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ABSTRACT 

 

The 2020 SolarWinds supply chain cyberattack greatly contributed to the evolution of 

existing areas of study for cyber defense, such as machine learning, network theory, and malware 

analysis. Attack modeling techniques (AMTs), such as attack graphs, present novel 

visualizations to enhance the analysis of different security breaches. This paper contributes to the 

existing literature on the attack graph modeling of large cyberattacks by synthesizing 

approximately 100 indicators of compromise from a diverse range of sources to provide an 

intuitive and unfragmented model of the breach on SolarWinds. Subsequent analysis revealed 

different critical nodes and attack paths that may allow for more robust defensive metrics 

applicable to other cyber threats. Exploring the utility of attack graphs for cyber threat modeling 

may offer valuable insights for informed defense efforts. 
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Chapter 1  
 

Introduction to the SolarWinds Cybersecurity Breach 

On December 13th, 2020, after conducting analysis on their own environment, Mandiant 

announced that an adversary, now known as APT 29, StellarParticle by CrowdStrike, Dark Halo 

by Volexity, and NOBELIUM by Microsoft, leveraged a trojanized SolarWinds Orion update to 

compromise an unprecedented number of organizations (FireEye, 2020). Many high-profile 

companies, such as Mandiant themselves, Microsoft, Cisco, as well as US and international 

agencies, such as the Department of Defense, Homeland Security, and the EU agencies, were 

reported to have been breached (Cimpanu, 2021; Jankowicz & Davis, 2020). Furthermore, an 

estimated 18,000 of the total 33,000 organizations are reported to have downloaded the 

weaponized update (Cimpanu, 2020), however, many more were indirectly impacted through the 

resources and hours needed to conduct post-forensic investigations. The financial implications of 

the attack cost SolarWinds a minimum of 44 million: 18 million from resolving the incident and 

another 26 million for a lawsuit (Kovacs, 2022; Satter 2021).  

 The attack catalyzed a surplus of information sharing from different security 

organizations; many whitepapers and firsthand accounts detailing indicators of compromise, 

hashes, and IP addresses helped companies immediately take defensive actions to contain the 

threat. However, as companies increase their reliance on technology, they often depend on third-

party solution providers. Such reliance can create a cyberattack known as a supply chain attack, 

where adversaries typically alter existing trusted software for malicious purposes. This issue is 

not specific to third-party applications, but also as software dependencies or API calls (Lenaerts-
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Bergmans, 2023b). Thus, the SolarWinds attack presents a unique challenge to the security 

community that goes against the typical security mantra of updating to the latest software. As 

supply chains continue to grow prevalent in today’s technological landscape, a need to provide 

visibility and risk communication for the inherent black-box nature of technology grows 

imperative.  

 Turning the lens to academia, fields such as machine learning, network theory and attack 

graphs have been a few of the many fields of study for cyber defense. Attack graphs in particular 

present an attractive framework for providing clarity in the anatomy of a cyberattack. Post-

forensic investigations in particular may greatly benefit from the inclusion of attack graphs, as 

such representations may assist forensic examiners in analyzing and including evidence of 

compromise for each path (Liu et al., 2012). Attack graphs also offer strong temporal 

relationships via the chronological ordering of nodes and edges, which increases its usage in 

tasks such as network topology modeling or communicating assets compromised (Zenitani, 

2023a).  

This thesis aims to model the SolarWinds supply chain breach as an attack graph by 

synthesizing various indicators of compromise. The attack graph and its analysis can help 

security analysts develop novel insights into defense via attack paths that can be generalized to 

other cyber incidents.  

Timeline of the SolarWinds Attack 

A timeline of the events that led up to the breach on SolarWinds is displayed below. Most 

events are focused on technical details, as activity diminished following public announcements. 
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August 6th, 

2019 

Command and control (C2) infrastructure setup (Unit 42, 2020) 

September 4th, 

2019 

Attackers started accessing SolarWinds (CDOC & Microsoft Threat 

Intelligence, 2021; Ramakrishna, 2021b) 

September 12th, 

2019 

Code injection tests by inserting blank classes (CDOC & Microsoft Threat 

Intelligence, 2021; Ramakrishna, 2021b) 

October 26th,  

2019 

Earliest identified modification of SolarWinds’ Orion code (Unit 42, 2020) 

November 4th, 

2019 

Attackers stopped injecting test code (CDOC & Microsoft Threat 

Intelligence, 2021; Ramakrishna, 2021b) 

December 2019 Earliest Cobalt Strike payload identified generated with Cobalt Strike 4.0 

(Unit 42, 2020) 

December 6th, 

2019 

DGA domain avsvmcloud.com acquired (Unit 42, 2020) 

February 2020 First SSL certificate acquired (Unit 42, 2020) 

February 20th, 

2020 

Backdoor compiled and deployed (CDOC & Microsoft Threat Intelligence, 

2021; Ramakrishna, 2021b) 
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March 26th, 

2020 

Hotfix 5 DLL available to customers (Ramakrishna, 2021b). Compromised 

update released to public. 

