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Abstract

The final years of Red Supergiant (RSG) stars present a challenging observational window.
However, insights gleaned from photometric and spectroscopic measurements of Type II-P super-
novae reveal evidence of eruptive mass loss events in these stars, which precede supernova shock
breakout (SBO) by months to years. With limited observation and modeling capabilities within
this critical timeframe, the driving mechanisms behind these eruptions, their manifestations, and
subsequent impacts on stellar evolution remain elusive. In this paper, we construct and train a
Convolutional Neural Network to detect precursor eruptions within light curves. The network is
designed in preparation for the forthcoming Vera C. Rubin Legacy Survey of Space and Time
(LSST), a 10-year Southern sky survey anticipated to revolutionize transient observations. We
develop models of eruptions and wield them to simulate realistic light curves in the depth and ca-
dence of LSST for network training. Our study estimates a predicted detection rate of ∼ 11 − 50

precursor events per year, depending on different parameter distributions. The network exhibits
strong performance for nearby events, with reliable detections achievable up to z ≲ 0.03. In cases
where precursors remain undetected, our network can still offer significant insights by delineating
the limits of potential precursor events. These insights will contribute to a deeper understanding of
the nuanced processes underlying stellar evolution and transient phenomena.
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1.1 Late-Stage SNe II-P Precursor Mass Loss

Hydrogen-rich Type II-P supernovae (SNe II-P) are the most common type of core-collapse
supernovae, characterized by a ”plateau” feature in their light curves. Their progenitor stars are
primarily red supergiants (RSGs; although other types such as blue supergiants and yellow super-
giants can explode as SNe II-P [3, 4]). The physical conditions preceding these SNe (especially
within the final years of stellar lifespan) are difficult to observe. They are, additionally, extremely
difficult to model, as the time frames are very short in comparison to the large-time steps of full-
lifetime stellar evolution codes. Circumstellar material (CSM), however, can allow insight into the
progenitor star mechanisms and environments [5].

Multi-band observations of red supergiants (RSGs) reveal a surplus of circumstellar dust sur-
rounding the stars. Specifically, emission from these stars in the infrared (IR) band detected via
photometry and spectroscopy indicates this surplus, as dust re-emits photons in the IR. High, vari-
able levels of extinction measured in RSG observations are also attributed to dust (the variability
suggests this dust is produced irregularly) [6]. The presence of this CSM is evidence for significant
mass loss during the RSG phase of evolution, when surface gravity is low [7].

The mechanisms that drive RSG mass loss are uncertain. The temperature of these cooler
stars (∼ 3500 − 4500 K) is not sufficient for line-driven winds (i.e. winds generated by radiation
pressure on spectral lines). Dust-driven winds may contribute to enriched CSMs [7], however, this
implies a simple relation between luminosity L and Ṁ ; in empirical measurements of RSGs, there
is significant scatter in this relation, indicating that this mechanism cannot be the only form of
mass loss at play [8, 9]. There is, additionally, evidence for eruptive, episodic mass loss: spatial
interferometric measurements reveal that the circumstellar dust often takes asymmetric, shell-like
configurations [10, 11]. Other proposed drivers of mass loss include:

• Radial pulsations caused by partial hydrogen ionization. The pulsations could generate
shocks and dust waves that boost stellar winds. Models of this phenomenon by Yoon &
Cantiello (2010) find that it can potentially drive mass loss rates up to ∼ 10−3 M⊙ yr−1 [12].

• Dissipation of Alfvén waves, in which a propagating magnetic field drives ions through the
stellar material and boosts winds. It is not known exactly how much this process ampli-
fies mass loss. Hartmann & Avrett (1984) modeled Alfvén wave mass loss in Betelgeuse,
assuming the mechanism drove a mass loss rate on the order of 10−5 M⊙ yr−1 [13].

