the aggregation and averaging of the model weights is expensive, particularly for large machine
learning models. The weights are transmitted over a communication network which is a major
bottleneck of DML, so efficiently communicating these large matrices is an important field of
study [1].

1.2.1 Synchronous Distributed Machine Learning
The computers used for each client in DML are likely not identical, so the performance will be

different on each machine. In addition, even identical clients may take different amounts of time
to complete the training depending on the dataset passed to it and other computational constraints
such as background processes. Using traditional DML, if the clients do not complete training at the
same time, those that finish quickly will be waiting idly for the rest of the clients to complete their
training. This is called synchronous DML, which can be very inefficient. One strategy to mitigate
the inefficiency is to approximate the performance of each client’s computer and split the dataset to
attempt to have the training on each to finish at approximately the same time. However, the speed
of this approach relies on the accuracy of the approximation of performance of the clients. Another
approach is asynchronous distributed machine learning which does not wait for all of the clients
to finish training before it aggregates the server model. This will reduce the amount of waiting,
but the weights that the models are training on will not be the same, introducing an added level of
complexity [2].

1.3 Federated Learning
Federated Learning is similar DML; however, the datasets for each of the clients are not as-

sumed to be sampled from the same source distribution. Rather, the local datasets {D1, D2, ..., Dm}
are sampled from distributions {D1,D2, ...,Dm} such that D1 ̸= D2 ̸= ... ̸= Dm. If the data is
sampled from the same distribution, it is identically and independently distributed (IID), which
means the gradient in the loss function created on each client will be approximately the same [3].
If the datasets are not IID, training using separate datasets will result in differing gradients for
the loss function of each client, called gradient drift. Because the local datasets are sampled from
different distributions, the local updates are

∆wt,i =
1

∥Di∥
∑

di∈Di∼Di

∇ℓ(wt, di) (1.10)

for each client i. The local true risk is

L(h) = Edi∼D⟩ [ℓ(h, di)] (1.11)

for each client i, and the local empirical risk is

L̂i(h) =
∑

di∈Di∼Di

ℓ(h, di) (1.12)

6

for each client i.
The more training that occurs without synchronizing, or the more epochs completed per com-

munication round, the greater these differences will be, and the more difficult the optimization
problem becomes [2]. This results in a higher lower-bound on the loss and a lower upper-bound
on the accuracy achievable for any particular neural network.

One major advantage of FL compared to distributed machine learning is that the data is not
shared between clients, so this allows private data to be used to train the neural network with
substantially fewer privacy concerns [4].

1.4 Model-Heterogeneous Federated Learning
Model-heterogeneous federated learning is a branch of FL where different clients train different

models. The objective of model-heterogeneous FL is to train a global model that is larger than the
clients can store in memory. This is accomplished by removing some of the neurons in each of the
sub-models passed to each of the clients. Therefore, each client has a different function hi ∼ Hi,
where Hi is the hypothesis space of the reduced neural network. The client models are created by
applying a dropout mask

mi,l,j ≜

{
1 if the neuron is selected for client i
0 otherwise

(1.13)

for each neuron j for each layer l for each client i.The size of the sub-models for each of the clients
is smaller than the server model, so low-performance machines can help train the server model,
even if they do not have a large amount of memory [5]. However, the removal of some neurons
introduces gradient drift because only part of the model is being trained and each sub-model dis-
connects the neurons that are selected for one client from the neurons that are not selected. This
reduces the achievable performance and learning speed of the global model [6].

The local weight update

∆ŵt,i =
1

∥Di∥
∑

di∈Di∼Di

∇ℓ(ŵt,i, di,n), (1.14)

where ŵt,i ⊆ wt are the weights for the sub-model passed to client i in communication round t.
The global model update is

wt+1 = wt − η
m∑
i=1

p(i)∆ŵt,i, (1.15)

which is similar to the equation for FL, except only the weights present in each client contribute to
the new server weights. In the case where a neuron is not present in any client, the original server
weights are used. The sub-models each have differing true and empirical risk functions

L(h) = Edi∈Di∼D⟩ [ℓ(hi, di)] (1.16)

for each client i, and
L̂(hi) =

∑
di∈Di∼D⟩

ℓ(hi, di) (1.17)

7

for each client i, which depend on the different sub-model functions. The optimal server model

h∗ = argmin
h∈H

m∑
i=1

p(i)L̂(hi) (1.18)

minimizes the sum of the local empirical risks.
The state-of-the-art method for Model-Heterogeneous FL is FedRolex[7], which ”rolls” through

the neurons, advancing one step for each client or round of synchronization. One of the keys to
FedRolex’s performance is its ability to ensure that as many neurons appear in at least one client
as possible [8]. Neurons that do not appear in any client is not training, so it cannot contribute
anything to the performance of the model. FedRolex’s systematic approach to selecting neurons
increases the number of neurons included in the sub-models compared to FedDropout [9], which
randomly selects the neurons for each client.