March - May Backdoor distribution and profiling (CDOC & Microsoft Threat 

Intelligence, 2021; Ramakrishna 2021b) 

May Start of hands-on keyboard attacks (CDOC & Microsoft Threat Intelligence, 

2021) 

June 4th, 2020 Malware removed from SolarWinds build VMs (Ramakrishna, 2021b) 

December 8th, 

2020 

Mandiant announced that their red team penetration testing tools was stolen 

as victims to a nation-state cyberattack (Baker, 2021) 

December 11th, 

2020 

Mandiant discovers SolarWinds had been attacked (Kiuwan, 2021) 

December 12th, 

2020 

Mandiant disclosed to SolarWinds the Solorigate supply chain attack 

(Kiuwan, 2021) 

December 13th, 

2020 

Mandiant and SolarWinds announces breach (FireEye, 2020) 

 

December 15th, 

2020 

SolarWinds releases software fix (Ramakrishna, 2021b), MS seizes C2 

domain (Unit 42, 2020) 
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January 11th 

2021 

SUNSPOT findings (Ramakrishna, 2021b) 

Table 1: Timeline of the SolarWinds breach 

Effects and Impact 

After the breach was announced, SolarWinds posted details regarding their plan moving 

forward. Such steps include improving the security of their products by ensuring compiled code 

matches against source code and resigning products with a new certificate; more interestingly 

however, SolarWinds took steps into securing their own internal environment through factors 

such as threat protection software for endpoints, MFA, and credential resets (Ramakrishna, 

2021a). In a similar fashion, organizations were given the choice of continuing SolarWinds 

Orion use or to replace them. Attack graphs may aid these decision processes for both 

SolarWinds and impacted organizations by identifying overall attack graph traversal and 

subsequent risk analysis. 

Furthermore, at the time of writing, Microsoft is undergoing new investigations into 

NOBELIUM under a password spraying attack that allowed access to the “company’s source 

code repositories” (MSRC, 2024). Such actions continue to showcase the importance of 

improved cyber defense practices that attack graphs may assist in. 
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Chapter 2  
 

Literature Review 

A wide variety of literature was produced as a result of the breach on SolarWinds. 

Different sectors, such as academia, private and public industries aimed to document and share 

information regarding the attack to provide visibility and countermeasures.  

SolarWinds Related White Papers  

Several technology companies posted detailed whitepapers outlining remediation advice 

and indicators of compromise, such as file hashes, IP addresses and YARA rules. The literature 

also provided technical details of the attack by providing a high-level analysis of tainted source 

code and malware reverse engineering results. 

Mandiant was the first organization to alert about a possible intrusion campaign, and their 

reports focused on providing preliminary visibility into the SolarWinds attack (FireEye, 2020). 

Subsequent analysis from different industries showcased similar results on the attack chain, with 

some revealing new malware such as GoldMax, GoldFinder, and Sibot (Nafisi et al., 2021) or 

different techniques (Cash et al., 2020). Notably, these whitepapers outline a series of events that 

represent indicators of compromise and suspicious information flow.  

 One notable discrepancy in regard to forensic analysis procedure is to either preserve 

evidence or upgrade to the latest SolarWinds version. Specifically, the SolarWinds security 

advisory advocated for applying upgrades for affected versions (SolarWinds, 2021) while 

Mandiant’s recommendations were the opposite to prevent the removal of forensic artifacts 
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(FireEye, 2020). If upgrade was not possible, Mandiant recommended several hardening 

measures to mitigate the risk of using the Orion platform. 

The research is grounded in these white papers, specifically from organizations with first-

hand analysis of the attack. Microsoft (CDOC & Microsoft Threat Intelligence, 2021; Microsoft 

Threat Intelligence, 2020a; Nafisi et al., 2021), Mandiant (Eckels et al., 2020; FireEye, 2020), 

CrowdStrike (CrowdStrike Intelligence Team, 2021), and Checkpoint (Check Point Research, 

2020) provided technical details and events, and thus serve as a foundation for how the attack 

graph is created and organized. References were correlated with each other to produce a 

complete possible timeline of the attack, diving into specifics, such as functions called or 

domains contacted. Other references include specific pieces of information, such as specific 

Powershell commands (Cash et al., 2020) or decoded blacklist checks (Cohen, 2023). 

Graph Theory in Cybersecurity 

Attack Graphs 

AMTs encompass a wide variety of visualization formats to analyze cyberattacks (Lallie 

et al., 2020; Pirca & Lallie, 2023). An attack graph is a type of AMT that is a directed acyclic 

graph used to model the flow of data (Zenitani, 2023b). They are also commonly used as visual 

representations for security analysis and can model different scales, such as large networks or 

individual hosts.  

 As with any graph, there are two common elements: nodes and edges. Nodes typically 

represent a host, vulnerability, or network device manipulated by an adversary (Zeng et al., 

2019), and the edges between nodes represent the causal relationships, typically in chronological 
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order (Zenitani, 2023a). An attack path then represents a series of nodes and edges in 

chronological order that an attacker may take to achieve an objective. As a result, attack graphs 

capture causal relationships between malicious events and may allow for root cause 

identification.  

These nodes are typically organized by prerequisites. In order for a node to pass to the 

next node, the previous nodes must have been passed. As a result, prerequisite nodes, or critical 

nodes, present attractive options for security analysts to identify gaps in networks or areas in 

need of patching (Liu et al., 2012).  

History 

There is an extensive history of the use of attack graphs in cybersecurity. Phillips and 

Swiler published a paper in 1998 regarded as the first graph-based model for network security 

analysis (Liu & Jiang, 2023; Zenitani, 2023), although other papers such as Dacier (1996) also 

make use of the same idea. They define nodes as a single state of attack, which may be a 

“combination of physical machine(s), user access level, and effects of the attack” (Phillips & 

Swiler, 1998). Edges then represent the change caused by the node before it. 