• Supra-Eddington mass loss, in which the Eddington limit drops below the stellar luminosity,
causing enhanced mass expulsion [7, 8]. One such model of this process found mass loss
rates of ∼ 10−5 M⊙ yr−1 and calculated a minimum mass of stars undergoing it (∼ 20M⊙)
which is higher than the most luminous II-P progenitors [14, 15].
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Mass loss rates play a significant role in determining the evolution of the RSG [5]. As a result
of the uncertainty in mechanisms, these rates can not be determined from first principles. Instead,
astronomers rely on empirical observations to inform stellar evolution models and, subsequently,
SN light curve models [16].

Current models of SNe II-P fail to replicate key features observed in II-P light curves; specifi-
cally, the SNe exhibit brighter, hotter peaks in emission and shorter rise times. An example of one
such II-P lightcurve (SN 2016bkv) is shown in Figure 1.1. Additionally, shock breakout (SBO;
when the SN shock breaks through the star) of these lightcurves can extend to the timescale of
days, rather than the expected timescale of hours. These disparities indicate the presence of an
unaccounted-for circumstellar medium (CSM) surrounding the progenitor at the time of SBO [17].
The CSM shell enhances SNe luminosity by transforming the kinetic energy of the ejected mate-
rial into thermal energy. This, combined with the extended radius formed by the shell, explains the
accelerated and bright peaks observed in the light curves. Extended SBO is attributed to the shock
having to break out of an optically thick shell at a larger radius [18].

Figure 1.1: Reproduced from Nakaoka et al. (2018) [1]. The r-band light curve of SN2016bkv
(black), a II-P SN which displayed a fast, bright peak within the first ∼ 7 days following SBO.
The light curve is compared with those of other II-P SNe (1997D, 1999br, 2002gd, 2003Z, 2006ov,
2009md, and SN1999em.)
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Furthermore, SNe II-P observations are accompanied by flash-spectroscopic measurements
that reveal narrow hydrogen emission lines [19]. These lines only appear within tens of hours
to days following SBO and are attributed to shockwave interaction with the circumstellar shell, in
which the material comprising the CSM is photoionized by the SN light [20]. Their features (e.g.
strength, width, and duration) illuminate characteristic features of the CSM; notably, the short-
lived presence of the emission lines indicates a circumstellar shell that is dense and compact, and
consequently likely arises from eruptive mass loss events within the final months to year of the
progenitor’s life [21, 22]. Mass loss rates Ṁ ∼ 10−4 − 10−2 M⊙ yr−1 are inferred (via radiative
transfer stellar models) from these spectra [19].

The most cited physical explanation for the described precursors attributes them to late-stage
nuclear burning of oxygen, neon, and silicon in the stellar core. In this model, introduced by
Quataert & Shiode (2012; 2014) [23, 24], convection in the core generates gravity waves that
transfer energy into the stellar envelope, ultimately resulting in an eruption and mass ejection into
the surrounding stellar environment. Models of this hypothesized phenomenon by Morozova et
al. (2020) [17] and Wu & Fuller (2021) [25] find energy injections of 1046 to 1047 ergs into the
stellar core produce eruptive events and subsequent SN interactions that can explain observed LC
features. These eruptions are capable of ejecting up to a solar mass of material into the CSM [26]
and would occur within the final years preceding the SN (or, in the case of eruptions generated by
silicon burning, the final weeks) [27].

1.2 Previous Precursor Detections

Precursor events have been observed in Type IIn SNe, accompanied by evidence of shockwave
CSM-interaction in spectra [28]. Some notable outbursts include those which preceded SN 2009ip
[29, 30], 2010mc [31], 2011ht [32], iPTF13z [33], LSQ13zm [34], 2016bdu [35], 2018cnf [36].
However, only one unambiguous precursor detection has been made in a Type II-P SN; optical
observations of pre-SN emission paired with flash spectroscopy evidence of CSM presence indicate
an eruptive event preceded SN 2020tlf [19]. More observational data of pre-SN eruptions can
potentially serve as a probe to demystify large uncertainties regarding their nature (e.g. timescales,
occurrence rates, progenitor populations, driving mechanisms, and more).