8

Chapter 2

Methodology

9

This chapter will focus on the details of the implementation of Model Heterogeneous Federated
Learning used for this study. It will discus which dataset was chosen and explain the reasoning
behind this choice, as well as detail how a customizable level of data heterogeneity was induced
among the client datasets. The model chosen for the study will be explained, and a description
of how the server model weights were updated is also included. Finally, this chapter details the
description of each method of selecting neurons tested and their implementations.

2.1 Dataset
The MNIST[10] dataset was used for this study. MNIST is a relevant dataset for machine

learning and poses a difficult yet achievable problem for deep neural networks. The FedRolex study
uses the CIFAR-10 and CIFAR-100 datasets [11] which were considered for this study. MNIST
consists of 70000 28x28 grayscale images separated evenly into 10 classes of 7000 images, while
CIFAR-10 and CIFAR-100 contain 60000 32x32x3 colored images split evenly into 10 classes of
6000 images and 100 classes of 600 images respectively. The larger colored images of the CIFAR
datasets are a challenge better suited to convolutional neural networks (CNNs). This study focuses
on the performance of DNNs, so MNIST was better suited for the model architecture chosen.

DML and FL require the dataset to be split differently than traditional ML. Each client requires
both training and testing data, and the server also requires testing data. To accomplish this, the
server test data is selected first, and then the rest of the data is distributed among the clients. The
data given to each client is then randomly partitioned into training and test data.

2.1.1 Data Heterogeneity
One consideration of FL is that the distribution of data on each client is not necessarily the

same. The level of heterogeneity of the distributions on each client will impact the convergence of
the server network. The level of data heterogeneity is one of the main parameters investigated in
this study

To induce heterogeneity in the local client datasets is to limit the classes passed to each of the
clients. This means each client may not have access to data from all 10 classes, so the resulting
datasets are not IID. The number of classes that are passed to each client is a measure of the level
of data heterogeneity between the clients. For the purposes of this study, the levels selected for
investigation were 2, 4, 6, 8, and 10 classes per client. This gave a representative scale to study the
effect data heterogeneity will have on the performance of the server model.

Separating the data was accomplished by first partitioning the dataset into server and client data.
The data used for the server data is the 10000 testing images of the MNIST dataset. Separating
the client data consisted of first generating random indices that indicated which classes would
be present on each client. The entire client dataset was split by class, and each class was split
randomly by the number of clients that the class occurs on. These sub-class partitions are then
combined so that the correct classes occur on each client. These client datasets are then randomly
partitioned into training and test data using a 70-30 split.

10

Algorithm 1 Federated Learning Dataset Partitioning
1: procedure PARTITIONDATASET(MNISTTrainData, numClassesPerClient, numClients)
2: allClientData← MNISTTrainData
3: classIndices← GetClassIndices(numClientsPerClient)
4: splitClientData← ParitionClientData(allClientData, classIndices)
5: returnsplitClientData

Algorithm 2 Getting Indices of Classes to be Allocated to each Client
1: procedure GETCLASSINDICES(numClassesPerClient)
2: for client do
3: indices← numClassesPerClient randomly sampled integers between 0 and 9
4: add indices to classIndices[client]
5: return classIndices

Algorithm 3 Partitioning Client Data
1: procedure PARITIONCLIENTDATA(allClientData, classIndices)
2: dataSplitByClass← allClientData split by class label
3: for class do
4: classOccurance← number of occurrences of class in classIndices
5: dataSplitByClass[class]← dataSplitByClass[class] split intoclassOccurance partitions
6: for client do
7: for class in classIndices[client] do
8: add next element of dataSplitByClass[class] to clientData[client]
9: returnclientData

11

2.2 Model
This study also aims to understand the performance of the different methods for model-heterogeneous

FL. To be able to measure the performance of each method, a simple deep neural network (DNN)
was selected for this task. The Neural network chosen consists of a flatten layer to convert the
2-dimensional image to a 1-dimensional input. This is followed by two fully-connected layers,
the first containing 128 neurons and the second containing 32, and a final output layer of 10 neu-
rons. PyTorch was used to implement this neural network due to its power and modularity, and the
Adam optimizer was used also due to it’s strong performance when compared to a traditional SGD
optimizer.