 Jha et al. (2002) however, address the attack-centric nature of Phillips & Swiler (1998) by 

defining attack graphs as models that present the steps, or nodes needed, to reach a goal. They 

argue that their definition of attack graphs does not account for benign nodes, whereas their 

model includes both, thus further generalizing its utility for security analysis. They also illustrate 

how attack graphs assist security analysts in identifying the effectiveness of their detection 

systems and enhancing correlation between events. Furthermore, the researchers address how the 

creation of such graphs is tedious and error-prone and offer a possible solution with off-the-shelf 

model checkers. 
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 Zenitani (2023a) defines attack graphs as a model-based approach for network security, 

where nodes represent events, edges represent the causal relationships between nodes, and an 

attack path as steps taken to achieve an objective. Zenitani (2023a) also summarizes the history 

of the developments and advancements of attack graphs, highlighting how later studies built on 

Phillips & Swiler’s (1998) paper with definitions in relation to categories such as state 

enumeration graphs, cyclic directed AND/OR Graphs, and special Bayesian attack graphs.  

 Liu et al. (2012) define attack graphs as directed graphs, where nodes represent exploits 

with pre- and post-conditions and edges exist if the source node is needed for the destination 

node to proceed. Their work builds on the use of attack graphs during post-forensics, especially 

in the case where adversaries use anti-forensic techniques.  

Challenges 

Overall, existing literature tends to agree on the definition of nodes and edges in attack 

graphs. However, there appears to be no widely accepted standard for attack graph representation 

(Lallie et al., 2020; Zenitani, 2023a). The general consensus among research papers focuses on 

the two core elements, nodes and edges, however, depending on the need for each analysis type, 

the definitions and format of the attack graph changes. Zenitani (2023b) uses mathematical 

functions called attack functions to centralize the source to which attack graphs are derived for 

different purposes, however, the paper focuses more on the underlying mathematical rules to 

analyze attack graphs rather than how attack graphs are formatted themselves. 

 Furthermore, one of the first papers researching the visualization of attack graph 

representations highlights the volume and corresponding inconsistency of attack graph standards 

Lallie et al. (2020). Most researchers use self-nominated visualization syntax, which has resulted 

in over 75 attack graph visualization standards, leading to fragmented research efforts and 
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inconsistency for visual representation. Lallie et al. (2020) also emphasizes how terminology, 

specifically attack graphs and attack trees, are both graph structures, with key differences being 

the way each represents preconditions, attacks, and event flows. This lack of standards makes it 

difficult for researchers to model well-known attacks via attack graphs, as selecting the specific 

standard is dependent on what the attack graph aims to achieve.  

Expanding upon this concept, there appears to be a lack of attack graph examples for 

well-known cyberattacks. Research endeavors such as Nguyen (2017) present a partial attack 

graph to model the Stuxnet attack for the integration of uncertainty. While the main purpose of 

the paper aims to analyze the likelihood of which path(s) are taken and to make informed 

decisions on which security appliances need hardening, these attack graphs often serve as 

supplemental information rather than as the main focus. Even more so, attack graph modeling 

and analysis requires all known vulnerabilities to be known (Zenitani, 2023a), which may not be 

feasible if information is not publicly released.  

 Finally, the manual mapping of indicators of compromises (IoC) to represent nodes is 

error-prone and time-consuming (Jha et al., 2002), especially when modeling complex 

cyberattacks over long durations. Different tactics, techniques, and procedures (TTPs) listed in 

whitepapers or other gray literature are often written in human language, which may make it 

time-consuming to extract certain key action items not related to IoCs such as hashes or domain 

names. Additionally, Sun (2023) conducted cyber threat intelligence (CTI) mining from a variety 

of datasets and identified that its high-volume nature and quality control make it challenging for 

organizations to improve their threat posture.  

 While there has been works in automating CTI text extraction for automated attack graph 

creation (Li, 2022; Venkataraman & Drummonds, 2000; Zhu & Dumitras, 2018), most of these 
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tools abstract the indicators of compromise or specific technical details to address the issue of 

space and presentation. The more complex a given cyberattack is, the more difficult it is to 

model or account for all details contained within the attack itself. Large Language Models 

(LLM) such as OpenAI’s ChatGPT also present attractive opportunities to address the limitations 

of previous natural language processing techniques for accurate cyber defensive measures. There 

may be improved graph readability and white paper data extraction based on these 

advancements.  

 Regardless, attack graphs continue to serve as an important tool to model the 

chronological causal relationships between events. They allow security analysts to accomplish a 

wide variety of tasks, such as modeling network intrusions, summarizing and implementing 

proactive security defensive recommendations, and assessing a given host or network’s security. 

While there is a rich history of attack graph research endeavors and the definitions of an attack 

graph’s overall elements are well understood, there appears to be a gap in modeling and 

analyzing well-known cyberattacks, such as the SolarWinds supply chain breach. Using attack 

graphs to model the SolarWinds breach may help security analysts improve their overall cyber 

posture. 

Provenance Graphs 

A provenance graph is a directed graph that provides causal modeling between subjects 

(nodes) in relation to events or operations (edges) on a given system (Li, 2021). Because these 

edges are directed, provenance graphs have strong temporal and spatial properties (Li, 2021), 

which enhances investigation for event causality analysis. Li (2021) also emphasizes that 
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because provenance graphs demonstrate causality between events, they are synonymous with 

causality graphs. Additionally, there are also two different analysis techniques: backward 

tracking and forward tracking. Analyzing how a node came to existence refers to backtracking, 

where all the steps causally create the node. In contrast, forward tracking starts out with a node, 

but analyzes how this node impacts other nodes within the graph. 