1.3 Vera C. Rubin Legacy Survey of Space and Time

The Legacy Survey of Space and Time (LSST) [37] is an upcoming 10-year, deep-field survey
of the southern sky by Vera C. Rubin telescope in northern Chile. The survey, anticipated to begin
operations in 2025, will collect observations in the ugrizy bands over approximately 18,000 deg2
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of the sky every 3 days [38]. One of LSST’s primary science goals is transient discovery. The
survey’s deep, wide, and temporally compact coverage will dramatically increase current catalogs
of transients (∼10 million alerts are expected every night) and unveil unprecedented volumes of
new objects (including previously unseen types) [39].

We expect precursor observations to increase with these new catalogs. The survey’s 3-day ca-
dence allows for the detection of short-lived events such as the expected eruptions. In anticipation
of LSST, now is the optimal time to construct detection pipelines capable of sifting through the
mass light curve data outputs to discover precursors and enrich current scientific understandings of
their nature.

1.4 A Precursor Detection Pipeline

In this paper, we construct an algorithm utilizing machine learning to detect pre-SN emission
in LSST light curve data. In Chapter 2, we describe our adiabatic model of precursor eruptions
and subsequent generation of synthetic light curves. Chapter 3 discusses the design of our convo-
lutional neural network, which classifies whether given light curves contain precursors. In Chapter
4, we evaluate the detection capacity of our algorithm. We conclude in Chapter 5
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Chapter 2

Producing Neural Network Training Data



7

2.1 Adiabatic Eruption Model

To simulate realistic light curves, we first develop a model of the pre-SN bursts. In our model,
the eruption produces a CSM shell, expanding from the progenitor star radius, R0, at a constant
velocity v, such that

R = R0 + vt (2.1)

where t is the time since the burst onset. The shell radiates as a blackbody spectral energy dis-
tribution (SED); its luminosity adheres to transient adiabatic expansion (i.e., without a heating
source):

L = L0e
−t
t0 (2.2)

[40, 41]. In this equation, L0 denotes the initial injected luminosity of the burst. The eruption
diffusion time, t0, is calculated as

t0 =
κM

βcR0

(2.3)

where c refers to the speed of light, the opacity κ is set to H-rich opacity .3 cm2/g, β is a constant
determined by the density profile [42] which we set to 13.7. The ejecta mass, M , may vary (free
parameter constraints are discussed below).

The shell inflates until the black body temperature falls to the hydrogen-recombination temper-
ature (3000 K). After reaching this point, it begins contracting to maintain a constant temperature.
The model spans the duration of a year from burst onset.

Three free parameters may be varied to produce diverse sets of models: ejecta mass M , ejecta
velocity v, and injected burst luminosity L0. We range ejecta mass values between .1 − 1M⊙,
ejecta velocity between 50−1000 km/s, and injected burst luminosity between 105−107L⊙. These
ranges reflect those predicted in wave-driven precursor eruption simulations by Fuller (2017) [26]
and Matsumoto & Metzger (2022) [27]. Figures 2.1 and 2.2 display the model diversity over
parameter spaces.
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Figure 2.1: Bolometric light curves of the model eruption plotted over the ranges of free parameters
M and L0. In the top graph, M ranges while L0 remains constant at 106L⊙ and v is held constant
at 50 km/s. In the bottom graph, we range L0 and hold M = 1M⊙ and v = 50 km/s constant.
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Figure 2.2: Model diversity over burst luminosity L0 (top) and velocity v (bottom). These plots
present the time (in days after eruption) of hydrogen recombination (when T = 3000), the initial
temperature T0, and the luminosity at the time of recombination over L0 and v parameter ranges.
In the upper graph, v = 50 km/s and M = 1M⊙. In the lower, L0 = 106L⊙ and M = 1M⊙.
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2.2 LSST Light Curve Simulation

We use the simulation software OpSim (Operations Simulator) [43] to generate light curve
sets of our modeled eruptions for use in neural network training. OpSim’s high-precision model
reproduces internal mechanical conditions and constraints of the LSST telescope system along
with the observing patterns and scope. It simulates weather patterns and environmental factors
that affect time-series data, producing realistic light curve data of the synthetic observation in the
survey cadence.