In Federated Learning, each client trains its copy of the model individually for a set number
of epochs before the models are aggregated and synchronized. With less synchronizations, the
training rounds are longer, so the gradients diverge more than with more frequent synchronizations.
This results in the model weights converging slower, and the loss function having a higher floor.
However, synchronizing the models require the model parameters to be communicated, aggregated,
and communicated back to the clients. This synchronization cost is non-trivial, particularly for
large neural networks. Selecting the number of epochs per round is a precarious balance between
speed and performance of the model. This study tests two levels of synchronization: 40 rounds
with 5 epochs per round, and 200 rounds with only 1 epoch per round.

The hyperparameters used for training were consistent across the levels of model and data
heterogeneity, but only differed in the rate of decay of the learning rate between the levels of
synchronization. An initial learning rate of 1e-5 was chosen as it was found to be a suitable
learning rate for the set of parameters investigated. An exponential learning rate decay of 0.95
was used for the low synchronization level of 40 rounds with 5 epochs per round because it best
suited for this synchronization level. Similarly, an exponential decay of 0.99 was used for the high
synchronization level of 200 rounds with 1 epoch per round.

Algorithm 4 Server Training
1: procedure TRAINSERVER(MNISTTestData, MNISTTrainData)
2: serverModel← The Model
3: testDataset← MNISTTestData
4: clientDatasets← PartitionDataset(MNISTTrainData
5: for round do
6: clientNeuronIndices← GetNeurons() ▷ GetNeurons depends on the selection method
7: clientModels← serverModel with only neurons specified in clientNeuronIndices
8: for client do
9: for epoch do

10: Train clientModels[client] using train data of clientDatasets[client]
11: Test clientModels[client] using test data of clientDatasets[client]
12: serverModel← Average of clientModels weights
13: Test serverModel using test data of testDataset

12

2.2.1 Model Heterogeneity
The challenge with model-heterogeneous FL is trimming the server model to create smaller

models that will be trained by each client. The dimensions of the input and outputs must remain
unchanged for the model to be able to function properly, but the number of neurons in each inter-
mediate layer is reduced. The proportion of neurons selected for each client represents the level
of model-heterogeneity, where larger proportion of neurons selected represents less heterogeneity.
This study will investigate 4 levels of model heterogeneity, 0.25, 0.5, 0.75, and 1. The method
in which the neurons to keep are selected is the main focus of this study. The methods this study
investigates are FedAvg, FedDropout, FedRolex, and 3 new methods proposed to improve perfor-
mance beyond FedRolex: FedCover, FedStack, and FedMinOccurances.

2.2.2 Client Network Selection Methods
FedAvg is the benchmark method as it is not model-heterogeneous method. The entire server

model is trained on each client and then the weights from each client are averaged to create the
new server model. FedAvg is the same as selecting all of the neurons to be kept, or a model-
heterogeneity level of 1.

FedDropout is the baseline method of model-heterogeneous FL. It randomly selects the neurons
to be kept for each client. Each neuron has a pk probability of being selected, so the mask for
FedDropout is

mi,l,j ≜

{
1 pk

0 (1− pk)
(2.1)

where the mask is divided by (pk) to maintain an equal weighting of the neurons when aggregating
to calculate the server weights.