 DARPA’s Transparent Computing program aimed to provide visibility into computer 

systems by developing technology to detect cyberattacks via different system events (DARPA, 

n.d.). This program arguably catalyzed the use of provenance graphs, and several implementation 

prototypes have been demonstrated to achieve high detection rates (Anjum et al., 2022; Han et 

al., 2020; Milajerdi et al., 2019). Milajerdi et al. (2019) specifically generates a high-level graph 

for analysts to respond to cyberattacks, where nodes represent TTPs, and edges represent the 

information flow between entities. Different symbols are also used to represent nodes. 

Furthermore, this field also showcases potential promise through its utilization of real-world 

datasets, thus making such graph-based applications from academia to industry valuable.  

 Al-Saraireh (2022) and Li et al. (2021) discuss issues and possible solutions related to 

provenance graphs. Notably, the lack of unified adversary datasets and data formats increases the 

barrier for researchers to develop novel detection solutions, as the only known, high-quality 

datasets are from the TC engagements. Another notable challenge is with node data reduction; 

generating and loading provenance graphs into a given system can be both space and time-

consuming, as they are typically implemented with databases (Li et al., 2021; Xie et al., 2013). 

Research endeavors focus on compression algorithms, which typically remove unnecessary 

nodes and their corresponding edges, but arguably, the removal of information usually comes 

with the removal of causality.  
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 Another challenge is the literature regarding the ineffectiveness of provenance graphs. 

Mimicry attacks in integrate benign subgraph(s) within the main provenance graph, such that a 

greater chance is derived for the detection ratings to move closer to the false positive decision 

boundary (Goyal et al., 2023). This attack method boasts a 100% success rate against different 

provenance-based detection systems. Coe (2014) also highlights that the way data is captured 

directly impacts how provenance graphs are created – in some cases some nodes are missed – 

thus calling for the use of different capture agents to increase overall coverage.  

 While provenance graph research arguably represents the next generation of detection 

technology for their ideal methods for modeling cyberattacks (Li et al., 2021), they may not be 

relevant for this thesis because of their focus as detection technology. Attack graphs can 

arguably be thought to offer visual representations of a cyberattack and aid security analysts in 

tasks, such as network hardening or cyberattack perception (Pirca & Lallie, 2023). Furthermore, 

as indirectly demonstrated with systems like HOLMES through high-level scenario graphs 

(Milajerdi et al., 2019), attack graphs could be used to represent attacks within a host or network, 

which may suggest that the two complement each other by serving different strategic purposes. 

Industry Frameworks 

There are several industry frameworks for modeling cyberattacks. Two of the most 

notable include the Lockheed Cyber Kill Chain and the MITRE ATT&CK matrix. Both model 

the techniques and procedures typically taken by adversaries and aid security analysts in 

mitigating cybersecurity threats. One key difference between the two is that the Cyber Kill Chain 
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focuses on a general sequence of events, while the MITRE ATT&CK matrix focuses on 

organizing TTPs into a table-like format.  

While attack graph nodes also employ various TTPs listed in the attack framework and 

demonstrate strong temporal relationships similar to the Kill Chain, they differ in that attack 

graphs focus on modeling a specific campaign where an adversary chains together system events 

to form an attack (Mell & Harang, 2015); in contrast, the Kill Chain focuses on providing a high-

level framework of the different stages of a cyberattack, and does not showcase technical events 

or details by itself. While the ATT&CK matrix does showcase TTP details through the 

corresponding techniques page, the level of specificity is often found within the corresponding 

tables, rather than immediately.  

There is also research on how well attack modeling techniques (AMTs) aid in 

communicating cyberattacks. Pirca & Lallie (2023) recruited 157 participants, ranging from 

computer science students to C-suite executives, and revealed that not only did participants 

overwhelmingly prefer attack graphs when understanding different cyberattacks, they also 

performed empirically better when questioned on topics such as attack identification. This 

highlights the importance of information presentation especially when it comes to post-attack 

analysis. Moreover, while the ATT&CK matrix may provide more detail than attack graphs, it 

requires more time for analysis. In contrast, the information in attack graphs may be reduced for 

visualization, but ultimately help individuals understand complex cyber threats by providing a 

high-level, yet detailed, overview of how the attack executes and traverses across a given system. 

Pirca & Lallie (2023) also demonstrates how attack graphs are a growing area of research 

popular in academia, while the MITRE ATT&CK matrix is popular in industry. Exploring the 
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potential synergy between these two frameworks by leveraging their respective strengths may 

improve visibility and analysis.  

 The Diamond Model of Intrusion Analysis models four key components (adversary, 

capability, infrastructure, victim) under a relationship of a diamond shape, which uses meta-

features to capture all aspects of a malicious event. It is a valuable tool for threat intelligence and 

complements the Cyber Kill Chain (Caltagirone et al., 2013) by providing granularity among 

complex relationships of events, but may not be relevant for this thesis as attack graphs are more 

suitable for visualizing paths within a given system or network. 
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Chapter 3  
 

SolarWinds Supply Chain Breach Attack Graph 

 

Figure 1: Overview of SolarWinds breach attack graph 

 Figure 1 illustrates a high-level overview of the attack graph, starting with the root node 

being the installation of the compromised SolarWinds Orion platform DLL (Microsoft Threat 

Intelligence, 2020a) and the end nodes typically representing the exfiltration of data. Nodes with 

high granularity are omitted for presentation purposes, as presenting the full attack graph 

negatively impacts visualization. This notion is expanded on in the limitations section.  
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Chapter 4  
 

Causality Relationships between Attack Activities 

This section aims to present the analysis of the generated attack graph on the SolarWinds 

breach through the various firsthand reports on technical analysis. Subgraphs and corresponding 

analysis are analyzed and used. 