Each light curve injects a model at a random sky location (within the LSST field), modified
Julian date (MJD) time, and redshift. Each injected model is also randomized in parameter space
within the ranges denoted in Section 2.1. LSST light curves contain AB magnitude data in the
ugrizy bands. Our training data set includes light curves in which no eruption is injected, to allow
the the network to learn how to classify precursor presence.

Figure 2.3: Example simulated light curves of injected 1M⊙ eruption with a 50 km/s ejecta velocity
and 106L⊙ initial luminosity at redshifts z = .002 (top row) and z = .005 (bottom row). Light
curves (scatter) are plotted over the underlying model (solid line) in the ugrizy bands. The time
t = 0 refers to the time of eruption.



11

Chapter 3

Classification Neural Network
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3.1 Convolutional Neural Network

In this chapter, we discuss our classification neural network (NN), which is used to detect
precursor eruptions in LSST light curves. Initially, our efforts focused on constructing a Recurrent
Neural Network (RNN) for this task, a popular choice for handling time-series data due to its
intrinsic memory mechanisms [44]. RNNs are adept at processing sequential data, such as speech
or handwriting recognition, by incorporating information from previous inputs at each sequential
data point. However, our attempts with the RNN proved unsuccessful in effectively classifying the
light curves. The dimness of our eruptions and general variability of the light curves may have
contributed to RNN limitations, along with the large gaps featured in LSST data.

Instead, we develop a convolutional neural network (CNN) [45] capable of taking in light curve
data and classifying the presence of a pre-SN eruption. This type of network contains convolutional
layers, which perform convolutions over two-dimensional data. It is often used for images, as the
convolutional layers are well suited for pattern recognition tasks. Convolution takes a tensor of
numbers (called a kernel) and slides it along the input data tensor, computing the element-wise
product of the overlapping section at each ”slide” location. Refer to Figure 3.1 for a depiction of
this mapping. These convolutions are capable of distinguishing features in the data, such as edges
or shapes in an image, depending on the specific kernel used. The process of training the CNN,
then, includes optimizing the kernels used in these layers according to the given problem. After
convolution, the layer passes the data through a non-linear activation function. The non-linearity
is essential for the network to learn, as it allows it to discern more complex patterns and features
of the data that cannot be described linearly.
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Figure 3.1: Depiction of the convolution of a two-dimensional input tensor, reproduced from Ya-
mashita et al. (2018) [2]. At each section that the kernel slides over, the matrix sum of the section
and kernel is mapped to a new, output tensor (labeled ”Feature map”).
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3.2 Gaussian Interpolation of Light Curves

LSST light curves, as presented in Figure 2.3, are not in the two-dimensional form required
for CNN input data. Our pipeline thus must include a pre-processing step, in which light curves
are interpolated via Gaussian Process regression (GPR). We use a two-dimensional kernel that
computes covariance over wave band and time (these are then the two dimensions of our NN input
matrix). Our kernel is optimized via the Python-based package george [46].

3.3 Network Architecture

The architecture of our network contains 2 convolutional layers, which feature ReLU (Rectified
Linear Units) activation functions. The initial layer encompasses 64 filters, followed by the second
layer with 32 filters. A flattening layer transforms the preceding matrix into a vector passed on
to a fully-connected dense layer. This layer employs a Sigmoid activation function for binary
classification and is followed by a final 2-neuron dense layer. For optimization, the model is
compiled with the Adam optimizer [47] and utilizes a Binary Cross-Entropy loss function. This
type of function, typically used for binary classification problems, gives a continuous measure of
accuracy which is favorable for gradient-descent optimization. We train the data on a set of ∼ 104

simulated light curves. Efficiency results of this network are explored in Chapter 4.