The state-of-the-art method of selecting neurons is FedRolex, which takes a slice of the neu-
rons for each client and takes a ’step’ for each round. This results in a sliding window of neurons
selected, which systematically ”rolls” through all of the neurons. This ensures that the neurons get
an approximately equal amount of training, which was identified as a key factor in the performance
of model-heterogeneous FL because it means all of the neurons are contributing to the accuracy of
the model and not fouling the model with contributions from untrained weights. The key hyperpa-
rameter in FedRolex is the size of the step taken in each round. This study attempts 4 sizes of steps,
represented as the proportion of the neurons present in each layer. The first two steps investigated
were 0.2 and 0.5, but two of the proposed methods, FedCover and FedStack, are special cases of
FedRolex. FedCover attempts to spread out the overlaps of the models by using a step equal to the
inverse of the number of clients. In this study, which uses 10 clients, the steps are 0.1. This mini-
mizes the number of clients each neuron will be present in, which leads to a more even distribution
of learning. FedStack attempts to cover as many new neurons as possible by using a step of size
1. This ”stacks” the neurons of each consecutive round on the round prior. This aims to evenly
train the neurons by ensuring neurons not used in the previous round will appear in the next round.
However, the original FedRolex study suggests that step size has an unclear, non-linear effect on

13

the model performance[7]. The mask for FedRolex is

mi,l,j ≜

{
1 if the neuron is in the range [start + (step ∗ round), start + (step ∗ round) + windowWidth]
0 o.w.

(2.2)
FedMinOccurances introduces an entirely new approach where the neurons are sampled from a

distribution that prioritizes neurons that did not occur in the most recent round of training. This ap-
proach attempts to incorporate neurons that did not train in the previous round while also including
some randomness. Due to the nature of FedRolex, each neuron only trains with the neurons that
have similar indices. The randomness within FedMinOccurances aims to avoid this repeating pat-
tern so that each neuron can train in a larger number of sub-models while training the neurons more
evenly than FedDropout. FedMinOccurances mask for the first round is the same as FedDropout.
If nl,j is the numbner of clients neuron l, j occured in the previous round FedMinOccurances’s
mask

mi,l,j ≜

1
N+1−nl,j∑
j N+1−nl,j

0 1− N+1−nl,j∑
j N+1−nl,j

(2.3)

14

Chapter 3

Results and Discussion

15

3.1 Parameters
To evaluate the performance of each method, the model was trained with each combination of

parameters. The first parameter is Data Heterogeneity, evaluated by the number of classes present
on each client, which was tested at five levels: 2, 4, 6, 8, and 10 classes per client. The second
parameter is Model Heterogeneity, represented by the proportion of neurons selected for each
client, which was tested at four levels: 0.25, 0.5, 0.75, and 1. The final parameter is the level of
synchronization, represented by the number of epochs before the client networks were aggregated
at the server, which was tested at two levels: 40 rounds with 5 epochs per round, and 200 rounds
with 1 epoch per round. Each of these was evaluated at three separate seeds to ensure that random
chance does not impact the performance of the methods when comparing across combinations of
parameters

There are some important disclaimers about these parameters. Data and Model Heterogene-
ity are not hyperparameters that can be tuned, but are rather external factors determined by the
computational and data resources available, as well as the model desired. In addition, while syn-
chronization could be considered a hyperparameter, the loss of efficiency associated with higher
synchronization encourage lower synchronization, so it is better classified as a parameter defined
by the environment the model is training in. Because these parameters are more frequently out of
the control of the developer training the model, it is important to understand how the performance
of each of these method varies in each scenario to determine whether these methods are best suited
for a specific application.

3.2 Seed 1
The two aspects of the training of the model that are most important in determining the per-

formance of the model are the speed of convergence and the final performance achieved by each
method. One aspect to note is that FedAvg is included in every graph; however, it is only an ac-
curate comparison to the performance of the other methods when the model heterogeneity is 1.
FedAvg is included in each graph because it is a good benchmark for the methods under perfect
conditions. When the model heterogeneity level is 1, all of the methods performed equally as all
of the neurons were included in each of the clients, and there is no variation between the methods.

3.2.1 Low Synchronization
Low synchronization in this study is represented by 40 rounds of training each consisting of 5

epochs per round. Figure 3.1 shows the plots of Accuracy vs Epochs for Seed 1’s low synchro-
nization tests, which were measured as the server’s accuracy sampled at each synchronization of
the client models. The first item to note is that along the bottom row, all of the methods perform
the same. This aligns with the expected performance as all of the neurons were selected for each
client, so there is no variation between any of the methods.