Attack Graph Definition of the SolarWinds Attack 

The SolarWinds supply chain attack can be defined as an attack graph containing a series 

of ordered nodes defined by time. Figure 2 describes a snippet of an attack graph modeling the 

SolarWinds breach, which contains two main parts: nodes and relationships. Nodes represent 

computer events of different scales of granularity. Depending on granularity, some nodes 

represent simple events, such as the use of an XOR algorithm, while other nodes represent 

complex events, such as retrieving information from various sources to send to a command and 

control (C2) server. As commonly described in attack graphs, these nodes are organized by time, 

and thus, the previous nodes must have passed for the next to execute. Edges represent a 

relationship between node(s), which can be functions that are, but not limited to, reading, 

writing, or executing functions. 



18 

 

Figure 2: Snippet of attack graph format 

 Several nodes are organized and grouped into rectangles with a corresponding label at the 

top left. For example, the installation phase in Figure 3 presents how the backdoor requires 

several nodes to pass for the next node to execute. If any of the nodes fails, the attack does not 

continue. Subsequently, Figure 4 highlights the domain generation algorithm (DGA) group, 

which showcases three nodes that are responsible for the generation of a unique string of 

characters to be used for the subdomain of a C2 server. In the event the backdoor fails to retrieve 

or in any way cannot access these values, the C2 server may not respond properly, causing the 

attack path to deviate away from the created attack graph.  
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Figure 3: Initial installation of trojanized update 

 

Figure 4: Dynamic generation of C2 URI 

 Furthermore, the adversaries used different variants of the same phase to progress to the 

same objective. These are represented with rounded rectangles, such as the one showcased in 

Figure 2. This is demonstrated with TEARDROP, where the adversaries were careful in 
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separating the SolarWinds backdoor from the Cobalt Strike beacon by using two variant loaders 

to load Cobalt Strike to memory (CDOC & Microsoft Threat Intelligence, 2021). 

 As a result, the SolarWinds breach is comprised of events, which are represented as 

nodes and organized such that each node is either a precondition for subsequent node(s), or a 

post-condition result from preceding node(s). Furthermore, a collection of nodes, or subgraphs, 

can be a precondition for two or more subgraphs. 

Summary and Analysis  

The genesis node of the attack begins with the installation of the trojanized SolarWinds 

update (Microsoft Threat Intelligence, 2020a), as showcased in Figure 3. Several nodes follow, 

which all primarily perform checks to ensure that the malware is not running in a test 

environment. Once these nodes have passed, the next stage of the attack begins. If any of these 

conditions are not met, the program terminates (Microsoft Threat Intelligence, 2020a). 

 The sample then follows a relatively linear set of nodes to ensure smooth operation. 

FireEye (2020) and Microsoft Threat Intelligence (2020a) present detailed analysis relevant to 

the early execution of the SolarWinds breach. The first node creates a pipe to guard that only one 

instance is running before reading a configuration file from disk and retrieving the XML field 

appSettings (FireEye, 2020). Such reading ensures that the malware operates as intended with 

the desired parameters.  

 The extensive use of blacklists against security related software is well documented 

(Check Point Research, 2020), however, such circumventions rooted from a newly installed 

program showcase an important precondition for the attack to continue, as ideally such analysis 
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directly addresses the question of the SolarWinds detection problem. Potentially, by quarantining 

or monitoring such calls – especially for newly installed programs or updates, – the toolkits for 

detecting such tactics can be strengthened. 

 More interestingly, after a relatively long period of delay, the sample then begins to 

check-in with a C2 server to send basic information about the environment and receive 

commands (Microsoft Threat Intelligence, 2020a). From this subgraph, we can derive that the 

postcondition of the installation of the trojanized update is the actual contact with the external 

server, and such postcondition occurs after blacklist verification. However, Figure 4 showcases 

how the adversaries employ unusual tactics to create the C2 domain by gathering information 

from a diverse range of sources, which is then used to dynamically generate the actual URI. The 

DGA contact group reveals the three core nodes used: the physical address of the NIC, the 

domain name, and the content of the MachineGuid registry value (Microsoft Threat Intelligence, 

2020a). 

When these conditions are met, the sample generates the domain and contacts the C2 

server. If a response is received, the connection is successful, and the adversaries move to the 

next stage by performing hands-on keyboard attacks (Microsoft Threat Intelligence, 2020a). 

Most activities seen on compromised networks typically do not advance past reconnaissance, 

highlighted by the fact that fewer than 100 networks of the 18,000 total customers were impacted 

by SUNBURST (Ramakrishna, 2021c). 