3.4 Detection Network for Pan-STARRS Light Curves

Our eruption model has recently been used in a pre-SN analysis of SN 2023ixf, a recent Type
II SN of a dusty RSG progenitor star in the Pinwheel Galaxy (M101), by Ransome et al. (2023)
[48]. This study searched for a precursor eruption preceding the supernova in light curve data from
the Pan-STARRS observatory [49]. Photoionization lines in flash spectroscopic measurements of
the SN imply the presence of a compact CSM surrounding the progenitor generated by heightened
mass loss; Jacobson-Galán et al. (2023) used spectral modelling to constrain this CSM to radius
r = (.5− 1)× 1015 cm [50].

Ransome et al. constructed a multi-layer perceptron network (MLP). MLPs are ”feed-forward”
neural networks, meaning information travels in the forward direction exclusively (CNNs are also
feed-forward, however, RNNs are not, as information ”loops” in order for the network to retain
memory from previous inputs) [51]. These networks consist of an input layer, at least one hidden
layer, and an output layer, and are powered largely by their non-linear activation functions.

The network was trained on light curves constructed in the depth and cadence of Pan-STARRS
data with injections of our model. The distance and ejecta velocity were fixed at the distance of
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M101 (6.9 Mpc) and the measured velocity obtained from flash-spectroscopic measurements by
Zhang et al. (2023), which found vej ∼ 50 km/s [52]. Burst luminosity, ejecta mass, and progenitor
radius are then the remaining free parameters specific to the eruption.

The study found no detectable eruption present in the light curve data. The absence of detection
allowed strong limits to be placed on the luminosity and ejecta mass of any eruption that did take
place. By generating network efficiency curves over free parameters, Ransome et al. were able to
constrain the burst luminosity to L0 < 5 × 104L⊙. An upper limit for the ejecta mass of .3M⊙

was also found, which is consistent with other estimates of CSM mass of ∼ 5× 10−5M⊙ [53] and
.001− .03M⊙ [54].
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Chapter 4

Network Capabilities and Discussion
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We now evaluate the efficiency of our network in detecting precursors as a function of our
free parameters. This efficiency data allows us to predict distances at which precursor detections
are possible, and, subsequently detection rates. Moreover, this analysis provides insight into the
populations of eruptions–in terms of where they fall in parameter space–that our network can reli-
ably detect. Once the network is in use, understanding its performance capabilities over different
population distributions opens the possibility of reversing the problem and determining parameter
populations from empirical detection rates. Subsequent conclusions may be drawn regarding the
underlying process driving pre-SN eruptions.

4.1 Parameter Space Efficiency

We begin by investigating how our network performs over the three free parameters specific to
our model: ejecta mass, ejecta velocity, and burst luminosity. To do so, we calculate the CNN’s
completeness–i.e., the fraction of bursts that it successfully detects as a function of these param-
eters. In figure 4.1, we create two-dimensional plots of this metric over each combination of free
parameters. These plots are effectively slices of the model’s three-dimensional parameter space
efficiency; in each one, one of the parameters is held constant. We generate these plots at three
representative distances: 20 Mpc, 200 Mpc, and 250 Mpc. The network displays high efficiency at
low redshifts. We see this rapidly drop off at higher distances across all parameters. See Section
4.2 (below) for further analysis of network efficiency over redshift.

The parameter-space efficiency reveals that our neural network is most sensitive to the injected
burst luminosity. This is unsurprising, as the mass and velocity of the material ejected both have
no effect on the peak magnitude of the burst. Due to the dim nature of these bursts, detection is pri-
marily constrained by the magnitude limits of the LSST (the 5σ depth of a single-visit observation
will be ∼ 24.5 in the r band [38]). Efficiency begins to fall off at L ∼ 106L⊙. At the lower end of
the luminosity range, L = 105L⊙, the network’s capacity for detections is virtually nonexistent.
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20 Mpc