In many of the plots in the lower right corner, there is not much variation between the methods
even when comparing to FedAvg. This is expected as the differences in the methods only marginal
in the slightly sub-optimal conditions. The higher levels of model and data heterogeneity are where
the methods’ performance diverge more. However, there are not many meaningful patterns in the

16

performance of each method. The first aspect to note is that FedDropout performs considerable
worse than the other methods, particularly in the more extreme combinations of parameters. Fe-
dRolex with a 0.2 overlap appears to perform worse when there is high model heterogeneity and
low data heterogeneity. One concerning trend is the oscillating nature of some of the FedRolex-
based methods in the more extreme situations. The overall accuracies of each of the methods do
trend upward, but these fluctuations are likely due to the nature of the repeating coverage of certain
neurons in each of the clients.

Figure 3.1: Seed 1 Accuracy Summary with Low Synchronization

Figure 3.2 shows the Loss vs Epochs of Seed 1’s low synchronization tests. The trends ob-
served in the accuracy plots of Figure 3.1 also appear in Figure 3.2 as well. FedDropout performs

17

substantially worse than the other methods in instances with high data and model heterogeneity.
In addition, there is a concerning trend with FedDropout where the loss is increasing, even while
the accuracy increases. Figure 3.3 showcases this counterintuitive phenomenon, which contradicts
the expectation of the test data loss strictly decreasing until the model begins to overfit the training
data. In addition, FedMinOccuranes shows a slightly worse performance in comparison to the rest
of the FedRolex-based methods with high model heterogeneity, which is likely due to its proximity
to FedDropout. When FedMinOccurances has only a few neurons selected per round, the number
of neurons that did not occur in the previous round is very high and all of these neurons share the
same probability. In practice, this almost reduces FedMinOccurances to FedDropout.

Figure 3.2: Seed 1 Loss Summary with Low Synchronization

18

Figure 3.3: Seed 1 Method Comparison low synchronization, 2 classes per client, 0.25 neruons
selected

3.2.2 High Synchronization
In the high synchronization tests, 200 rounds each with a single epoch were used to train each

model. The expected performance is higher when training with high synchronization because the
client models do not deviate as far from each other as when there are more epochs conducted before
aggregating the weights of the clients.

Figure 3.4 shows the accuracy vs epoch plots for each combination of parameters tested, and
very similar trends start to appear in the high synchronization tests to those that appear in the low
synchronization tests. FedDropout routinely performs worse than the other methods, particularly
in the more extreme combinations of parameters, and FedRolex with a 0.2 step performs poorly
in high model heterogeneity and low data-heterogeneity situations. Many of the FedRolex-based
methods perform very similarly and do not have a lot of variation between them.

FedMinOccurances has a trend to start quite poorly but has a sharp rise in performance part of
the way through training, which did appear weakly in the low synchronization tests but appears
much more dramatically in these instances. Interestingly, FedMinOccurances performs consider-
ably better than the rest of the other methods with 2 classes per client and 0.25 of the neurons
selected for each client, which is shown in the top leftmost plot, which contradicts its relatively
poor performance with low synchronization in the same scenario.

19

Figure 3.4: Seed 1 Accuracy Summary with High Synchronization

Figure 3.5 displays the plots of loss over each of the epochs, which again follows some previous
trends. FedDropout has an increasing loss with the more extreme situations, which continues to
follow the patterns established by previous tests, and FedMinOccurances performs slightly worse
than the rest of the methods with high model heterogeneity. The anomalous situation with Fed-
MinOccurances also shows in the plot with high data and model heterogeneity.

20

Figure 3.5: Seed 1 Loss Summary with High Synchronization

3.3 Seeds 2 and 3
The plots for Seeds 2 and 3 are attached in A.1 and A.2. The major patterns which appear in

Seed 1 continue in Seed 2. However, the situational and anomalous situations were not replicated,
so they were the result of the seed rather than the algorithm. Seeds 2 and 3 did also have its
own alomalies depending on the unique combination of environmental factors. Some underlying
patterns that arose were that FedDropout performs the worst of all methods in most situations,
and FedMinOccurances performs poorly om instances with particularly high model heterogeneity.
Unexpectedly the 0.2 step size FedRolex does not perform as well as the other step sizes in with

21

high model heterogeneity, despite a step size of 0.1 (FedCover) and 0.5 performing approximately
equally. In addition, some instances of FedRolex have oscillating performance, which is likely due
to the repetition of each part of the server model occurring in the sub-models.

3.4 Average Performance
The individual seeds provide a good perspective into the case-by-case performance of each of

the methods. In comparison, if we want to look at the larger picture, averaging the performances
of the seeds should provide a more holistic perspective of each method. This section takes the
maximum performance achieved by each model in each of the combinations of hyperparameters,
and averages these performances over each of the seeds.