 As a result, the main requirements can be derived from the beginning subgraph 

composing of the nodes from the installation of the trojanized SolarWinds update to the 

preliminary information sent to the C2 server. This subgraph represents the key prerequisite for 

the rest of the attack to continue. Additionally, the precondition subgraph splinters in two post-
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conditional attack subgraphs: one aims to achieve off-premises access to cloud resources through 

an attack vector known as a Golden SAML attack, while the other attempts to load a Cobalt 

Strike beacon. This is a result of the attack graph’s ability to persevere temporal relationships, 

and as such, two subgraphs can be derived from the main graph. Security analysts can learn from 

the attack graph’s representation to view the attack from a different perspective through this 

rearrangement of data. 

 Further analysis reveals the first subgraph, presented in Figure 5, primarily focuses on 

forging a SAML token used to access resources. To achieve this, the adversaries aim to gain 

persistence on the system with various techniques; Microsoft Threat Intelligence (2020a) 

outlines the use of Powershell and rundll32.exe, with specific commands showcased.  

 Because persistence is achieved, the adversaries shift to post-conditional nodes of hands-

on keyboard attacks to “obtain domain permissions” via on-premises intelligence gathering, 

lateral movement, and credential dumps (Microsoft Threat Intelligence, 2020b). These 

precondition nodes are required for the adversaries to acquire valid SAML tokens through two 

main methods: (1) add their own certificate(s) as trusted entities by adding or modify existing 

federation trust properties; or (2) steal the SAML signing certificate to sign their own SAML 

token (Microsoft Threat Intelligence, 2020b). Both paths forge valid SAML tokens to establish 

persistence, access cloud resources, or exfiltrate email. 

 While the abuse of Powershell and rundll.exe are not new techniques, they still represent 

the challenge of adversaries “living off the land” of binaries (Lenaerts-Bergmans, 2023a). By 

using existing tools on a given system, adversaries avoid the need to request and install malicious 

code, thus avoiding potential traffic or antivirus programs detecting malicious signatures. 

Lambert (2021) highlights how traditional IoCs, such as file names or hashes are too imprecise; 
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Lenaerts-Bergmans (2023a) instead argues for the shift away from traditional IoCs, where 

forensic artifacts of adversary activity are detected, and rather to IoAs (indicators of attack), 

which uses dynamic combinations of behaviors within a system to determine a breach in 

confidentiality. 

 

Figure 5: First subgraph detailing SAML abuse (Golden SAML attack) 

 Analysis of the second subgraph shifts to the installation of additional malware, 

specifically Cobalt Strike and custom malware for compromised networks. After the C2 server 

responds with encoded commands, the backdoor then begins the second-half portion of the attack 

to separate the SolarWinds backdoor to the execution of Cobalt Strike. Two key critical nodes 
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are in the form of files created by the backdoor: a VBScript and a DLL containing the Cobalt 

Strike beacon. An IEFO registry value triggers an executable (wscript.exe), which runs said 

VBscript, which finally runs the malicious DLL (CDOC & Microsoft Threat Intelligence, 2021). 

 Depending on the network or company in question, there are several known custom 

Cobalt Strike DLLs that load Cobalt Strike into memory. CDOC & Microsoft Threat Intelligence 

(2021) describe two main variants as showcased in Figure 6. The first outlines two DLLs that 

contain an export function that spawns a new thread and triggers malicious code in said thread. 

The code checks a variety of data, such as image files and registry values before decoding and 

running the Cobalt Strike loader (CDOC & Microsoft Threat Intelligence, 2021). The second 

variant, however, directly runs the malicious code from the DLL’s entry point, which CDOC & 

Microsoft Threat Intelligence (2021) further break down into two types of DLLs that either 

decode and run Cobalt Strike from the DLL’s DATA or CODE section. Both ultimately result in 

the execution of the Cobalt Strike Reflective Loader. Symantec also describes a third variant 

dubbed RAINDROP, which is a DLL built on 7-Zip source code. Upon loading, the DLL starts a 

new thread, performs unrelated tasks, finds the start of the encoded malicious code, and 

subsequently decodes and executes the malicious code (Threat Hunter Team, 2021). 
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Figure 6: Cobalt Strike loading into memory 

 Attack graph analysis showcases an interesting theme through the use of decryption, 

decompression, and obfuscation methods to use the malicious code when needed. While omitted 

in the graph for presentation purposes, monitoring the use of these decoding or decryption 

algorithms, and more importantly, the results of said methodologies, may be fruitful for detection 

purposes.  

 The last stages of the attack outline several tools discovered during the late stages of the 

SolarWinds breach, after the adversaries gained access “through compromised credentials or the 
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SolarWinds binary, and after moving laterally with TEARDROP” (Ramin, et al., 2021). These 

ultimately represent post-conditions of the prerequisite subgraph of the Cobalt Strike beacon 

installation. Ramin, et al. (2021) describes how GoldMax (malware for additional C2 

communication) undergoes several stages to establish and receive instructions from a server. 

During the setup process, GoldMax checks for certain values and terminates if unable to do so. If 

these stages pass, it then sets up a configuration file used to set up its runtime environment, using 

embedded values or values that an operator can adjust. Within the file is an activation date, and if 

the times match, it then establishes a session with the C2 server to get a session key, and all 

commands and responses are encrypted with said session key. 

 Prerequisite analysis during the end stages of an attack may be challenging, as 

adversaries typically have privileged access to a wide variety of systems or networks, and 

resulting nodes are post-conditions as a result. However, a common theme, as seen in GoldMax 

and RAINDROP, is the use of delayed execution, whether from the use of the sleep() function, 

dummy computations, or other means of delay. MITRE ATT&CK lists these tactics as 

T1497.003, which are known techniques commonly used to circumvent automated antivirus 

detection. 