100 Mpc

250 Mpc

Figure 4.1: Network efficiency over the model free parameters L0, v, and M . Efficiency is com-
puted as completeness (the fraction of true bursts that the network accurately detects). Each plot
displays the efficiency as a function of two parameters while the third is held constant. The con-
stant parameter values are set to M = 1M⊙, v = 50 km/s, and L0 = 106L⊙. We present these plots
for 3 representative distances: 20 Mpc (top row), 100 Mpc, (middle row), and 250 Mpc (bottom
row).
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4.2 Redshift Efficiency and Detection Rates

The overall completeness of our network as a function of redshift is calculated for different
population distributions of the three remaining free parameters (ejecta mass, velocity, and burst
luminosity). Specifically, we investigate the case in which these parameters fall on a uniform
distribution and one in which they fall on log-uniform distributions, such that the lowest values
of the assigned ranges (refer to Section 2.1 for ranges) are favored. The two populations that we
compare represent ”worst case” and ”best case” scenarios, providing a benchmark for the network’s
capacity for detections. The log-uniform population consists of dimmer eruptions with faster fall
times (refer to Figure 2.1), rendering eruptions more difficult to detect. We explore the potential
populations of these parameters below in Section 4.3.

We plot the redshift efficiency curves in Figure 4.2. We find that our network, in general, can
reliably make detections for redshifts z ≲ .03. The uniform case displays much higher efficiency
up until a drop off at z ∼ .015. This reveals that even our most optical outcomes are strongly
limited by distance. In the case of log-uniform parameter distributions, our network capabilities
are even more limited, as our greatest efficiency at the closest distances is only ∼ 30%. Detections
are then highly improbable for this population at z ≳ .015. Given the significant reliance of
our network efficiency on luminosity, as depicted in Figure 4.1, this is to be expected. The main
determinant of our detection rates will be the energy of these eruptions.

We then use these efficiency functions to calculate the number of detections we expect per year
for type II SNe:

N = R0

∫ zmax

zmin

4πϵ(z)

1 + z

dV

dz
dz

For this calculation, we use the volumetric rate, R0, of SNe II at redshift z=0 (this approxi-
mation is sufficient given the small redshifts in consideration) obtained from Kessler et al. (2019)
[55]. We assume that only one eruption precedes each supernova, but note that multiple eruptions
corresponding to different stellar nuclear burning stages may be possible. For the log-uniform
population that represents our lower detection limit, we estimate our network to be capable of suc-
cessfully detecting precursors in ∼11 SN each year. Conversely, assuming uniform distributions
of parameters, we expect a detection rate of ∼50 SN per year.
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Figure 4.2: Network efficiency over redshift (z) corresponding to a uniform distribution of free
parameters (black) and log-uniform distribution (blue). The corresponding detection rates for each
case are provided.

4.3 Population Dependencies

The uncertainty in our anticipated detection rates reflects significant uncertainties regarding the
very nature of these eruptions. Since we lack empirical observations, it is difficult to make asser-
tions about how pre-SN bursts typically manifest. We look to radiation hydrodynamical models
of wave-driven eruptions to gain better insight into where they might fall in our parameter space.
Recent simulations conducted by Ko et al. (2022) [56] and Tsuna et al. (2023) [57] present six
different burst models–three in which a single eruption occurs, and three in which two eruptions
occur. Within these two cases, energy injected into the envelope is varied between values of .3 and
.8 times the binding energy of the envelope, which is equal to 4.86× 1047 erg for the 15M⊙ model
used. In general, the binding energy for RSGs is on the order of 1047 ergs). In the case of two
eruptions, they also vary the time between energy injections.

For single eruption cases, Tsuna et al. find peak luminosities ranging within 1 − 3 × 1039

erg/s. Double eruption light curves exhibit a slightly higher peak range: 4 − 6 × 1039 erg/s. This
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small range falls on the lower end of our luminosity range just under where network efficiency
falls off. They additionally find that the duration of energy injection has little effect on resultant
peak luminosities. Energy injection simulates the energy produced by the nuclear burning process
that generates bursts; hence, this duration time represents the duration over which the process takes
place and dissipates energy into the stellar envelope. We consider the case in which precursor pop-
ulations adhere to this luminosity range (maintaining the lower limit log distributions for velocity
and mass), and compute a successful detection rate of 15 SN/yr, which falls only slightly higher
than our lower limit estimation.