3.4.1 Low Synchronization
Table 3.1 shows the low synchronization average results across the 3 seeds. FedMinOccu-

rance shows a strong performance with high data heterogeneity; however, there was an anomalous
instance with high model and data heterogeneity in seed 1. In addition, it appears that beyond
FedMinOccurance, the FedRolex-based methods performed well with lower data heterogeneity.

22

Classes Per Client Method Proportion of Neurons Per Client
0.25 0.50 0.75 1.0

2 Classes FedAvg 75.11

FedDropout 21.03 30.55 38.34 75.11

FedRolex-0.2 25.14 50.35 67.29 75.11

FedRolex-0.5 38.96 45.09 66.51 75.11

FedCover 32.61 50.10 66.39 75.11

FedStack 33.32 41.97 65.91 75.11

FedMinOccurances 39.29 53.85 68.84 75.11

4 Classes FedAvg 86.88

FedDropout 31.08 45.79 62.72 86.88

FedRolex-0.2 41.10 67.75 80.79 86.88

FedRolex-0.5 47.19 66.69 80.37 86.88

FedCover 45.46 68.24 80.39 86.88

FedStack 48.26 58.02 80.98 86.88

FedMinOccurances 42.49 68.84 81.07 86.88

6 Classes FedAvg 90.45

FedDropout 43.39 61.33 85.27 90.45

FedRolex-0.2 50.01 82.59 88.18 90.45

FedRolex-0.5 60.42 77.90 88.13 90.45

FedCover 60.58 82.33 88.20 90.45

FedStack 54.38 76.76 88.12 90.45

FedMinOccurances 43.41 79.93 87.63 90.45

8 Classes FedAvg 90.96

FedDropout 70.42 78.19 87.64 90.96

FedRolex-0.2 60.25 85.04 89.19 90.96

FedRolex-0.5 70.68 82.20 89.16 90.96

FedCover 70.31 84.95 89.05 90.96

FedStack 69.46 80.75 89.23 90.96

FedMinOccurances 59.60 83.01 88.41 90.96

10 Classes FedAvg 91.37

FedDropout 76.51 82.52 88.98 91.37

FedRolex-0.2 61.65 86.12 89.61 91.37

FedRolex-0.5 73.38 84.29 89.75 91.37

FedCover 72.89 85.98 89.51 91.37

FedStack 73.24 82.61 89.93 91.37

FedMinOccurances 59.36 83.46 88.90 91.37

Table 3.1: Low Synchronization Average Accuracy

3.4.2 High Synchronization
Table 3.1 shows the high synchronization average results across the 3 seeds. FedCover consis-

tently performed the best or near to the best among the methods tested, particularly with low data
heterogeneity. The small step size of FedCover and many rounds associated with more synchro-
nization likely combined to create this strong performance. In addition, in most instances there
was very limited difference between the high and low synchronization average performances with
each combination of parameters. Perhaps an example with even lower synchronization should be
tested to investigate the performance in those situations.