 Ramin, et al. (2021) also describes Sibot, a VBScript file that runs as a task. It reaches 

out to a C2 server to download a DLL to a folder under System32, which is then run by 

rundll32.exe. Three obfuscated variants are revealed in Figure 7: the first installs the script under 

the registry key value, the second runs a Powershell command daily, and the third is a standalone 

version that runs as a file. From there, the script reads certain values on the machine before 

establishing a connection to the C2 server, where data about the given system is sent.  
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Figure 7: Attack subgraph of Sibot 

 GoldFinder is aimed to identify HTTP proxy servers and redirectors that would hinder C2 

communication. It issues an HTTP request to a hardcoded IP address and logs responses into a 

log file (Ramin, et al., 2021). Figure 8 displays the relatively straightforward execution path of 

the malware. 

 

Figure 8: Attack subgraph of GoldFinder 
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 Existing literature has focused on the prevention or detection of malware samples 

contacting C2 servers (Davanian et al., 2021; Villeneuve et al., 2012; Zhao et al., 2015), and the 

attack graph points to the same conclusion. As an example, the adversaries use a sophisticated 

command and control domain generation algorithm (DGA) to send and receive commands for 

network footprinting. The groups of nodes are highlighted in Figure 4. Without the successful 

retrieval of these node’s events, the contact stage would fail, and thus the attack progress would 

be delayed. The adversaries have also demonstrated considerable efforts in separating the 

backdoor from the trojanized update to maintain their foothold in the network, emphasizing the 

initial subgraph as a core precondition that kick-starts the rest of the attack. These nodes are 

showcased under the Cobalt Strike section, where the use of both TEARDROP and RAINDROP 

were used on hosts as a loader for the Cobalt Strike Beacon and further hands-on keyboard 

attacks (Threat Intelligence Team, 2021). 

 Additionally, there are several individual nodes that must occur for attack progression. 

One such node is the root node: the installation of the trojanized SolarWinds update. Its 

relationship with the remaining nodes represents the relationship of the graph. However, it is also 

important to note that some of these – and other – potential nodes are omitted due to three main 

reasons: (1) atomic attributes: some nodes and corresponding details are too granular and may 

not be relevant for broader visualization purposes; (2) space complexity, as such precise details 

may not help security analysts or other individuals understand the attack; attack graphs are best 

used to present a high-level overview of a complex cyberattack to individuals, such as security 

analysts or high-level decision makers (Pirca & Lallie, 2023); (3) unclear edge relationships, as 

there are subgraphs or fragmented graphs that have unclear temporal relationships with the main 

graph, thus creating unclear edge relationships. 
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Utility of the Attack Graph for Security Analysts 

Attack graphs ultimately help security analysts by providing a visual representation of the 

series of ordered nodes taken during a cyberattack. For instance, Li et al. (2016) highlights that 

attack graphs assist in identifying the most vulnerable resources and overall risks within a given 

network. Jha et al (2002) also emphasizes how attack graphs can form the “basis for detection, 

defense, and forensic analysis,” such that analysts may opt to redirect focus and resources on 

critical nodes that may lead to significant changes and disruptions.  

Subsequently, analysis for the attack graph showcases four key resources: network 

access, Powershell and rundll32 use, access to decoding, decryption and deobfuscation functions, 

and use of extensive blacklist checks. Network access is critical for communication and control, 

as many malware samples require the use of hands-on keyboard attacks to progress further into 

the network. Powershell and rundll32.exe usage are also common methods to abuse legitimate 

applications for illegitimate purposes, as well as deriving clean process trees for malware usage. 

Monitoring deobfuscation methods, such as hashes and encryption methods, especially the 

eventual plaintext results loaded, can reveal critical information about the functionality of 

malicious code. Finally, the extensive query and comparison function calls for blacklists may 

reveal anti-forensic methods being used.  

 Attack graphs, as demonstrated within this paper, also aim to integrate the wide variety of 

threat intelligence reports into one cohesive picture. Ren et al. (2022) reiterates this idea by 

emphasizing on how knowledge graphs change the expression of threat knowledge for accurate 

decision making, and that the timely sharing of CTI information means shorter response times. 

Specifically, by combining intelligence reports into a cohesive picture, attack graphs can break 

down complex ideas into presentable or understandable formats (Ren et al., 2022). Furthermore, 
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attack graphs may play a vital part in judgment and informed decision making on the allocation 

of resources and for viewing the organization's overall security posture. 

 Building on this, there is research showcasing the efficacy of attack graphs in 

communicating cyberattacks. Attack graphs enhance attack perceptions, such that individuals 

tend to perform empirically better when analyzing what happened in a cyberattack when 

compared to the MITRE ATT&CK matrix (Pirca & Lallie, 2023). Arguably, by providing a 

high-level overview of how the attack executes and traverses across a given system, the 

decreased time for analysis and ease of understanding for what the cyberattack entailed, security 

analysts are better equipped to identify the overall risk of a given network (Li et al., 2016). 

Lallie, et al. (2020) also focuses on the importance of improving cyber security perception and 

usability in systems, such as attack graphs, arguing that such efforts reduce the difficulty of 

understanding complex attack patterns. 
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Chapter 5  
 

Discussions and Limitations 

This research aimed to use attack graphs as an attack modeling tool to model the 

SolarWinds supply chain attack via threat intelligence reports. Analysis was performed on the 

graph, with a focus on temporal organization and prerequisites required. However, there are 

several limitations to both the construction of the attack graph and its analysis.  