The inferred masses of the dense CSM in spectroscopic SN measurements suggest that mass
could fall closer to a uniform distribution [57]. Adjusting only the mass population to a uniform one
in the previous calculation–in which luminosity is held on the order of 1039 erg/s–yields a detection
rate slightly higher, at 20 SN/yr. Finally, Tsuna et al. find ejecta velocities in the outermost part
of the photosphere ∼ 100 km/s, however, velocities derived from spectral measurements of Hα in
SNe IIn range from 100− 1000 km/s [57]. If we assume a uniform distribution of velocity as well
as mass, this shifts our estimated detection rate to 25 SN/yr.

We note that even the absence of precursor detections in LSST data by our network can provide
valuable insights into the nature of these events. Similar to the analysis of SN 2023ixf (Section
3.4), but on a much larger scale due to the sheer volume of SNe that LSST will detect, our network
will be able to place substantial limits on potential precursor events that go undetected. This
information can still significantly contribute to our understanding of precursor events and their
associated mechanisms. If no detections are made over 10 years, this would imply significant
shortcomings in the current theories and models of the nuclear burning eruption mechanism. It
may indicate that an entirely different mechanism is responsible for late-stage mass loss, which
manifests at much lower luminosities than those predicted by the wave-burning models.

Finally, more work may be done in exploring the parameter space of our model and how it
affects network performance. Our study considers an ejecta mass range between .1 M⊙ and 1 M⊙.
However, it should be noted that simulations such as in Tsuna et al. (2023) derive a range that
extends much lower, down to Mej ∼ .01M⊙. Additionally, our models held progenitor radius R0

at a fixed value of 1500 R⊙. This represents an upper limit of RSG radii; the larger progenitor
radius in our model results in slightly faster decay times of the burst luminosity. The dependence
of our light curves on radius is provided in Figure 4.3. Changing this free parameter within our
light curve sets may provide minimally different efficiency and rate results than what has been
found thus far.
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Figure 4.3: Bolometric light curves of the model eruption plotted over the range of progenitor radii
R0. Other free parameters are held constant at L0 = 106L⊙, and v = 50 km/s, and M = 1M⊙.
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Chapter 5

Conclusion
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The variation and uncertainty in our predicted detection capabilities underscores the large un-
certainty encompassing the problem at hand. We stress that the lack of observation and modeling
capabilities renders these processes largely ambiguous, and thus difficult to predict. It is important
to acknowledge the limitations in our approach; given the nuanced and diverse nature of precursor
events, along with their faint signatures, our CNN will not capture every precursor event present
in observational data. However, our efforts represent a significant step in the quest to observe and
demystify them.

Despite potential limitations, the unconventional utilization of a CNN for analyzing multi-
wavelength time series data in this study opens up new avenues for similar analysis problems,
especially those that deal with large-scale surveys such as the LSST. The ability of CNNs to pro-
cess vast amounts of data simultaneously and discern complex patterns within multi-dimensional
datasets positions them as effective tools for other astrophysical problems. In general, our study un-
derscores the essential role of neural networks in modern astrophysical research. Their adaptability
and scalability make them invaluable for handling the abundance of data generated by contempo-
rary observational facilities. By leveraging the capabilities of neural networks, astronomers can
extract meaningful insights from vast datasets, leading to advancements in our understanding of
the universe.