23

Classes Per Client Method Proportion of Neurons Per Client
0.25 0.50 0.75 1.0

2 Classes FedAvg 68.84

FedDropout 21.17 30.70 36.28 68.84

FedRolex-0.2 31.87 46.58 62.15 68.84

FedRolex-0.5 37.93 40.32 62.66 68.84

FedCover 29.14 48.72 60.26 68.84

FedStack 37.35 41.04 61.43 68.84

FedMinOccurances 30.74 48.07 64.78 68.84

4 Classes FedAvg 85.21

FedDropout 31.80 45.56 68.18 85.21

FedRolex-0.2 43.39 67.89 80.68 85.21

FedRolex-0.5 49.84 64.79 80.86 85.21

FedCover 44.95 67.30 78.91 85.21

FedStack 47.72 59.18 81.04 85.21

FedMinOccurances 39.17 69.11 80.84 85.21

6 Classes FedAvg 90.43

FedDropout 45.70 60.69 85.18 90.43

FedRolex-0.2 51.51 82.56 88.31 90.43

FedRolex-0.5 61.27 77.55 88.36 90.43

FedCover 63.01 82.69 87.43 90.43

FedStack 54.84 75.88 88.32 90.43

FedMinOccurances 48.13 81.85 88.00 90.43

8 Classes FedAvg 90.96

FedDropout 71.08 78.29 87.76 90.96

FedRolex-0.2 60.85 85.18 89.36 90.96

FedRolex-0.5 70.67 82.20 89.22 90.96

FedCover 85.11 88.51 90.96 90.96

FedStack 70.58 81.54 89.29 90.96

FedMinOccurances 63.60 83.92 88.75 90.96

10 Classes FedAvg 91.37

FedDropout 77.23 83.08 89.10 91.37

FedRolex-0.2 61.74 85.94 89.84 91.37

FedRolex-0.5 73.58 84.66 89.81 91.37

FedCover 73.66 86.23 89.11 91.37

FedStack 72.89 82.94 89.95 91.37

FedMinOccurances 61.31 84.46 89.26 91.37

Table 3.2: High Synchronization Average Accuracy

24

Chapter 4

Conclusion

25

This study investigates the performance of state-of-the-art methods for model-heterogeneous
federated learning and introduces and evaluates new methods of selecting neurons for the client
sub-models. The new methods perform approximately equal to FedRolex in most situations. Fed-
Cover and FedStack propose limitations to FedRolex by specifying the step size as the inverse of
the number of clients and 1 respectively. FedMinOccurances randomly samples the neurons using
a distribution that prioritizes neurons that occurred less in the previous round, which aims to evenly
distribute training among the neurons while introducing slight randomness to combat the cyclical
increases and decreases in accuracy and loss observed in FedRolex. However, FedMinOccurances
also performed equally to FedRolex in most situations, but on average performed worse in high
model heterogeneity situations.

Additional study of the methods investigated needs to be conducted to confirm the results of
this study. A larger sample of tests is needed to definitively examine the true performance of each
method, including tests with lower synchronization. Additionally, other methods could be studied
such as methods that prioritize neurons that have smaller changes in weights, or methods based on
entirely different approaches such as elastic averaging SGD instead of local-update SGD [2], or a
dynamic pruning approach similar to FedDP [6].

26

Bibliography

[1] Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without intro-
ducing new latency, 2023.

[2] Gauri Joshi. Optimization algorithms for distributed machine learning. Springer, 2023.

[3] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Feder-
ated learning with non-iid data. 2018.

[4] Sixing Yu, J. Pablo Muñoz, and Ali Jannesari. Federated foundation models: Privacy-
preserving and collaborative learning for large models, 2023.

[5] JaeYeon Park and JeongGil Ko. Fedhm: Practical federated learning for heterogeneous model
deployments. ICT Express, 2023.

[6] Sixing Yu, Phuong Nguyen, Ali Anwar, and Ali Jannesari. Heterogeneous federated learning
using dynamic model pruning and adaptive gradient, 2023.

[7] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-heterogeneous fed-
erated learning with rolling sub-model extraction, 2023.

[8] Hanhan Zhou, Tian Lan, Guru Venkataramani, and Wenbo Ding. Every parameter matters:
Ensuring the convergence of federated learning with dynamic heterogeneous models reduc-
tion, 2023.

[9] Dingzhu Wen, Ki-Jun Jeon, and Kaibin Huang. Federated dropout – a simple approach for
enabling federated learning on resource constrained devices, 2022.

[10] Li Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[11] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research).

[12] Weiming Zhuang, Chen Chen, and Lingjuan Lyu. When foundation model meets federated
learning: Motivations, challenges, and future directions, 2024.

[13] Nikhil Kandpal, Brian Lester, Mohammed Muqeeth, Anisha Mascarenhas, Monty Evans,
Vishal Baskaran, Tenghao Huang, Haokun Liu, and Colin Raffel. Git-theta: A git extension
for collaborative development of machine learning models, 2023.

27

[14] Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. Fwdllm: Efficient
fedllm using forward gradient, 2024.

[15] Muhammad Asad, Ahmed Moustafa, and Takayuki Ito. Federated learning versus classical
machine learning: A convergence comparison, 2021.

[16] Yuyang Deng, Mohammad Mahdi Kamani, Pouria Mahdavinia, and Mehrdad Mahdavi. Dis-
tributed personalized empirical risk minimization. In A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 70812–70846. Curran Associates, Inc., 2023.