Graph Representation 

The main limitation regarding the attack graph format is its size, such that the full 

representation of the graph cannot be presented. As the breach consists of a multitude of events 

and attack patterns, and more than 100 indicators of compromise were derived and organized, 

formatting such events into a model discernable at a glance is challenging. While the paper 

addresses this via snippets of the graph and presents analysis through text, this may not be 

feasible for using attack graphs for other analysis situations.  

Large attack graphs are a known problem within attack graph research (Al-Araji et 

al.,2021; Mell & Harang, 2015). Zenitani (2023a) highlights the scalability problem by 

demonstrating a small network with 𝑛 computers with 𝑚 vulnerabilities, such that each 

vulnerability can be exploited or not, meaning that there are 2𝑚𝑛 possible network states. Li et 

al. (2016) also highlights the challenge that large-scale networks increase overall complexity due 

to their large number of hosts and attack paths, which makes analysis challenging as there is too 

much information. Even so, there are several surveys outlining research works (Lallie et al., 

2020; Li et al., 2021; Zeng et al., 2019; Zenitani, 2023a) attempting to reduce the amount of 
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information on attack graphs. Future research into presenting and analyzing the efficacy of large 

attack graphs in such formats may offer valuable insights into their communication benefits. 

Imperfect Information 

An accordingly surplus of detailed first-hand account cyber threat intelligence reports 

exists, making it challenging to gain a comprehensive picture while also balancing the formatting 

of the attack graph. Combined with the manual extraction of events and node organization, there 

is bound to be missed information, either through the omission of granular nodes, the absence of 

key gray literature or other misinterpretations of the adversary’s intricate maneuvers throughout 

the campaign.  

 More interestingly, the research work is limited to the number of whitepapers that 

publicly exist. As the ratio between total SolarWinds customers and actual organizations 

breached by the adversaries is small, different attack patterns occurring in one organization may 

not be applicable to another organization. Microsoft Threat Intelligence (2020b) sheds light on 

this idea in how the attack, particularly in its late-stage activity, is customized, thus reaching a 

point where the attack trajectory diverges. As a result, subgraphs occurring in the later stages of 

the attack graph exhibit unclear temporal relationships with its surrounding context, as the 

precise order for where or how these tools were integrated are ambiguous. Thus, the attack 

graph’s applicability for specific organizations diminishes further down each attack path. 

 One issue discussed earlier in the paper is the idea of how detailed a node should be, as 

the more granular a node is, the more nodes are required to represent an event. Omitting certain 

events from the attack graph may improve clarity, but also contribute to gaps in an attack path, or 
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weak causality relationships between nodes. Furthermore, even with highly granular events 

included, the efficacy of the attack graph is best when presented to security analysts as a high-

level overview (Pirca & Lallie, 2023). 

Poor Representations for Alternative Flows 

The generated attack graph generally provides a single, static view of an attack, however, 

there may be similar attack graphs that model the same breach but differ in specific subgraphs. 

This is best demonstrated with GoldMax during the file setup process (Ramin, et al., 2021). 

During the initial execution, GoldMax follows a set of instructions that are then abandoned upon 

subsequent executions. Factors such as loops, pauses, and if-else statements are inaccurately 

represented or not adequately captured in the attack graph, however, such conditions are 

common within malware analysis. Thus, attack graphs, similar to the Kill Chain, can assume that 

a linear set of nodes are taken to eventually reach a desired state, and that such a set is universal 

for any system or network. However, this assumption overlooks the nuanced reality where 

multiple attack paths may be achieved. 

Future Research 

As emphasized in existing literature and demonstrated in this paper, researching attack 

graph standards and their effect on cyber perception can be a fruitful endeavor for risk 

communication and cyber posture analysis. There also exists little integration with industry 

frameworks, such as the MITRE attack matrix or the Kill Chain compared to attack graphs, 

however, there may exist benefits when merging these AMTs. Lastly, this paper does not attempt 
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to survey the communication efficacy of the created attack graph to other individuals. While 

existing research agrees that attack graphs have scalability concerns, there is sparse research on 

modeling complex cyberattacks with attack graphs, or testing said graphs against various 

stakeholders. Such concerns may be outweighed by potential benefits. 
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Chapter 6  
 

Conclusion 

The SolarWinds supply chain breach demonstrated the significant risks third-party 

software has on organizations. While the security industry witnessed the rapid and open sharing 

of information for reactive cyberdefense, they underscore the need for preventative measures to 

mitigate – or block – such incidents in the future. As demonstrated in this thesis, attack graphs 

showcase a promising approach for identifying root causes of security incidents. Its strong 

temporal and causal relationships mapping via critical nodes, combined with its enhanced visual 

representations in assessing cyber threats and network defense postures may bring insight into 

what resources and time security analysts should dedicate to. The major contributions to the 

surrounding literature include modeling the breach as an attack graph through a synthesis of 

indicators of compromise. Subsequent analysis was shown via critical nodes to shed light into 

novel conditions on progression. Future research work may include standardizing novel 

formatting and visualization techniques as well as surveying the impact graph scalability has on 

security analysts. 
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Appendix A 

 

Initial Graph: Trojanized Update Setup 
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Appendix B 

 

Subgraph 1: SAML Attack 
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Appendix C 

 

Subgraph 2a: Backdoor Separation 
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Appendix D 

 

Subgraph 2b: Late-Stage Custom Tools 
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