Our work lays a foundation for future research directions to deepen our understanding of RSGs
and their role in stellar evolution. One promising avenue is extending our methodology to other
modern transient surveys. The Zwicky Transient Facility (ZTF) [58], for example, is a northern sky
survey based in the Palomar observatory that can also serve as a source for identifying precursors.
By adapting and optimizing our techniques to the depth and cadence of this survey, we may be
able to extend observational data even further and subsequently advance our understanding of
RSG stellar evolution. Through continued interdisciplinary efforts, we can expect further progress
in understanding the intricate processes that govern the life cycles of massive stars.
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S. Rodney, V. A. Villar, The LSST Dark Energy Science Collaboration, the Transient, and
Variable Stars Science Collaboration. Models and simulations for the photometric lsst as-
tronomical time series classification challenge (plasticc). Publications of the Astronomical

Society of the Pacific, 131(1003):094501, September 2019.

[56] Takatoshi Ko, Daichi Tsuna, Yuki Takei, and Toshikazu Shigeyama. Eruption of the enve-
lope of massive stars by energy injection with finite duration. The Astrophysical Journal,
930(2):168, May 2022. arXiv:2112.14909 [astro-ph].

[57] Daichi Tsuna, Yuki Takei, and Toshikazu Shigeyama. Precursors of supernovae from mass
eruption: Prospects for early warning of nearby core-collapse supernovae. The Astrophysical

Journal, 945(2):104, March 2023.

[58] Eric C. Bellm, Shrinivas R. Kulkarni, Matthew J. Graham, Richard Dekany, Roger M.
Smith, Reed Riddle, Frank J. Masci, George Helou, Thomas A. Prince, Scott M. Adams,
C. Barbarino, Tom Barlow, James Bauer, Ron Beck, Justin Belicki, Rahul Biswas, Nade-
jda Blagorodnova, Dennis Bodewits, Bryce Bolin, Valery Brinnel, Tim Brooke, Brian Bue,
Mattia Bulla, Rick Burruss, S. Bradley Cenko, Chan-Kao Chang, Andrew Connolly, Michael
Coughlin, John Cromer, Virginia Cunningham, Kishalay De, Alex Delacroix, Vandana De-
sai, Dmitry A. Duev, Gwendolyn Eadie, Tony L. Farnham, Michael Feeney, Ulrich Feindt,
David Flynn, Anna Franckowiak, S. Frederick, C. Fremling, Avishay Gal-Yam, Suvi Gezari,
Matteo Giomi, Daniel A. Goldstein, V. Zach Golkhou, Ariel Goobar, Steven Groom, Eugean
Hacopians, David Hale, John Henning, Anna Y. Q. Ho, David Hover, Justin Howell, Tiara
Hung, Daniela Huppenkothen, David Imel, Wing-Huen Ip, Željko Ivezić, Edward Jackson,
Lynne Jones, Mario Juric, Mansi M. Kasliwal, S. Kaspi, Stephen Kaye, Michael S. P. Kelley,
Marek Kowalski, Emily Kramer, Thomas Kupfer, Walter Landry, Russ R. Laher, Chien-
De Lee, Hsing Wen Lin, Zhong-Yi Lin, Ragnhild Lunnan, Matteo Giomi, Ashish Maha-
bal, Peter Mao, Adam A. Miller, Serge Monkewitz, Patrick Murphy, Chow-Choong Ngeow,
Jakob Nordin, Peter Nugent, Eran Ofek, Maria T. Patterson, Bryan Penprase, Michael Porter,
Ludwig Rauch, Umaa Rebbapragada, Dan Reiley, Mickael Rigault, Hector Rodriguez, Jan
van Roestel, Ben Rusholme, Jakob van Santen, S. Schulze, David L. Shupe, Leo P. Singer,
Maayane T. Soumagnac, Robert Stein, Jason Surace, Jesper Sollerman, Paula Szkody, F. Tad-
dia, Scott Terek, Angela Van Sistine, Sjoert van Velzen, W. Thomas Vestrand, Richard Wal-
ters, Charlotte Ward, Quan-Zhi Ye, Po-Chieh Yu, Lin Yan, and Jeffry Zolkower. The Zwicky
Transient Facility: System Overview, Performance, and First Results. Publications of the

Astronomical Society of the Pacific, 131(995):018002, January 2019.