28

Appendices

29

A.1 Seed 2 Results

A.1.1 Low Synchronization

Figure A.1.1: Seed 2 Accuracy Summary with Low Synchronization

30

Figure A.1.2: Seed 2 Loss Summary with Low Synchronization

31

A.1.2 High Synchronization

Figure A.1.3: Seed 2 Accuracy Summary with High Synchronization

32

Figure A.1.4: Seed 2 Loss Summary with High Synchronization

33

A.2 Seed 3 Results

A.2.1 Low Synchronization

Figure A.2.1: Seed 3 Accuracy Summary with Low Synchronization

34

Figure A.2.2: Seed 3 Loss Summary with Low Synchronization

35

A.2.2 High Synchronization

Figure A.2.3: Seed 3 Accuracy Summary with High Synchronization

36

Figure A.2.4: Seed 3 Loss Summary with High Synchronization

EDUCATION

TECHNICAL

SKILLS

RELEVANT

COURSES

EXPERIENCE

HONORS &

AWARDS

LEADERSHIP
&

ACTIVITIES

The Pennsylvania State University, University Park Expected Graduation: May 2024

Schreyer Honors College

Bachelor of Science in Computer Science

Java, Python, C, C++, PyTorch, TensorFlow, Git, Latex, Object Oriented Design, Unix/Linux,

Computer Vision, Verilog, SQL, JDBC, HTML, MIPS Assembly Language

Machine Learning and Algorithmic AI Artificial Intelligence

Fundamentals of Computer Vision Introduction to Neural Networks

Object Oriented Programming Introduction to Systems Programming

Introduction to the Theory of Computation Data Structures and Algorithms

Operating Systems Design & Construction Technical Writing

AI/ML Engineering Intern May 2023 – August 2023

Lockheed Martin Space – King of Prussia, PA

▪ Trained and tested machine learning models on timeseries data

▪ Developed systems for evaluating the performance of each model using relevant metrics

▪ Worked in a live team environment following an agile methodology

Calculus III Grader August 2021 – December 2022

The Pennsylvania State University – University Park, PA

▪ Grade assignments and provide individual feedback to students for three sections of Calculus of

Several Variables

▪ Coordinate with professors regarding expectations and areas of improvement for the students

Customer Service Associate June 2022 - August 2022

Lowe’s – Warrington, PA

▪ Delivered quality customer services and maintained store organization

▪ Assisted customers and staff in moving purchases safely and loading contractor orders

Research Intern September 2018 - May 2020

Baruch S. Blumberg Institute and Conifer Point Pharmaceuticals – Doylestown, PA

▪ Conducted research and collaborated with established scientists and software developers

▪ Calculated and studied clusters of water molecules on interaction surfaces of proteins to be applied

in drug discovery

▪ Used convolutional neural networks to visually distinguish between healthy cells and cells infected

with Hepatitis B

▪ The Evan Pugh Scholar Senior Award – Top 0.5% of the senior class Spring 2023

▪ President Sparks Award – GPA of 4.00 as a sophomore Spring 2022

▪ President Walker Award – GPA of 4.00 as a freshman Spring 2021

▪ Order of the Eastern Star Educational Scholarship Spring 2022

▪ Members and relatives who embody good character and strive for improvement

▪ Masonic Education Scholarship Summer 2020

▪ Members and relatives committed to community service pursuing higher education

▪ Penn State Robotics Club August 2021 – May 2023

▪ Nittany Data Labs - Data Sciences August 2021 - December 2022

▪ Google Developer Student Club, Penn State Chapter August 2021 - December 2022

▪ Action Karate, 3rd Degree Black Belt September 2007 - July 2020

Jason Swope

	List of Figures
	List of Tables
	Introduction
	Machine Learning
	Deep Neural Networks
	Minimization of Empirical Risk
	Gradient Descent

	Distributed Machine Learning
	Synchronous Distributed Machine Learning

	Federated Learning
	Model-Heterogeneous Federated Learning

	Methodology
	Dataset
	Data Heterogeneity

	Model
	Model Heterogeneity
	Client Network Selection Methods

	Results and Discussion
	Parameters
	Seed 1
	Low Synchronization
	High Synchronization

	Seeds 2 and 3
	Average Performance
	Low Synchronization
	High Synchronization

	Conclusion
	Bibliography
	Appendices
	Seed 2 Results
	Low Synchronization
	High Synchronization

	Seed 3 Results
	Low Synchronization
	High Synchronization

